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vibrational contributions
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In this work, we investigate how geometric changes influence the static dipole polarizability (α) of a
water molecule by explicitly computing the corresponding dipole polarizability surface (DPS) across
3125 total (1625 symmetry-unique) geometries using linear response coupled cluster theory including
single, double, and triple excitations (LR-CCSDT) and the doubly augmented triple-ζ basis set (d-aug-
cc-pVTZ). Analytical formulae based on power series expansions of this ab initio surface are generated
using linear least-squares analysis and provide highly accurate estimates of this quantity as a function
of molecular geometry (i.e., bond and angle variations) in a computationally tractable manner. An
additional database, which consists of 25 representative molecular geometries and incorporates a more
thorough treatment of both basis sets and core electron effects, is provided as a current benchmark
for this quantity and the corresponding leading-order C6 dispersion coefficient. This database has
been utilized to assess the importance of these effects as well as the relative accuracy that can be
obtained using several quantum chemical methods and a library of density functional approximations.
In addition to high-level electron correlation methods (like CCSD) and our analytical least-squares
formulae, we find that the SCAN0, PBE0, MN15, and B97-2 hybrid functionals yield the most
accurate descriptions of the molecular polarizability tensor in H2O. Using first-order perturbation
theory, we compute the zero-point vibrational correction to α at the CCSDT/d-aug-cc-pVTZ level
and find that this correction contributes approximately 3% to the isotropic (αiso) and nearly 50% to
the anisotropic (αaniso) polarizability values. In doing so, we find that αiso = 9.8307 bohr3, which is
in excellent agreement with the experimental value of 9.83 ± 0.02 bohr3 provided by Russell and
Spackman. The DPS reported herein provides a benchmark-quality quantum mechanical estimate of
this fundamental quantity of interest and should find extensive use in the development (and assessment)
of next-generation force fields and machine-learning based approaches for modeling water in complex
condensed-phase environments. Published by AIP Publishing. https://doi.org/10.1063/1.5051458

I. INTRODUCTION

The dipole polarizability describes the changes in the
charge distribution of an atom or a molecule that are induced
by the presence of an external electric field. As such, this
molecular response property is a central ingredient in many
important phenomena, including the Stark effect, dielectric
polarization, and intermolecular forces (such as induction and
dispersion).1–4 The molecular polarizability of water, in par-
ticular, is still of significant interest today, as demonstrated by
a number of recent experimental and theoretical efforts, such
as spectroscopic studies,5 molecular simulations,6 and inter-
molecular potential (force field) developments,7–10 to name a
few. However, high-accuracy benchmark ab initio calculations
of this fundamental response property can be very challenging
and often require a sophisticated treatment of electron corre-
lation in conjunction with quite diffuse basis sets to obtain
sufficiently converged results.11

a)Email: distasio@cornell.edu

Various aspects concerning the theoretical determination
of the electronic contribution to the dipole polarizability have
been examined for the water molecule (in particular, at its equi-
librium geometry) over the past four decades and include quan-
tum mechanical treatments at the level of second-order Møller-
Plesset perturbation theory (MP2),11–25 fourth-order Møller-
Plesset perturbation theory (MP4),14,26 multi-configurational
self-consistent field theory (MCSCF),17,27–30 coupled cluster
(CC) theory,11,14,17,18,23,24,30–44 W4 theory,45 and a compre-
hensive range of density functionals.11,19,20,24–26,38,42,43,46–52

Quite often, the vibrational contributions to this property,
which are due to a distortion of the molecular vibrational
motion by the electric field, are neglected in purely theoretical
calculations. However, vibrational polarizabilities that have
been indirectly determined from experimental IR-active band
intensities have indicated that these contributions are non-
negligible53 and have been estimated to contribute approxi-
mately 3% to the total (electronic + vibrational) polarizabil-
ity of water.37,54 Although much work has been devoted to
estimate the vibrational contributions55,56 to the molecular
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polarizability of water, such as Hartree-Fock (HF),16,28,54,57–59

complete active space self-consistent field theory
(CASSCF),27–29 MP2,16,54,60 density functional theory
(DFT),26,51 vibrational structure theory,39 coupled cluster
singles and doubles (CCSD) with the W6 basis set (and
Gauss-Hermite numerical quadrature over the lowest vibra-
tional state),37 and DFT-based Born–Oppenheimer molecular
dynamics (BOMD),41 theoretical approaches that accurately
account for both electron correlation effects and basis set
incompleteness error in this quantity are also rather scarce.

Accurate knowledge of the molecular polarizability of
water is critical for the development of polarizable force fields
based on non-rigid (flexible) water molecules.7,61–64 In this
case, a quantitative measure of the dependence of the polariz-
ability on the underlying geometry is an essential first step
towards describing intermolecular interactions in complex
aqueous environments.37,44,65,66 To address this need, Avila37

computed the static dipole polarizability of water at 521 dif-
ferent geometries using linear response coupled cluster theory
(in particular, LR-CCSD) and the W6 basis set, with further
refinements using orbital-relaxed finite-field CCSD(T) for an
additional subset of 20 geometries. Based on these calcula-
tions, Avila pointed out that polarizabilities computed with
LR-CCSD (a method which is equivalent to orbital-unrelaxed
finite-field CCSD,67,68 in which the electric field perturba-
tion is switched on during the solution of the CC equations
only) agreed to within 1% of the orbital-relaxed finite-field
CCSD(T) results.37 Loboda et al.44 then studied the geomet-
ric dependence of the static dipole polarizability (as well as
mixed and higher-order polarizabilities) of water at 125 differ-
ent geometries using orbital-relaxed finite-field CCSD(T) and
the aug-cc-pVTZ basis set. In a detailed study which focused
on the equilibrium geometry, Hammond et al.11 demonstrated
that while electron correlation effects beyond CCSD are non-
negligible (i.e., with the triples contributing ≈1%), basis set
incompleteness error plays an even more critical role in the
convergence of this property. In this regard, there is strong
evidence that basis sets of at least triple-ζ quality which have
been augmented with two sets of diffuse functions (e.g., the
d-aug-cc-pVXZ basis sets of Woon and Dunning69 with X ≥
T) are required for convergence of this response property in the
water monomer, while further augmentation (e.g., as provided
by the t-aug-cc-pVXZ and q-aug-cc-pVXZ basis set series) is
usually not necessary.11,36

With this in mind, the main goal of the present study
is to benchmark how geometric changes influence the static
dipole polarizability of a water molecule by explicitly com-
puting the corresponding dipole polarizability surface (DPS)
using an accurate treatment of both electron correlation and
basis set effects. This is accomplished using linear response
coupled cluster theory including single, double, and triple
excitations (LR-CCSDT) and the doubly augmented triple-ζ
basis set (d-aug-cc-pVTZ) across 3125 total (1625 symmetric-
unique) molecular geometries. By simultaneously accounting
for both electron correlation effects (beyond the CCSD level)
and basis set incompleteness error across the most comprehen-
sive number of non-equilibrium water geometries considered
to date, this surface should find extensive use in the develop-
ment (and assessment) of next-generation force fields70 and

machine-learning based approaches for computing tensorial
properties.71,72

The remainder of the paper is organized as follows.
In Sec. II, we describe the computational approach utilized
throughout this work. In Sec. III, we provide a detailed analy-
sis of the geometric dependence underlying the DPS for water
as well as analytical formulae for generating these quantities
obtained via linear least-squares analysis. We expect that such
geometry-dependent formulae [in conjunction with the best
available potential energy surfaces (PESs) and dipole moment
surfaces for the water molecule]73–75 should be useful for
developing new aqueous force fields and/or refining current
ab initio based water models such as TTM,76–79 CC-pol,80

WHBB,81 and MB-pol.70 An additional database consisting
of 25 representative geometries that incorporates a more thor-
ough treatment of both basis set and core electron effects is
also provided as a current benchmark for this quantity and
the corresponding C6 dispersion coefficients. This database is
then utilized to assess the importance of these effects as well
as the relative accuracy associated with a number of popu-
lar quantum chemical and density functional approximations.
By including zero-point (ZP) vibrational contributions (which
have been calculated herein for the first time at the CCSDT/d-
aug-cc-pVTZ level of theory) to our highly accurate electronic
polarizabilities, the currently debatable experimental results
for the static polarizability of the water molecule54,82–87 should
be largely settled by comparison with our nearly exact quan-
tum mechanical results. Final conclusions are then drawn in
Sec. IV.

II. COMPUTATIONAL DETAILS
A. Construction and least-squares fits
of the DPS-H2O-3K database

The geometric dependence of the dipole polarizability (α)
for an isolated (gas-phase) water molecule is obtained by fit-
ting the corresponding DPS (centered around the experimental
equilibrium geometry) to a power series expansion formula.
In this work, the experimental equilibrium geometry of the
water molecule was taken from Ref. 88, with vibrationally
averaged values of r0 = 0.9578 Å for the OH bond length and
θ0 = 104.4776◦ for the HOH angle. Throughout this work,
the subscript “0” in r0 and θ0 indicates that these are vibra-
tionally averaged quantities obtained from experiment. The
subscript “e” will be used below to denote quantities that cor-
respond to the (global) minimum of a potential energy surface
(PES) computed at a specific level of theory. A local ref-
erence frame was chosen such that each water molecule is
located on the xz plane with the z-axis bisecting the HOH
angle (see Fig. 1). This choice for the molecular orientation
yields a sparse polarizability tensor in which the αxy = αyx

and αyz = αzy components are strictly zero. To construct the
DPS, the HOH angle (θ) was sampled at five different val-
ues (75◦, 90◦, θ0 = 104.4776◦, 120◦, and 135◦) and the OH
bond lengths (r1 and r2) were varied between 0.650 Å and
1.298 Å in increments of 0.027 Å. This results in a total of
3125 non-equilibrium geometries that will be utilized to gen-
erate the DPS database, which we denote by DPS-H2O-3K.
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FIG. 1. The local reference frame chosen for the water molecule has all atoms
located on the xz plane and the z-axis bisecting the HOH angle (θ). Throughout
this work, the OH bond lengths (r1 and r2) in the symmetry-unique geometries
are taken such that r1 ≤ r2.

Due to symmetry considerations, only 1625 symmetry-unique
geometries (for which r1 ≤ r2) were required, which included
1500 geometries with Cs symmetry and 125 geometries with
C2v symmetry. To simultaneously account for both electron
correlation and basis set effects, the molecular α for this set of
geometries were computed at the LR-CCSDT/d-aug-cc-pVTZ
level of theory, i.e.,

αuv = α
LR-CCSDT/daTZ
uv , (1)

wherein we have used u and v to denote Cartesian axes and
daXZ to denote the d-aug-cc-pVXZ (with X = D, T, Q, 5)
basis set. Tabulated data for the DPS-H2O-3K database [as
well as the corresponding energies (V ) and dipole moments
(µ)] computed at the CCSDT/daTZ level can be found in Table
S1 of the supplementary material.

The non-zero components of the molecular α tensor in
the DPS-H2O-3K database have been fitted to the following
power series expansion formula:37,44,64,89–91

α
pred
uv =

p∑
i+j+k=0

ϕ(uv)
ijk (∆h1)i(∆h2) j(∆h3)k

≡

p∑
i+j+k=0

ϕ(uv)
ijk fijk , (2)

in which ϕ(uv)
ijk are the expansion coefficients and α

pred
uv is

the predicted value for αuv . In this expression, ∆h1, ∆h2,
and ∆h3 are the normalized deviations from the experimental
equilibrium geometry, which are defined as

∆h1 =
θ − θ0

θ0
, ∆h2 =

r1 − r0

r0
, ∆h3 =

r2 − r0

r0
. (3)

Powers of these normalized deviations were chosen as features
(f ijk) during the fitting procedure in this statistical model. The
power series expansion in Eq. (2) was limited to order p (i.e.,
0 ≤ i + j + k ≤ p), which gives rise to a total of M expansion
coefficients. For all values of p, ϕ(uv)

000 was acquired from the
components of α at the experimental equilibrium geometry.

For each non-zero component of α, a linear least-squares
procedure was used to determine the {ϕ(uv)

ijk } for i + j + k , 0
that minimize the following prediction error:

{ϕ(uv)
ijk } = arg min

{ϕ
(uv)
ijk }




N∑
q=1

[
α

pred
uv (q) − αuv(q)

]2



, (4)

in which q runs over the N = 3125 computed αuv values in the
DPS-H2O-3K database. In matrix notation, this is equivalent
to

β = arg min
β
‖Aβ − y‖22 , (5)

where AN×(M−1) is a matrix containing the features for a given
water geometry in each row, β(M−1)×1 is a vector that contains
the expansion coefficients, and yN×1 is a vector that contains
the calculated (reference) polarizabilities. With A = UΣVT as
the exact singular value decomposition (SVD) of the A matrix,
the solution of this linear least-squares problem is given by

β = VΣ−1UT y. (6)

To improve the conditioning of our fitting procedure, only t
singular values with σi > 10−5 × σmax (with σmax denoting
the maximum singular value) and their corresponding singular
vectors were kept during the SVD procedure. The resulting
approximate SVD of A is thus given by A ≈ UtΣtVT

t , and the
corresponding least-squares solution,

β = VtΣ
−1
t UT

t y, (7)

is more numerically stable with respect to small
perturbations δy.

B. Construction of the benchmark DPS-H2O-25++
and C6S-H2O-25++ databases

To account for basis set effects (beyond the daTZ level)
and core electron contributions to these quantities, we also con-
structed a smaller benchmark database, in which five OH bond
configurations (three C2v geometries with: r1 = r2 = 0.650 Å,
r1 = r2 = r0 = 0.9578 Å, and r1 = r2 = 1.298 Å; two Cs

geometries with: r1 = 0.650 Å and r2 = r0 = 0.9578 Å, r1 = r0

= 0.9578 Å and r2 = 1.298 Å) were chosen for each of the five
angles above (θ = 75◦, θ = 90◦, θ = θ0 = 104.4776◦, θ = 120◦,
and θ = 135◦) for a total of 5 × 5 = 25 geometries. These 25
geometries were chosen to span the more extensively sampled
collection of 3125 total (1625 symmetry-unique) geometries
utilized to build the DPS-H2O-3K surface described above.

Molecular α in the benchmark DPS-H2O-25++ database
were computed via the following prescription:

αuv = α
LR-CCSDT/daQZ
uv + ∆αbasis + ∆αcore, (8)

which includes a baseline calculation of αuv at the LR-
CCSDT/daQZ level of theory (which utilizes the larger
daQZ basis set than that in the more extensive DPS-H2O-
3K database) as well as further corrections for basis set
incompleteness error,

∆αbasis = α
LR-CCSD/da5Z
uv − αLR-CCSD/daQZ

uv , (9)

and core electron contributions to α,

∆αcore = α
LR-CCSD[FULL]/daCQZ
uv − αLR-CCSD/daQZ

uv . (10)

In this last expression, daCQZ denotes the d-aug-cc-pCVQZ
basis set,92 which provides additional functions to bet-
ter describe core-valence electron correlation, and LR-
CCSD[FULL] denotes that all electrons (including the core
electrons) were included in the calculation. We note in pass-
ing that all other LR-CC and CC calculations (without the
[FULL] designation) in this work employed the frozen core

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-022842
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approximation. The corresponding refined V and µ for these
25 geometries can be found in Table S2.

This benchmark database was used to critically assess
the performance of the HF, MP2, and CCSD quantum
chemistry (QC) methodologies, the analytical least-squares
formulae, and a wide range of DFT functionals includ-
ing LDA/LSDA,93,94 the BLYP95,96 and PBE97 generalized-
gradient approximation (GGA) functionals, the widely used
B3LYP98,99 and PBE0100 hybrid functionals, the M11,101

B97-2,50 and ωB97X-D102 functionals (which are recom-
mended for calculating α in Refs. 25, 26, and 41, respec-
tively), the most recent Minnesota functional MN15,103 the
recently developed non-local functionals of Mardirossian
and Head-Gordon (B97M-V,104 ωB97X-V,105 and ωB97M-
V),106 the recently developed meta- and hyper-GGA function-
als of Perdew and co-workers (MS2,107 MS2h,107 MVS,108

MVSh,108 and SCAN),109 the SCAN0 hybrid functional pro-
posed by Hui and Chai,110 and the mBEEF functional, which
is based on the Bayesian error estimation functional frame-
work.111 Orbital-relaxed α at the HF, MP2, and DFT levels
were computed from first derivatives of the respective µ,
obtained using the finite-field method with an applied electric
field strength of 1.889 726 125 × 10−5 a.u. Orbital-unrelaxed
α at the MP2 level were computed via the second derivatives
of the MP2 energy using the finite-field method in which the
electric-field perturbation was only switched on after conver-
gence of the HF equations. This ensures the use of field-free
molecular orbitals during the calculation of the perturbative
correction.

In addition to the non-zero Cartesian components of the α
tensor, the spherically isotropic (αiso) and anisotropic (αaniso)
polarizabilities were also computed using

αiso =
1
3

(αxx + αyy + αzz) (11)

and

αaniso =
1
√

2

[
(αxx − αyy)2 + (αyy − αzz)

2

+(αzz − αxx)2 + 6(α2
xy + α2

xz + α2
yz)

]1/2
. (12)

Leading-order isotropic dispersion coefficients (C6,iso) for
these 25 representative geometries were obtained via the
Casimir-Polder integral,112

C6,iso =
3
π

∫ ∞
0

dω αiso(iω)αiso(iω), (13)

in which αiso(iω) is the frequency-dependent isotropic dipole
polarizability (for imaginary frequencies). The required set
of αiso(iω) were obtained via the Cauchy moment expansion
at the LR-CC level113,114 with use of the [n, n − 1]β Padé
approximant, as recommended by Langhoff and Karplus.115

With n = 5, the resulting C6 dispersion coefficients are expected
to be converged to within 1%.113

Molecular C6,iso dispersion coefficients in the benchmark
C6S-H2O-25++ database were computed via the following
prescription:

C6,iso = CLR-CCSD/daQZ
6,iso + ∆C6,basis + ∆C6,core, (14)

which again includes a higher-level baseline accompanied by
corrections for basis set incompleteness error,

∆C6,basis = CLR-CC2/da5Z
6,iso − CLR-CC2/daQZ

6,iso , (15)

as well as core electron contributions to C6,iso,

∆C6,core = CLR-CC2[FULL]/daCQZ
6,iso − CLR-CC2/daQZ

6,iso , (16)

computed using the second-order approximate coupled clus-
ter singles and doubles model (CC2).116 Since the values of
∆C6,basis and ∆C6,core are essentially the same when computed
with CC2 and CCSD, the more computationally tractable CC2
method was employed here.

Since the uncoupled HF (UCHF) dispersion energy con-
tributes to the binding energy at the MP2 level,117–120 and
this energy contribution can be obtained using the correspond-
ing dispersion coefficients at sufficiently large intermolecular
distances, it is also of interest to compute CMP2

6,iso for compar-
ative purposes. For the experimental equilibrium geometry,
the CMP2

6,iso coefficients were obtained using the Casimir-Polder
integral over the corresponding UCHF frequency-dependent
polarizabilities (computed with the daQZ basis set). The
Casimir-Polder integral was numerically evaluated using a
Gauss-Chebyshev quadrature scheme.121 Because of the sym-
metry properties associated with the trigonometric functions
in the Gauss-Chebyshev scheme, it is sufficient to compute
only Npts/2 grid points for even values of Npts. All C6 calcu-
lations in this work used Npts = 40 in order to obtain accurate
and converged dispersion coefficients, although Npts = 20 is
usually more than sufficient for such purposes.

C. Vibrational contributions to α

The inclusion of vibrational contributions to α is essen-
tial for meaningful comparison to experiment.18,36,37,54,122

According to Marti and Bishop,123 the total vibrational (vib)
contribution to α can be defined as

α(vib) = αZP + αv , (17)

where αZP is the zero-point (ZP) correction and αv is the so-
called pure vibrational contribution. Adding α(vib) to the elec-
tronic α described above allows us to compare our theoretical
results with experimentally determined quantities measured at
finite frequencies and/or extrapolated to the static limit. Since
αv is essentially negligible at such frequencies,124 only αZP is
required to obtain the vibrational contribution toα in this study.
The method used herein to obtain the vibrational contribution
to α is based on the scheme proposed by Russell and Spack-
man.54 In their study, the “zero-point vibrational correction
(ZPVC)” term is precisely the same as αZP in Eq. (17).54 As
such, αZPVC will be used to denote the zero-point vibrational
corrections to α throughout this work.

To compute these vibrational corrections, we expand
the potential energy V (in cm−1) as a Taylor series in the
dimensionless normal mode coordinates qi as follows:

V = Ve +
1
2

∑
i

wiq
2
i +

1
6

∑
ijk

φijkqiqjqk

+
1

24

∑
ijkl

φijklqiqjqkql + · · · . (18)
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In this expression, wi are the harmonic (quadratic) vibrational
frequencies, while φijk and φijkl are the anharmonic cubic and
quartic force constants, respectively. The quantity V e is evalu-
ated at the (global) minimum of the PES, i.e., r1 = r2 = re and
θ = θe. The dimensionless normal mode coordinates qi can be
transformed into mass-weighted normal mode coordinates Qi

using the following equation:125

qi = cqw
1/2
i Qi, (19)

where wi and Qi have units of cm−1 and bohr amu1/2, respec-
tively, and cq = 0.091 136 is the required conversion factor. We
note in passing that the anharmonic cubic force constants φijk

in this work only differ from the kijk used by Nielsen126 by
simple numerical factors.125

For the ground vibrational state of water, αZPVC can
be derived from first-order perturbation theory (by neglect-
ing higher-order terms arising from anharmonic quartic force
constants and cubic partial derivatives of α) and is given
by54,127,128

αZPVC ≈
1
4

∑
i



*
,

∂2α

∂q2
i

+
-e

−
∑

j

φiij

wj

(
∂α

∂qj

)
e




. (20)

In this expression, i and j run over the three vibrational modes
of H2O (which correspond to bending, symmetric stretch-
ing, and asymmetric stretching), while the (∂α/∂qj)e and
(∂2α/∂q2

i )e terms represent the first and second partial deriva-
tives of α (with respect to a given normal mode) evaluated at
the r1 = r2 = re and θ = θe geometry.

To compute αZPVC at the CCSDT/daTZ level, a numer-
ical geometry optimization was first performed to locate the
global minimum on the PES, followed by numerical calcu-
lation of the corresponding Hessian to obtain the harmonic
vibrational frequencies and normal modes. A series of dis-
placed geometries with respect to the CCSDT/daTZ structure
(which has an OH bond length of re = 0.9617 Å and a HOH
angle of θe = 104.1713◦) was then generated by taking dis-
placements along each of the three normal modes in both the
positive and negative directions with a step size of ∆q. Along
each of the i normal modes, there were six single displace-
ments: {±∆qi}, {±2∆qi}, and {±3∆qi}. Combinations of any
two normal modes i and j were also included, which leads
to 36 double displacements: {±∆qi, ±2∆qi, ±3∆qi}/{±∆qj,
±2∆qj, ±3∆qj}. Triple displacements were also necessary
when calculating quartic force constants using the finite-
difference scheme. Such displacements couple all three normal
modes and require an additional 64 combinations: {±∆qi,
±2∆qi}/{±∆qj, ±2∆qj}/{±∆qk , ±2∆qk}. To ensure the accu-
racy of our finite-differencing scheme for numerical evaluation
of the derivatives in Eq. (20), we also compared our results
against a least-squares fit of these quantities and found negli-
gible differences. With three normal modes, a total number of
6×3 + 36×3 + 64 = 190 displaced geometries were considered
in this work.

The Cartesian coordinates for a geometry with a displace-
ment ∆qi along the normal mode coordinate qi were obtained
via129

∆x(i)
n = cxγ

−1/2
i lniM

−1/2
n ∆qi, (21)

in which γi = λ1/2
i /}, λi and lni are the eigenvalues (in

hartree bohr−2 amu−1) and eigenvectors, respectively, of
the mass-weighted Cartesian force constant matrix evalu-
ated at the CCSDT/daTZ minimum, and ∆x(i)

n denotes a
Cartesian displacement (in bohr) of an atom n with mass
Mn (in amu) along the normal mode i. In this expres-
sion, cx = 0.153 042 is the required conversion factor
to obtain the displaced Cartesian coordinates ∆x in bohr.
Properties such as V and α were then computed for the
CCSDT/daTZ minimum and displaced geometries thereof.
All of the required derivatives in Eq. (20) were calculated
using fourth-order central differences with a step size of
∆q = 0.130 683.

In order to compare our theoretical results with experi-
ment, the total α must include both electronic and vibrational
contributions, i.e.,

αtotal ≈ α + αZPVC

= αLR-CCSDT/daQZ + ∆αbasis + ∆αcore + αZPVC, (22)

where αLR-CCSDT/daQZ, ∆αbasis, and ∆αcore were computed at
the experimental equilibrium geometry using Eqs. (8)–(10)
and αZPVC was computed at the CCSDT/daTZ optimized
geometry using Eq. (20).

In this work, all CC calculations were performed using
an in-house modified version of the tensor contraction engine
(TCE) response-property module130–132 contained in the
NWChem (v6.6) software package,133 except for the LR-CC
calculations for the Cauchy moments,113,114 which were car-
ried out using Dalton2016.134,135 All finite-field HF, MP2, and
DFT calculations, as well as computations of UCHF polar-
izabilities and CMP2

6,iso dispersion coefficients, were performed

using a locally modified version of Q-Chem.136 A (75, 302)
quadrature grid was used to evaluate the semi-local part of
the DFT functionals and the SG-1 grid137 was used for the
non-local (VV10) correlation.138

III. RESULTS AND DISCUSSION
A. Geometric dependence of α
in the DPS-H2O-3K database

The main goal of this study is to unravel the geometric
dependence of the α tensor of the H2O molecule as well as
provide an analytical formula for this quantity which can be
used for the development (and assessment) of next-generation
force fields and machine-learning based approaches for mod-
eling water in complex condensed-phase environments. The
reference data for the DPS-H2O-3K database (computed at
the LR-CCSDT/daTZ level of theory) employed in our fitting
procedure are discussed first.

At the experimental equilibrium geometry (r0 = 0.9578 Å
and θ0 = 104.4776◦, located in the xz-plane),88 α is essentially
isotropic with αaniso = 0.51 bohr3 and αxx > αzz > αyy, with
αxx = 9.98 bohr3, αzz = 9.63 bohr3, αyy = 9.40 bohr3, and αiso

= 9.67 bohr3, as shown in Table I. However, the molecular
geometries accessed in the condensed-phase are significantly
different from the equilibrium geometry. For non-equilibrium
bond lengths and angles, α becomes strongly anisotropic, with
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TABLE I. Current benchmark values for the static dipole polarizability components (αxx ,αyy, andαzz) of the H2O
molecule at its experimental equilibrium geometry, as well as the corresponding isotropic (αiso) and anisotropic
(αaniso) measures of this tensor. All values are provided in bohr3.

Method αxx αyy αzz αiso αaniso

LR-CCSD/W6a,b 9.990 9.329 9.631 9.650 0.573
CCSD(T)/aTZc,d 9.915 9.038 9.378 9.444 0.766

LR-CC3/daTZ+∆CCQ/T
basis

a,e,f 9.890 9.260 9.540 9.560 0.540
CCSD(T)/CBSc,g 9.832 9.186 9.479 9.499 0.560
CCSDTQ(P)/CBSc,g,h 9.832 9.198 9.479 9.503 0.551
UCHF/daQZi 7.823 6.288 7.298 7.136 1.352
LR-CCSDT/daTZa,i 9.977 9.397 9.630 9.668 0.506
LR-CCSDT/daQZa,i 9.928 9.311 9.583 9.608 0.535
LR-CCSDT/daQZ+∆αbasis

a,i,j 9.906 9.276 9.557 9.579 0.547
LR-CCSDT/daQZ+∆αbasis+∆αcore

a,i,j ,k 9.874 9.223 9.520 9.539 0.565

aLinear response calculation.
bReference 37. r = 0.9584 Å and θ = 104.44◦.
cOrbital-relaxed finite field calculation.
dReference 44. CCSD(T)/aTZ optimization with r = 0.9589 Å and θ = 104.33◦.
eReference 36. r = 0.9570 Å and θ = 104.50◦.
f∆CCQ/T

basis = LR-CCSD/daQZ –LR-CCSD/daTZ.
gReference 41. CCSD(T)/CBS approximated by a three-point daQZ/da5Z/da6Z extrapolation.
hCCSDTQ(P)/CBS = CCSD(T)[FULL]/CBS + [CCSDTQ(P)/aDZ –CCSD(T)/aDZ].
iThis work. Experimental geometry from Ref. 88 with r = r0 = 0.9578 Å and θ = θ0 = 104.4776◦.
j∆αbasis = LR-CCSD/da5Z–LR-CCSD/daQZ; see Eq. (9).
k∆αcore = LR-CCSD[FULL]/daCQZ–LR-CCSD/daQZ; see Eq. (10).

αaniso values as high as 10.66 bohr3 for the geometry with
r1 = r2 = 1.2980 Å and θ = 135◦. Across the 3125 total (1625
symmetry-unique) geometries in this work,αiso also has a quite
extensive range, with observed values of 6.20–16.55 bohr3

(i.e., 64%–171% ofαiso at the experimental equilibrium geom-
etry), with diagonal components ranging from approximately
6-24 bohr3 and a non-diagonal component (αxz) ranging from
approximately 0-4 bohr3.139 Among the diagonal components,
we find that the largest geometric dependence occurs for αxx,
the in-plane component ofα that is orthogonal to the C2 molec-
ular axis, which has the most extensive range of observed α
values (5.60-23.63 bohr3). This is followed by αzz (the in-
plane component along the C2 molecular axis) and αyy (the
out-of-plane component), with ranges of 5.83-16.35 bohr3 and
7.12-12.43 bohr3, respectively. This observation is consistent
with the fact that the polarizability is the strongest along the
bonds and changing r1, r2, and θ will lead to the largest dif-
ferences in the x- and z-components in the water molecule
(Fig. 1).

Figure 2 shows the α dependence on the OH bond lengths
by fixing θ = θ0 = 104.4776◦. As seen in the experimental equi-
librium geometry, we also find that the diagonal components of
α follow the trend that αxx > αzz > αyy, i.e., the in-plane com-
ponents of α are larger than the out-of-plane component. As
expected, all α components increase as the OH bond lengths
are stretched. Both of these findings are consistent with the
general proportionality relationship between α and molecu-
lar volume.140 For reference, the full DPS-H2O-3K database
(Table S1) includes data for four additional HOH angles
(θ = 75◦, θ = 90◦, θ = 120◦, and θ = 135◦) and the corre-
sponding heat maps can be found in Figs. S1–S4. In varying θ
from 75◦ to θ = 135◦, it is clear from this database that changes
in the OH bond lengths have a more significant impact on the
α tensor.

B. Least-squares fit of the DPS-H2O-3K database

To generate an accurate prediction of the DPS from the
power series expansion formula in Eq. (2), all of the refer-
ence data contained in the DPS-H2O-3K database were used
to obtain the optimal set of expansion coefficients (ϕ(uv)

ijk ) for
each non-zero polarizability component (αxx, αyy, αzz, and
αxz). Table II lists all M = 35 of these coefficients (for an
expansion up to order p = 4) obtained using the linear least-
squares procedure outlined in Eq. (4) as well as a statistical
analysis of the power series performance in reproducing each
of these four components. Using this expansion order, we
are able to reproduce the DPS of H2O with high fidelity,
as graphically shown in Fig. 3. Here we report negligible
mean signed errors (MSEs) and conclude that our approach
has no systematic error. Root-mean-square errors (RMSEs)
for the αxx, αyy, αzz, and αxz components were quite small
and computed as 0.0115, 0.0015, 0.0054, and 0.0048 bohr3,
respectively, across this extensive sample of non-equilibrium
geometries. To put these errors into context, the correspond-
ing relative RMSE values (defined as the ratio of the RMSE
to the mean absolute value of the given reference quantity
across the database) were computed as 0.10%, 0.02%, 0.05%,
and 0.42%, respectively. This measure provides a consistent
metric for evaluating the relative error in all four components
of α (since αxz takes on both positive and negative values),
thereby illustrating the high accuracy and precision associ-
ated with this approach. For reference, the maximum errors
(MAXEs) encountered for the αxx, αyy, αzz, and αxz compo-
nents are 0.0663, 0.0094, 0.0335, and 0.0204 bohr3, respec-
tively. Despite the fact that relatively large geometric distor-
tions have been sampled in this database, the largest MAXE
(found for the αxx component) corresponds to a deviation of
only 0.3%.
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FIG. 2. Dipole polarizability surface (DPS) of H2O as illustrated by heat maps ofαxx ,αyy,αzz ,αxz ,αiso, andαaniso computed at the LR-CCSDT/d-aug-cc-pVTZ
level of theory for N = 3125 total (1625 symmetry-unique) geometries of the water molecule. All heat maps were obtained by varying the OH bond lengths (r1
and r2) at the fixed experimental HOH angle of θ = θ0 = 104.4776◦. The black spots in each heat map represent the location of the experimental equilibrium
geometry (with r0 = 0.9578 Å). The full DPS-H2O-3K database (Table S1) includes data for four additional HOH angles (θ = 75◦, θ = 90◦, θ = 120◦, and
θ = 135◦), and the corresponding heat maps can be found in Figs. S1–S4.

Such deviations can be further ameliorated by using a
higher-order expansion (p = 5, 6) in Eq. (2), albeit at an
increased computational cost (see Tables S3–S7 for the expan-
sion coefficients corresponding to p = 1, 2, 3, 5, 6 and respective
statistical error analyses). In doing so, we observe that all
RMSE values are reduced by a factor of 3–5× and 11–15
× when the order is increased to p = 5 and p = 6, respectively.
However, this is accompanied by an increase in the number of
terms (M) in the expansion, i.e., from M = 35 (p = 4) to M
= 56, 84 (p = 5, 6). Here one might argue that a power series
expansion with p = 4 might already be too computationally
demanding (and therefore impractical) for use during classi-
cal molecular dynamics (MD) simulations.90 In this case, the p
= 3 expansion (with M = 20) only leads to an increase of 3–4×
in the RMSE values and may still be of sufficient accuracy for
such purposes. Taking these issues into account, appropriate
truncations of the power series expansion model presented in
this work can be used to furnish an accurate and reliable analyt-
ical expression for the geometric dependence of the molecular
polarizability of H2O and can therefore be of potential use
in the development of next-generation polarizable force fields
for simulating condensed-phase aqueous properties such as the
Raman spectra of liquid water.141

To utilize any of these expansion formulae to obtain
the components of the polarizability tensor (α) in a water
molecule that is in an arbitrary orientation, one simply needs

to perform an orthogonal transformation (change of basis)
on the polarizability tensor (α) corresponding to the same
water molecule oriented according to the local reference frame
defined in Fig. 1. This transformation is given by α = R α RT ,
in which R is the rotation matrix (obtained using the Kab-
sch algorithm142 for instance) that transforms the Cartesian
coordinates of the given water molecule into this reference
orientation.

C. Basis set and core electron effects on α:
The DPS-H2O-25++ benchmark database

To further improve the DPS, we assembled a refined
benchmark database that includes 25 symmetry-unique molec-
ular geometries selected to span the more extensive DPS-
H2O-3K database. The polarizability values in this benchmark
database (denoted as DPS-H2O-25++) were computed accord-
ing to the prescription in Eqs. (8)–(10) and therefore include
both basis set effects and core electron corrections. Table III
provides the tabulated data for the DPS-H2O-25++ benchmark
database (as well as the C6S-H2O-25++ database, vide infra).
The tabulated data for the corresponding refined V and µ can
be found in Table S2.

We will first discuss the polarizability corresponding to
the experimental equilibrium geometry of H2O. In order to do
so, we have compiled the current benchmark values for this
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TABLE II. Power series expansion coefficients {ϕijk} up to order p = 4 in
Eq. (2) for the non-zero components of the dipole polarizability tensor (αxx ,
αyy, αzz , and αxz) of H2O. These expansion coefficients (denoted by 3K-FIT)
were obtained via linear least-squares fitting of the DPS-H2O-3K database
(i.e., the dipole polarizability surface (DPS) computed for 3125 total (1625
symmetry-unique) geometries of the H2O monomer at the LR-CCSDT/d-aug-
cc-pVTZ level of theory). Statistical error analysis includes: the mean signed
error (MSE), mean absolute error (MAE), root-mean-square error (RMSE),
and maximum error (MAXE). Power series expansion coefficients (with cor-
responding statistical error analysis) for orders p = 1, 2, 3, 5, 6 that were
obtained by fitting the DPS-H2O-3K database can be found in Tables S3–S7.

i j k αxx αyy αzz αxz

0 0 0 9.9771 9.3966 9.3604 0.0000
1 0 0 2.7327 0.9375 �0.7384 0.0000
0 1 0 9.7668 3.4488 6.5935 �4.8375
0 0 1 9.7668 3.4488 6.5935 4.8375
0 1 1 6.2261 0.6858 �0.7018 0.0000
1 0 1 7.3665 0.6469 �5.1341 �2.7468
1 1 0 7.3665 0.6469 �5.1341 2.7468
2 0 0 0.8955 1.0923 2.6882 0.0000
0 2 0 7.9289 0.0879 3.7049 �5.1174
0 0 2 7.9289 0.0879 3.7049 5.1174
1 1 1 5.7822 1.5569 7.0468 0.0000
0 2 1 1.5136 �0.4588 �2.0099 �0.8873
2 0 1 �0.1568 1.0766 �0.1887 �5.0767
2 1 0 �0.1568 1.0766 �0.1887 5.0767
0 1 2 1.5136 �0.4588 �2.0099 0.8873
1 0 2 13.1882 0.0745 �6.8387 0.4035
1 2 0 13.1882 0.0745 �6.8387 �0.4035
3 0 0 �3.7738 0.0607 2.0610 0.0000
0 3 0 2.1964 �0.4605 �0.0562 �1.0425
0 0 3 2.1964 �0.4605 �0.0562 1.0425
2 1 1 5.7035 �2.4127 �7.0887 0.0000
1 2 1 �1.8827 �0.9577 0.2497 0.8875
1 1 2 �1.8827 �0.9577 0.2497 �0.8875
0 3 1 �5.1491 �0.3199 �0.9528 1.4800
3 0 1 �3.1781 1.8450 5.1037 �3.4654
3 1 0 �3.1781 1.8450 5.1037 3.4654
0 1 3 �5.1491 �0.3199 �0.9528 �1.4800
1 0 3 15.8031 �0.8990 0.1261 6.3588
1 3 0 15.8031 �0.8990 0.1261 �6.3588
0 2 2 0.1749 �0.1762 �2.0012 0.0000
2 0 2 2.7300 0.8422 2.1690 �4.7621
2 2 0 2.7300 0.8422 2.1690 4.7621
4 0 0 �3.7153 �0.2555 �1.9366 0.0000
0 4 0 �2.6692 �1.0953 �2.8224 2.0988
0 0 4 �2.6692 �1.0953 �2.8224 �2.0988
MSE �0.0002 0.0000 0.0001 0.0000
MAE 0.0087 0.0011 0.0037 0.0031
RMSE 0.0115 0.0015 0.0054 0.0048
MAXE 0.0663 0.0094 0.0335 0.0204

quantity from this work as well as an extensive survey of the
literature (see Table I). In this work, the first improvement in
the DPS-H2O-25++ database is the baseline computation of
α at the LR-CCSDT/daQZ level of theory, which results in
a monotonic decrease in all non-zero components (αxx, αyy,
and αzz) when compared to LR-CCSDT/daTZ. This results in
an overall decrease of 0.06 bohr3 (−0.6%) in αiso and a more
substantial relative increase of 0.03 bohr3 (+5.4%) in αaniso.
Further corrections for basis set incompleteness error via the

FIG. 3. Correlation plot for the non-zero components of the dipole polariz-
ability tensor (αxx , αyy, αzz , and αxz) for the 3125 total (1625 symmetry-
unique) geometries of the H2O monomer in the DPS-H2O-3K database. The
predicted values for these quantities were obtained using the power series
expansion in Eq. (2) with p = 4 and the coefficients provided in Table II. Inset:
For near-equilibrium geometries, this power series expansion predicts α val-
ues with negligible error when compared to the largest MAXE observed in
this database (i.e., 0.0663 bohr3 for αxx corresponding to a geometry far from
equilibrium).

∆αbasis correction defined in Eq. (9) provide an additional
monotonic decrease in all non-zero components, yielding final
values for αiso and αaniso that are smaller (by 0.03 bohr3 or
−0.3%) and larger (by 0.01 bohr3 or +2.2%), respectively,
when compared to the LR-CCSDT/daQZ results. These results
not only demonstrate convergence of these values with respect
to the basis set but also the trend to expect at the true com-
plete basis set (CBS) limit: αiso (αaniso) will be slightly smaller
(larger). Corrections for the use of the frozen-core approxima-
tion (in which only the valence electrons are accounted for in
the electron correlation calculations) via the ∆αcore correction
defined in Eq. (10) are quite similar to the basis set corrections
discussed above and are essentially additive. Here, we observe
a further decrease in αiso by 0.04 bohr3 (−0.4%) and a further
increase in αaniso by 0.02 bohr3 (+3.3%). By simultaneously
accounting for both basis set incompleteness error and core
electron contributions, our most reliable estimate for αiso of
H2O at the experimental equilibrium geometry is 9.539 bohr3

at the LR-CCSDT/daQZ + ∆αbasis + ∆αcore level of theory.
The most accurate and reliable results for αiso from the lit-

erature are arguably given by Christiansen et al.36 (9.560 bohr3

using LR-CC3/daTZ + [LR-CCSD/daQZ–LR-CCSD/daTZ])
or Monten et al.41 (9.503 bohr3 using orbital-relaxed
finite-field CCSD(T)[FULL]/CBS + [CCSDTQ(P)/aDZ–
CCSD(T)/aDZ]). In addition, the data provided by the in-
depth study of electron correlation and basis set effects in
the calculation of α by Hammond et al.11 can also be used
to obtain a value of 9.576 bohr3 using the LR-CCSDT/daQZ
+ [LR-CCSD/da5Z–LR-CCSD/daQZ] ≡ LR-CCSDT/daQZ
+ ∆αbasis scheme advocated in this work. This quantity is
in excellent agreement with our value of 9.579 bohr3 com-
puted at the same level of theory (albeit for a slightly dif-
ferent geometry). Based on the findings described above, we
expect that the value obtained by Christiansen et al.36 should
be slightly overestimated, since higher-order basis set effects
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TABLE III. Tabulated data comprising the DPS-H2O-25++ and C6S-H2O-25++ benchmark databases, which include values for the static dipole polarizability
measures (αxx , αyy, αzz , αxz , αiso, and αaniso in bohr3) and isotropic dispersion coefficients (C6,iso in hartree · bohr6) for 25 symmetry-unique geometries
of the H2O molecule (with the experimental geometry in bold). As discussed in the main text, all static dipole polarizability values were computed at the
LR-CCSDT/daQZ + ∆αbasis + ∆αcore level as defined in Eqs. (8)–(10). All isotropic dispersion coefficients were computed using the Casimir-Polder formula
with frequency-dependent polarizabilities obtained via the Cauchy moment expansion at the level of LR-CCSD/daQZ + ∆C6,basis + ∆C6,core as described in Eqs.
(14)–(16).

θ (◦) r1 (Å) r2 (Å) αxx αyy αzz αxz αiso αaniso C6,iso

75 0.650 00 0.650 00 5.5930 6.9894 5.7689 0.0000 6.1171 1.3173 23.2637
75 0.650 00 0.957 78 7.2526 8.0186 7.9401 1.2083 7.7371 2.2165 32.9981
75 0.957 78 0.957 78 9.2432 9.0497 9.8932 0.0000 9.3954 0.7653 44.8636
75 0.957 78 1.298 00 12.4100 10.2026 13.3868 2.3973 11.9998 5.0224 62.9962
75 1.298 00 1.298 00 16.2760 11.3361 16.2447 0.0000 14.6189 4.9243 84.8450
90 0.650 00 0.650 00 5.5310 7.0677 5.8651 0.0000 6.1546 1.3999 23.3237
90 0.650 00 0.957 78 7.3339 8.0638 7.8061 1.1502 7.7346 2.0928 32.9905
90 0.957 78 0.957 78 9.5275 9.1180 9.6756 0.0000 9.4404 0.5003 45.0619
90 0.957 78 1.298 00 13.3460 10.2845 12.7980 2.4157 12.1428 5.0500 63.8022
90 1.298 00 1.298 00 17.9249 11.4656 15.4889 0.0000 14.9598 5.6499 87.1397
104.4776 0.650 00 0.650 00 5.5454 7.1627 6.0435 0.0000 6.2505 1.4346 23.6861
104.4776 0.650 00 0.957 78 7.4826 8.1476 7.7714 1.0642 7.8005 1.9316 33.0731
104.4776 0.957 78 0.957 78 9.8744 9.2233 9.5190 0.0000 9.5391 0.5646 45.5367
104.4776 0.957 78 1.298 00 14.3620 10.4113 12.2721 2.3653 12.3485 5.3388 65.0146
104.4776 1.298 00 1.298 00 19.6494 11.6283 14.7074 0.0000 15.3284 7.0086 89.5852
120 0.650 00 0.650 00 5.6092 7.2768 6.3404 0.0000 6.4088 1.4478 24.3577
120 0.650 00 0.957 78 7.6733 8.2742 7.8569 0.9292 7.9348 1.6955 33.9099
120 0.957 78 0.957 78 10.2743 9.3831 9.4615 0.0000 9.7063 0.8547 46.4800
120 0.957 78 1.298 00 15.5167 10.6086 11.8255 2.2166 12.6503 5.8598 66.8574
120 1.298 00 1.298 00 21.5929 11.8713 13.9605 0.0000 15.8082 8.8636 92.8074
135 0.650 00 0.650 00 5.6928 7.3896 6.7188 0.0000 6.6004 1.4802 25.2707
135 0.650 00 0.957 78 7.8406 8.4215 8.0612 0.7476 8.1078 1.3909 34.8131
135 0.957 78 0.957 78 10.6233 9.5781 9.5352 0.0000 9.9122 1.0673 47.5680
135 0.957 78 1.298 00 16.5870 10.8734 11.5625 1.9477 13.0076 6.3689 68.9115
135 1.298 00 1.298 00 23.4689 12.2087 13.4404 0.0000 16.3727 10.6977 96.0676

(beyond LR-CCSD/daQZ) and core electron corrections both
lead to a decrease in αiso (Table I). Although Monten et al.41

accounted for core electron contributions to α, they utilized
a three-point extrapolation based on CCSD(T)[FULL] cal-
culations with the daQZ, da5Z, and da6Z basis sets, which
do not explicitly include functions parameterized for describ-
ing core-valence interactions. Furthermore, the accuracy and
reliability of their pairwise correction to account for electron
correlation effects beyond CCSD(T) via CCSDTQ(P)/aDZ–
CCSD(T)/aDZ, while a noteworthy and valiant effort, is very
likely to be unreliable, since it has been demonstrated that the
aDZ basis set is insufficient for converging higher-order cor-
relation effects [even at the level of CCSD(T)–MP2].143–145

In this regard, even the sign of the correction can be incorrect
and Marshall et al.146 have shown that basis sets of at least
triple-ζ quality are necessary to capture higher-order electron
correlation effects in a converged manner. With the increase
in computational resources available today, we sidestep this
issue by computing all polarizabilities at the baseline LR-
CCSDT/daQZ level of theory in the DPS-H2O-25++ database.
Given these stringent basis set requirements (which become
even more important for higher-order correlation methods
based on N-tuply excited Slater determinants) and the pro-
hibitive computational cost associated with CC calculations
beyond CCSDT, we were unable to sufficiently ascertain how

higher-order electron correlation effects (beyond full triples)
will alter the values of quantities such as αiso and αaniso

in the H2O molecule. Based on the difference between αiso

(αaniso) at the LR-CCSDT/daQZ and LR-CCSD/daQZ levels
of theory, which we have computed to be +0.01 bohr3 (−0.05
bohr3), we expect that higher-order electron correlation effects
from coupled cluster theory including single, double, triple,
and quadruple excitations (CCSDTQ) will be negligible for
αiso, while absolute convergence of αaniso might even require
corrections beyond full quadruples.

The electronic contribution to the molecular polarizability
in H2O can also be semi-quantitatively estimated from dipole
oscillator strength distributions (DOSDs) obtained from an
analysis of experimental photo-absorption cross sections and
refractive index data. Due to the non-negligible vibrational
contributions to α (see Sec. III F), such estimates can only be
considered as semi-experimental sources of information that
are almost certainly not precise enough to serve as benchmark
values for this quantity.87 Most notably, the DOSD result of
9.642 ± 0.096 bohr3 from Zeiss and Meath147 has served as
the benchmark value for the electronic contribution to α in
H2O for a wide range of electronic structure methods.25,35,49

As discussed above, our estimate for this quantity at the LR-
CCSDT/daQZ +∆αbasis +∆αcore level of theory is 9.539 bohr3,
which is approximately 0.1 bohr3 (or 1%) smaller than the
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DOSD result and sits just at the bottom of the uncertainty
in this experimental estimate. Other results for αiso derived
from refractive index data include: 9.823 ± 0.098 bohr3 from
Cuthbertson,82 9.703 ± 0.097 bohr3 from Newbound,84 and
9.601 ± 0.096 bohr3 from Barrell.85 From these data and
Table I, one immediately notices that the experimental esti-
mates for this quantity are all larger than the most accurate
theoretical values. As mentioned above, this discrepancy is
most likely due to the fact that the experimental estimates for
the electronic contribution to α (which is fairly straightfor-
ward to compute theoretically) still include some vibrational
contributions to this quantity. Since these contributions are
quite sizable and always serve to increase αiso, this can pos-
sibly explain the discrepancy between experiment and theory.
To ensure a fair and accurate comparison, vibrational contri-
butions to α should be included in both the experimental and
theoretical estimates for the total molecular polarizability (see
Sec. III F).

For all of these reasons, we believe that our estimates of
the non-zero components of the electronic contribution to the
molecular α of water (as well as αiso and αaniso) for the 25
(equilibrium + non-equilibrium) geometries in the DPS-H2O-
25++ database, which simultaneously account for higher-order
electron correlation effects, basis set incompleteness error, and
core electron corrections, should be regarded as the most accu-
rate and reliable benchmarks for these quantities available to
date. Similar to what we found above for the experimental
equilibrium geometry, corrections for both basis set incom-
pleteness error and core electron corrections via ∆αbasis and
∆αcore always lead to reductions inαiso [by 0.03 bohr3 (−0.3%)
and 0.04 bohr3 (−0.4%) on average, respectively] across these
25 geometries. Corrections to αaniso are more difficult to quan-
tify as both effects can lead to signed changes in this quantity
across the database. In this regard, we find that basis set and
core electron corrections lead to mean absolute deviations
(mean absolute percent deviations) of 0.008 bohr3 (+0.6%)
and 0.015 bohr3 (+0.9%), respectively, across the DPS-H2O-
25++ database. When the sign of these corrections are taken
into account, these values are reduced to +0.1% and +0.2%.
This is indicative that these corrections are almost equally dis-
tributed in sign across the database and that both corrections
tend to slightly increase αaniso on average. Another interest-
ing point to note here is that the largest changes in αaniso due
to basis set and core electron corrections are neither found
in the most non-equilibrium geometries nor the Cs geome-
tries [in which αaniso depends on the non-zero off-diagonal
αxz component; see Eq. (12)]. In fact, the largest correc-
tions were found for two C2v geometries: the experimental
equilibrium geometry (r1 = r2 = r0 = 0.9578 Å and θ = θ0

= 104.4776◦) and a neighboring geometry with r1 = r2 = r0

and θ = 90◦. Here, we find basis set corrections of +2.0%
and +2.2% and core electron corrections of +3.2% and +3.5%
to αaniso, respectively. These findings are strongly indicative
that αaniso—which describes the relative spatial distribution
of the values in the α tensor—is a quite delicate measure of
this response property that requires a simultaneous treatment
of high-order electron correlation effects, basis set incom-
pleteness error, and core electron corrections for sufficient
convergence.

D. Performance of QC and DFT methods
on the DPS-H2O-25++ benchmark database

We now focus our discussion on the use of the DPS-
H2O-25++ benchmark database to assess the performance of a
number of QC and DFT methodologies in the prediction of α
across these 25 select geometries of the H2O molecule. In order
to do so, we computed these quantities for HF, MP2, and a wide
range of DFT functionals using the orbital-relaxed finite-field
method and the daQZ basis set, as shown in Table IV. For ref-
erence, we have also included LR-CCSD with the same basis
set as well as the predictions from the power series expan-
sion (up to order p = 4) in Eq. (2) based on least-squares
fits of the more extensive DPS-H2O-3K database (denoted by
3K-FIT).

As expected, the mean-field HF approximation tends to
overestimate the HOMO–LUMO gap in molecules and there-
fore substantially underestimates the α components, resulting
in unacceptably large RMSE values. MP2 performs much

TABLE IV. Root-mean-square errors (RMSE) associated with several QC
methodologies and a wide range of DFT functionals in predicting all static
dipole polarizability measures (αxx , αyy, αzz , αxz , αiso, and αaniso in bohr3)
of the 25 molecular geometries in the DPS-H2O-25++ benchmark database.
Unless otherwise specified, all QC and DFT calculations were performed
using the orbital-relaxed finite-field method and the daQZ basis set. As
described in the main text, the reference data for α were computed at the
LR-CCSDT/daQZ + ∆αbasis + ∆αcore [Eqs. (8)–(10)] levels of theory. For
reference, the final row (3K-FIT) contains the prediction from the power
series expansion in Eq. (2) with p = 4 based on least-squares fits of the DPS-
H2O-3K database. For ease of comparison, the lowest three RMSE values in
each column (excluding CCSD and 3K-FIT) have been highlighted in bold
font.

Method αxx αyy αzz αxz αiso αaniso

HF 0.5814 1.3738 0.8120 0.2065 0.8172 1.1554
MP2 0.4565 0.3810 0.2352 0.1492 0.1243 0.7520
CCSDa 0.0735 0.0491 0.0703 0.0042 0.0635 0.0250
UCHFb 2.6461 3.0845 2.1319 0.1413 2.5775 0.8343
MP2∗c 2.4840 2.9795 2.0033 0.8539 2.4423 0.8489
LSDA 0.7751 1.4340 1.0444 0.0401 1.0817 0.4839
BLYP 0.6158 1.3093 0.9086 0.0534 0.9390 0.5432
PBE 0.6024 1.3555 0.9672 0.0710 0.9645 0.6409
B3LYP 0.3390 0.5110 0.4177 0.0288 0.4153 0.1972
PBE0 0.1736 0.2782 0.2094 0.0231 0.2083 0.1613
M11 0.3327 0.3148 0.1590 0.0470 0.2530 0.2273
MN15 0.2241 0.1801 0.1863 0.0465 0.1492 0.2589
B97-2 0.1526 0.2700 0.1952 0.0214 0.1954 0.1531
ωB97X-D 0.1901 0.3710 0.2501 0.0261 0.2531 0.2260
B97M-V 0.5356 0.6776 0.4992 0.0674 0.5497 0.3157
ωB97X-V 0.2227 0.3257 0.2334 0.0318 0.2440 0.2011
ωB97M-V 0.3628 0.5343 0.4208 0.0314 0.4306 0.2112
MS2 0.5196 0.6419 0.5110 0.0795 0.5302 0.3551
MS2h 0.3828 0.3789 0.3086 0.0831 0.3104 0.3758
MVS 0.4492 0.1547 0.2112 0.0935 0.2221 0.4418
MVSh 0.5699 0.5231 0.4853 0.0573 0.5207 0.1850
SCAN 0.2376 0.5675 0.4153 0.0295 0.4009 0.2802
SCAN0 0.1348 0.2186 0.0799 0.0356 0.1224 0.1934
mBEEF 0.1568 0.3043 0.2634 0.0239 0.2347 0.1400
3K-FIT 0.1086 0.1724 0.1646 0.0073 0.0479 0.1333

aLinear response calculation.
bField-free uncoupled HF calculation.
cOrbital-unrelaxed finite-field calculation.
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better than HF and yields the second-best prediction for αiso

among all of the methods (excluding CCSD and 3K-FIT) in
Table IV. Here we note that this agreement in αiso is largely
fortuitous, as the RMSE values for αxx, αyy, αzz, αxz, and
αaniso are still quite large at the MP2 level. Even worse results
are obtained with MP2∗ (i.e., finite-field MP2 without orbital
relaxation), thereby indicating that orbital relaxation should be
included at the MP2 level to obtain reasonably accurate results.
Not surprisingly, LR-CCSD/daQZ is able to outperform HF,
MP2, and all of the DFT functionals considered herein by a
sizable margin across the board. In the same breath, the ana-
lytical and closed-form 3K-FIT expression (which is based
on LR-CCSDT/daTZ values for α) fares exceptionally well
for all quantities of interest and outperforms HF, MP2, and
almost all DFT functionals. What is quite interesting here is the
observation that LR-CCSD/daQZ noticeably outperforms 3K-
FIT (with the single exception of αiso, where LR-CCSD/daQZ
and 3K-FIT both have very small RMSE values), which high-
lights the importance of basis set incompleteness error over
higher-order electron correlation (and even core electron cor-
rections) in obtaining sufficiently accurate estimates for α in
H2O. We note in passing that higher-order truncations (p = 5,
6) of the power series expansion in Eq. (2) provide very little
improvement over p = 4 in predicting α in the DPS-H2O-25++
benchmark database.

The popular hybrid functional B3LYP does not perform
well during calculations of α. By contrast, the PBE0 hybrid
functional landed among the top three performers (exclud-
ing CCSD and 3K-FIT) in predicting αxx, αxz, and αaniso.
Although M11 andωB97X-D have been recommended for cal-
culating dipole polarizabilities,25,41 their performance on these
benchmark databases was not remarkable when compared to
the other functionals tested (although it should be noted that
M11 did perform well for αzz). B97-2 has also been recom-
mended26 to obtain accurate α values, and it does indeed place
among the top three (again excluding CCSD and 3K-FIT) in
the prediction of αxx, αxz, and αaniso, as found above for PBE0.
However, the performance of both PBE0 and B97-2 is less
satisfactory in describing the out-of-plane (αyy) and in-plane
(αzz) components (and hence αiso). In direct contrast to PBE0
and B97-2, the most up-to-date Minnesota functional (MN15)
performs well for αyy, αzz, and αiso quantities, but struggles
with αxx, αxz, and αaniso. Although the non-local B97M-V,
ωB97X-V, and ωB97M-V functionals recently developed by
Mardirossian and Head-Gordon perform quite well for a num-
ber of different systems,104–106,148–150 these functionals do not
excel in the prediction of α. This finding is consistent with
the recent work by Hait and Head-Gordon,151 which found
thatωB97M-V is somewhat lacking in the prediction of polar-
izabilities. The MS2, MS2h, MVS, MVSh, and SCAN func-
tionals developed by Perdew and co-workers do not perform
better than the popular PBE0 functional. However, the SCAN0
functional, which is the hybrid version of SCAN proposed by
Hui and Chai, performs very well for all α components and is
the most reliable DFT method for calculating α in H2O (see
Table IV). Similar to PBE0 and B97-2, the mBEEF functional,
which is based on the Bayesian error estimation functional
framework, provides competitive results for some (but not all)
α measures.

In summary, we find that the SCAN0 hybrid meta-GGA
is the best DFT functional for computing the molecular α in
H2O, while PBE0, B97-2, and MN15 are comparable (among
themselves) and still perform well. As such, it seems that
some non-local HF exchange is essential to obtain sufficiently
accurate α values in this molecule. All things considered,
we recommend further investigation into the use of SCAN0,
PBE0, B97-2, and MN15 for the calculation of small-molecule
dipole polarizabilities.

E. Basis set and core electron effects on the C6
dispersion coefficient: The C6S-H2O-25++
benchmark database

Leading-order isotropic dispersion coefficients (C6,iso) for
these 25 representative geometries were obtained via numeri-
cal integration of the Casimir-Polder integral in Eq. (13) over
the frequency-dependent isotropic dipole polarizabilities in the
imaginary-frequency domain. As discussed in Sec. II B, the
set of αiso(iω) required for computing C6,iso were obtained
via the Cauchy moment expansion at the LR-CC level of the-
ory.113,114 The final C6,iso values in our benchmark database
(denoted as C6S-H2O-25++) were computed according to the
C6,iso = CLR-CCSD/daQZ

6,iso +∆C6,basis +∆C6,core prescription given
in Eqs. (14)–(16), which again includes both basis set effects
and core electrons corrections. Since the values of ∆C6,basis

and ∆C6,core are obtained by integrating over αiso(iω), there
are negligible differences between the use of the CCSD and
CC2 models; as such, we have employed the more computa-
tionally tractable CC2 method for obtaining these corrections.
Due to the underlying dependence on α, we stress here that the
use of double augmentation in conjunction with high angular
momentum in the underlying basis set is essential for obtaining
accurate and converged C6 dispersion coefficients.42 For ref-
erence, the tabulated data for the C6S-H2O-25++ benchmark
database are provided in Table III.

We will first discuss the C6,iso dispersion coefficient cor-
responding to the experimental equilibrium geometry of H2O.
In order to do so, we have again compiled the current values
for this quantity from this work as well as an extensive sur-
vey of the literature (see Table V). In this work, the baseline
computation of C6,iso in the DPS-H2O-25++ database is at the
LR-CCSD/daQZ level of theory. For comparative purposes,
we have also computed this quantity at the LR-CCSD/daTZ
level, from which we observe that the higher-quality daQZ esti-
mate leads to a reduction in C6,iso by 0.43 Hartree · bohr6 or
−0.9%. Further treatment of basis set incompleteness error via
the ∆C6,basis correction defined in Eq. (15) provides an addi-
tional decrease of 0.22 Hartree · bohr6 or −0.5%. In analogy
to the results for αiso discussed in Sec. III C, these results
not only demonstrate a very similar convergence of C6,iso

with respect to basis set but also that C6,iso is expected to
be slightly smaller at the fully converged CBS limit. Core
electron contributions were estimated using the ∆C6,core cor-
rection defined in Eq. (16) and are again quite similar to that
found for αiso above. In other words, this correction leads to
a further reduction of 0.28 Hartree · bohr6 (−0.6%), which is
on the same order as the basis set correction for C6,iso and
essentially additive. By simultaneously accounting for both
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TABLE V. Current values for the leading-order isotropic dispersion coef-
ficient (C6,iso in Hartree · bohr6) of the H2O molecule at its experimental
equilibrium geometry. Errors (in %) are with respect to the semi-quantitative
experimental dipole oscillator strength distribution (DOSD) estimate of Zeiss
and Meath.147 Time-dependent methods are denoted by TD, and SP-aQZ is a
modified version of the aQZ basis set to improve convergence of the disper-
sion energy.156,157 See the main text for more details regarding the methods
employed below.

Method C6,iso Error

TD-HF/daQZa 39.63 �12.7
TD-PBE/daQZa 50.50 11.3
TD-PBE0/daQZa 45.83 1.0
SDT-MBPT(2)/[10s7p4d3f1g/7s3p3d1f]b 46.44 2.4
TD-MP2[FULL]/SP-aQZc 48.00 5.8
TD-CCSD[FULL]/SP-aQZc,d 45.60 0.5
CCSD(3)/daQZa,e 47.23 4.1
CCSD(3)/da5Ze,f 46.88 3.3
UCHF/daQZg,h 41.04 �9.5
LR-CCSD/daTZg 46.47 2.4
LR-CCSD/daQZg 46.04 1.5
LR-CCSD/daQZ+∆C6,basis

g,i 45.82 1.0
LR-CCSD/daQZ+∆C6,basis+∆C6,core

g,i,j 45.54 0.4
DOSD 45.37 . . .

aReference 42. r = 0.9584 Å and θ = 104.45◦.
bReference 13. r = 0.9572 Å and θ = 104.52◦. Double perturbation theory with SDT
contributions to second order.
cReference 23. r = 0.9716 Å and θ = 104.69◦.
dOrbital-relaxed spin-unrestricted calculation.
eThird-order CCSD polarization propagator method.
fReference 152. r = 0.9576 Å and θ = 104.29◦.
gThis work. Experimental geometry from Ref. 88 with r = r0 = 0.9578 Å and θ = θ0

= 104.4776◦.
hField-free uncoupled HF calculation.
i∆C6,basis = LR-CC2/da5Z–LR-CC2/daQZ; see Eq. (15).
j∆C6,core = LR-CC2[FULL]/daCQZ-LR-CC2/daQZ; see Eq. (16).

basis set incompleteness error and core electron contributions,
our most reliable result for the C6,iso dispersion coefficient
of H2O at the experimental equilibrium geometry is 45.54
Hartree · bohr6 at the LR-CCSD/daQZ+∆C6,basis+∆C6,core

level of theory. As a final sanity check, we note that the
static-limit Cauchy moment, S(−2), is equivalent to the static
dipole polarizability and yields an αiso value of 9.518 bohr3

at the LR-CCSD/daQZ+∆C6,basis+∆C6,core level. This value is
only 0.2% smaller than αiso at our benchmark level of LR-
CCSDT/daQZ+∆αbasis+∆αcore [see Eqs. (8)–(10)] and there-
fore serves as a highly accurate zero-frequency starting point
for the evaluation of the Casimir-Polder integral.

Our C6,iso result for H2O at the experimental geome-
try is compared against values from semi-quantitative DOSD
data147 as well as other theoretical studies13,23,40,42,152 in
Table V (albeit at slightly different geometries). For the
molecular C6,iso of H2O, the DOSD-based value of 45.37
Hartree · bohr6 provided by Zeiss and Meath in 1977147 has
been taken as the reference for decades now. In this regard,
we remind the reader of the uncertainties associated with the
DOSD approach regarding the value for the purely electronic
contribution to αiso,87 where the presence of non-negligible
vibrational contributions is difficult (if not impossible) to
completely decouple from the electronic contributions with-
out some additional theoretical input. In this work, we will
use this semi-experimental measure of C6,iso to compute the

percent errors associated with all of the theoretical results listed
in Table V and believe that our C6,iso results at the level of
LR-CCSD/daQZ+∆C6,basis+∆C6,core can also serve as reliable
benchmarks for this quantity.

As seen in Table V, TD-HF and TD-DFT (employing the
PBE and PBE0 functionals) have been used to compute C6,iso

for the water molecule with the daQZ basis set.42 While both
TD-HF and TD-PBE make substantial errors in the prediction
of C6,iso for H2O (i.e., −12.7% and +11.3%, respectively),
the TD-PBE0 approach yields a C6,iso dispersion coefficient
within 1.0% of the DOSD value. These findings are consistent
with the fact that HF (PBE) tends to overestimate (underesti-
mate) the HOMO–LUMO gap in molecules. In this case, the
PBE0 functional, which includes an admixture of exact (HF)
exchange, leads to a very favorable (although certainly for-
tuitous) interpolation between these two results. Calculations
of this quantity at the SDT-MBPT(2)13 and TD-MP223 levels
overestimate the DOSD value by 2.4% and 5.8%, respectively,
while orbital-relaxed spin-unrestricted TD-CCSD23 furnishes
a C6,iso coefficient with a deviation of only +0.5%. However,
the convergence of the TD-MP2 and TD-CCSD results will
require further investigation, since all electrons were active in
these two calculations despite the use of valence-only Dun-
ning basis sets. Use of the CCSD(3) polarization propaga-
tor method152 combined with the daQZ42 and da5Z152 basis
sets still overestimates the DOSD value by 4.1% and 3.3%,
respectively. These results quite clearly demonstrate that basis
set effects (even beyond quadruple-ζ) still make a notice-
able contribution during molecular C6 calculations. LR-CCSD
calculations performed in this work yielded errors of +2.4%
and +1.5% using the daTZ and daQZ basis sets, respectively.
This error can be further reduced to +1.0% by employing the
∆C6,basis correction to account for basis set incompleteness
error and even further reduced to 0.4% by sequentially adding
the ∆C6,core correction for core electrons effects. As such, our
LR-CCSD/daQZ+∆C6,basis+∆C6,core scheme predicts a C6,iso

dispersion coefficient for the H2O molecule that is within
+0.4% of the DOSD value and is arguably the most accurate
among all of the theoretical methods listed in Table V.

Since the UCHF dispersion energy contributes to the
binding energy at the MP2 level,117–120 we have also com-
puted the corresponding CMP2

6,iso dispersion coefficient for
H2O via the Casimir-Polder integral over UCHF frequency-
dependent polarizabilities. Here we find that CMP2

6,iso = 41.04

Hartree · bohr6 using the daQZ basis set, which substantially
underestimates the DOSD value by −9.5%. This finding is
consistent with the corresponding value of 7.14 bohr3 for
αUCHF

iso , which underestimates our benchmark value for this
quantity by over 25% (see Table I). We note in passing that
this trend of underestimating both αiso and C6,iso is not univer-
sal. In the case of the benzene molecule, for example, we find
that αUCHF

iso = 67.40 bohr3 at the UCHF/aDZ//B97M-V/aDZ
level, which is only 2% less than the LR-CCSD/aDZ value of
68.87 bohr3. By contrast, however, the corresponding CMP2

6,iso
for benzene is 2366.97 Hartree · bohr6, which is more than
30% larger than the LR-CCSD/aDZ value of 1817.00 Hartree
· bohr6. This discrepancy largely originates from the frequency
dependence of this quantity and will be the subject of a future
publication.
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We conclude this section with a brief discussion of the
trends observed across the 25 geometries that comprise the
C6S-H2O-25++ database (see Table III). As found above for
αiso, we note that the range of C6,iso values encountered when
changing the bond lengths and angles in the H2O molecule
is quite remarkable and spans 23.3-96.1 Hartree · bohr6. In
this regard, we find that these values follow a similar trend
to α, in which molecular geometries with reduced volumes
(shorter bond lengths and smaller angles) have substantially
lower C6,iso dispersion coefficients than molecular geome-
tries with increased volumes (longer bond lengths and larger
angles). Since C6 ∝ α2 and α ∝ V, our findings are again
consistent with our intuition for this quantity.140

F. Zero-point vibrational contributions to α

As discussed in Secs. II C and III C, the vibrational
contribution to α can be quite sizable and must be included
in both the experimental and theoretical estimates for the
total molecular polarizability to ensure a fair and accurate
comparison.18,36,37,54,122 In order to compute the zero-point
vibrational contributions (ZPVCs) to α (namely, αZPVC) for
the H2O molecule in its ground vibrational state, one needs
to calculate the force constants and normal mode derivatives

TABLE VI. Harmonic (quadratic) and anharmonic (cubic and quartic) force
constants (in cm�1) for the H2O molecule computed at the CCSDT/daTZ level
of theory. All force constants were defined according to Eq. (18) and numeri-
cally calculated using a fourth-order central difference scheme. The bending,
symmetric stretching, and asymmetric stretching vibrational (normal) modes
are indexed by 1, 2, and 3, respectively.

Quantity Value

ω1 1647.9918
ω2 3811.0479
ω3 3919.0733
φ111 �255.4522
φ222 �1803.4644
φ333 0.0000
φ112 306.2171
φ122 71.4797
φ113 0.0000
φ133 265.8201
φ223 0.0000
φ233 �1805.1280
φ123 0.0000
φ1111 �77.5100
φ2222 663.0970
φ3333 651.4556
φ1112 148.4140
φ1113 0.0000
φ1122 �367.4915
φ1133 �386.2881
φ1123 0.0000
φ1222 �63.0792
φ1333 0.0000
φ1223 0.0000
φ1233 �123.3426
φ2223 0.0000
φ2233 718.1562
φ2333 0.0000

required to evaluate Eq. (20). To calculate these quantities,
we first performed a numerical geometry optimization at the
CCSDT/daTZ level of theory to obtain the geometry (r1 = r2 =
re = 0.9617 Å and θ = θe = 104.1713◦) and a subsequent vibra-
tional frequency (Hessian) analysis to obtain the correspond-
ing normal modes [bending (q1), symmetric stretching (q2),
and asymmetric stretching (q3)]. Using these normal modes,
we then computed the harmonic (quadratic) force constants as
well as all anharmonic (cubic and quartic) force constants for
the H2O molecule [as defined in Eq. (18)] via a fourth-order
central difference scheme (see Table VI). The first and sec-
ond derivatives of α (with respect to the dimensionless normal
mode coordinates), which are related to the intensities of the
Raman overtone bands,153 were also calculated using fourth-
order central differences at the LR-CCSDT/daTZ level (see
Table VII). To demonstrate the accuracy and precision associ-
ated with the fourth-order central difference scheme employed
herein, we compared the harmonic force constants in Table VI
with the vibrational frequencies obtained from diagonalizing
the numerically computed Hessian matrix (which yielded val-
ues of 1648.11, 3810.84, and 3918.69 cm−1 for ω1, ω2, and
ω3, respectively). Here, we find that the maximum deviation
is only 0.38 cm−1 (or 0.01%), which we take as negligible in
magnitude and a stringent cross-validation of our numerical
approach.

As summarized in Table VIII, αZPVC has also been studied
in the H2O molecule using a wide range of theoretical methods.
Using the CCSDT/daTZ scheme outlined in this work, we find
that αZPVC

iso and αZPVC
aniso are given by 0.2916 and 0.2693 bohr3,

TABLE VII. First and second derivatives (in a.u.) of α (with respect to the
dimensionless normal mode coordinates) in the H2O molecule computed at
the LR-CCSDT/daTZ level. All derivatives were numerically calculated using
a fourth-order central difference scheme. The bending, symmetric stretch-
ing, and asymmetric stretching vibrational (normal) modes are indexed by
1, 2, and 3, respectively. All derivatives of α that are not shown below are
zero.

Quantity Value

(∂αxx/∂q1)e 0.185 234
(∂αxx/∂q2)e 1.397 540
(∂αyy/∂q1)e 0.061 399
(∂αyy/∂q2)e 0.488 074
(∂αzz/∂q1)e �0.191 194
(∂αzz/∂q2)e 0.935 593
(∂αxz/∂q3)e �0.690 219
(∂2αxx/∂q2

1)e 0.239 266
(∂2αxx/∂q2

2)e 0.222 397
(∂2αxx/∂q2

3)e 0.105 479
(∂2αxx/∂q1∂q2)e 0.082 915
(∂2αyy/∂q2

1)e 0.113 416
(∂2αyy/∂q2

2)e 0.008 454
(∂2αyy/∂q2

3)e �0.014 778
(∂2αyy/∂q1∂q2)e 0.002 844
(∂2αzz/∂q2

1)e 0.251 904
(∂2αzz/∂q2

2)e 0.066 170
(∂2αzz/∂q2

3)e 0.065 265
(∂2αzz/∂q1∂q2)e �0.086 027
(∂2αxz/∂q1∂q3)e 0.051 429
(∂2αxz/∂q2∂q3)e �0.101 449
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TABLE VIII. Current values (in bohr3) for the zero-point vibrational correction (ZPVC) to the isotropic (αZPVC
iso )

and anisotropic (αZPVC
aniso ) measures of the dipole polarizability for a H2O molecule in its ground vibrational state.

When available at the same level of theory (unless otherwise specified), we also provide the values of the electronic
contributions toαiso andαaniso, the relative percentages of the vibrational corrections to the electronic contributions
in each of these quantities (ηiso and ηaniso), and αtotal

iso = αiso +αZPVC
iso , the total (electronic + vibrational) isotropic

measure of the α tensor. All values are provided in bohr3.

Method αZPVC
iso αZPVC

aniso αiso αaniso ηis0 (%)a ηaniso (%)a αtotal
iso References

HF 0.247 0.268 8.505 1.148 2.91 23.36 8.752 54
HF 0.180 0.230 8.500 0.910 2.12 25.27 8.680 57
HF 0.130 0.180 7.990 1.380 1.63 13.04 8.120 16
HF 0.249 0.281 8.479 1.181 2.94 23.79 8.728 28
CPHF/TD-HF 0.247 0.268 8.362 . . . 2.96 . . . 8.609 58 and 59
MP2 0.292 0.242 9.792 0.426 2.98 56.71 10.084 54
MP2 0.160 0.170 9.250 1.330 1.73 12.78 9.410 16
MP2 0.292 0.242 9.944 0.528 2.94 45.83 10.236 60
CASSCF 0.360 . . . 9.500 . . . 3.79 . . . 9.860 27
CASSCF 0.282 0.272 9.269 0.636 3.04 42.66 9.550 28
CASSCF 0.287 0.270 9.394 0.543 3.06 49.72 9.681 29
CCSD 0.308 0.283 9.632 0.557 3.20 50.81 9.940 37
VSCFb 0.285 0.264 9.638 0.537 2.96 49.16 9.923 39
FVCIb 0.285 0.265 9.638 0.537 2.96 49.35 9.923 39
PBE 0.270 . . . 10.590 . . . 2.55 . . . 10.860 51
B97-2 0.175 . . . 9.745 . . . 1.80 . . . 9.920 26
BOMD-ωB97X-D 0.220 . . . 9.650 . . . 2.28 . . . 9.870 41
CCSDTc 0.292 0.269 9.539 0.565 3.06 47.70 9.831 . . .

aηiso ≡ (αZPVC
iso /αiso) × 100. ηaniso ≡ (αZPVC

aniso /αaniso) × 100.
bElectronic contributions were computed at the CCSD/daTZ level.
cThis work. Electronic contributions were computed at the LR-CCSDT/daQZ+∆αbasis+∆αcore level.

respectively, which are similar in magnitude to several previ-
ously reported studies, including CCSD37 and VSCF/FVCI.39

In this work, which represents the highest level of theory used
to date for computing αZPVC, we find that the individual ZPVC
contributions to αiso (αaniso) originating from bending, sym-
metric stretching, and asymmetric stretching were found as
0.0322 (0.0170), 0.1358 (0.1387), and 0.1236 (0.1162) bohr3,
respectively. As expected from the discussion above, the two
stretching modes dominate the vibrational contribution to both
αiso and αaniso. In this regard, the magnitude of both αZPVC

iso
and αZPVC

aniso has a weak dependence on the underlying level of
theory, but their contribution to αtotal

iso and αtotal
aniso is far from

negligible. For αtotal
iso , we find that the vibrational contribution

represents ≈3% of the electronic contribution to αiso. On the
other hand, αZPVC

aniso is comparable in magnitude with the corre-
sponding electronic contribution, representing nearly 50% of
αaniso (see Table VIII).

Our static isotropic dipole polarizability including
ZPVC for a H2O molecule in its ground vibrational state,
αtotal

iso = αiso + αZPVC
iso = 9.8307 bohr3, essentially reproduces

the experimental estimate of 9.83 ± 0.02 bohr3 derived by
Russell and Spackman54 using a quadratic extrapolation of
experimental refractivity data82 contained within a frequency
window of 0.06793–0.09495 a.u. Although the pure vibra-
tional contribution to α may (in general) be important, this
term can be ignored for experiments involving UV-Visible
radiation (i.e., for frequencies larger than 0.05 a.u.) such as that
described above.124,154,155 We note in passing that there is an
alternative extrapolation based on the measurements by

Newbound84 which yields a value of 9.703± 0.013 bohr3.83 In
this regard, the excellent agreement between our benchmark
theoretical results and the experimental value by Russell and
Spackman provides further validation that the experimental
estimate of αtotal

iso = 9.83 ± 0.02 bohr3 is quite reliable and the
error margins might in fact be overestimated.

From the data in Table VIII, it is undoubtedly clear that
a high-order electron-correlation method combined with a
sufficiently large basis set is essential for obtaining accurate
predictions of αtotal

iso and αtotal
aniso for a water molecule. In most

cases, one can still obtain satisfactory estimates of these quanti-
ties, but this level of accuracy is largely fortuitous, as it is often
based on a favorable error cancellation between αiso (αaniso)
and αZPVC

iso (αZPVC
aniso ). For example, the second best result from

all previous studies in Table VIII (when compared to the exper-
imental estimate of αtotal

iso = 9.83 ± 0.02 bohr3) was obtained
via a Born-Oppenheimer molecular dynamics (BOMD) sim-
ulation employing the ωB97X-D functional, which yielded a
final value of 9.87 bohr3 for αtotal

iso . Upon closer inspection,
however, this otherwise excellent value (which slightly over-
estimates the experimental estimate by 0.2%–0.6%) is largely
based on a cancellation of errors between αiso (which is over-
estimated by 1.2%) and αZPVC

iso (which is underestimated by
24.7%), when compared to the values of these quantities com-
puted herein. For convenience, we have provided our final
recommended values for the electronic and vibrational contri-
butions to the non-zero components of the molecularα (as well
as αiso and αaniso) for a H2O molecule in its ground vibrational
state in Table IX. All of these contributions were computed
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TABLE IX. Summary of the current benchmark values (in bohr3) provided
in this work for the electronic and vibrational contributions to the static
dipole polarizability components (αxx , αyy, αzz) of the H2O molecule in its
ground vibrational state, as well as the corresponding isotropic (αiso) and
anisotropic (αaniso) measures of this tensor. As described in the main text,
the electronic contributions were computed using the experimental geometry
(r0 = 0.9578 Å and θ0 = 104.4776◦) and include a baseline calculation at the
LR-CCSDT/daQZ level (αLR�CCSDT/daQZ) as well as further corrections for
basis set incompleteness error (∆αbasis = LR-CCSD/da5Z�LR-CCSD/daQZ)
and core electron contributions (∆αcore = LR-CCSD[FULL]/daCQZ�LR-
CCSD/daQZ), as given in Eqs. (8)–(10). The vibrational contribution (αZPVC)
was computed with CCSDT/daTZ using the geometry optimized at the same
level (re = 0.9617 Å and θe = 104.1713◦). The final recommended values
for the electronic and total (electronic + vibrational) contributions to α are
given by α = αLR�CCSDT/daQZ + ∆αbasis + ∆αcore and αtotal = α + αZPVC,
respectively.

αLR-CCSDT/daQZ ∆αbasis ∆αcore α αZPVC αtotal

αxx 9.9282 �0.0227 �0.0311 9.8744 0.4422 10.3166
αyy 9.3114 �0.0357 �0.0524 9.2233 0.1317 9.3550
αzz 9.5829 �0.0260 �0.0374 9.5196 0.3009 9.8205
αiso 9.6075 �0.0281 �0.0403 9.5391 0.2916 9.8307
αaniso 0.5354 0.0117 0.0189 0.5645 0.2693 0.8338

at the (LR-)CCSDT level of theory and represent the most
accurate theoretical values available to date.

IV. CONCLUSIONS

In this work, the geometric dependence of the static dipole
polarizability of a water molecule was investigated by explic-
itly computing the corresponding dipole polarizability surface
(DPS) across 3125 total (1625 symmetry-unique) geome-
tries using linear response coupled cluster theory including
single, double, and triple excitations (LR-CCSDT) and the
doubly augmented triple-ζ basis set (d-aug-cc-pVTZ). Such
high-level quantum chemical calculations include a simul-
taneous treatment of both electron correlation and basis set
effects and were used to generate the corresponding DPS-
H2O-3K database. Analytical formulae based on a power series
expansion of this ab initio surface were obtained using linear
least-squares analysis and provide highly accurate and compu-
tationally tractable estimates of these quantities as a function
of molecular geometry.

An additional benchmark database (denoted by DPS-
H2O-25++) was also assembled for 25 select geometries (cho-
sen to span the same space as the more extensive collection of
3125 geometries above) and includes even further corrections
for basis set incompleteness error and core electron contribu-
tions to this fundamental quantity of interest. The benchmark
DPS-H2O-25++ database was then utilized to assess the impor-
tance of these effects as well as the relative accuracy obtained
using several quantum chemical methods and a library of den-
sity functional approximations. In addition to high-level quan-
tum chemical methods like CCSD and the aforementioned
least-squares formulae (3K-FIT), we find that the SCAN0,
PBE0, MN15, and B97-2 hybrid functionals yield the most
accurate descriptions of the molecular polarizability tensor in
H2O. Benchmark values for the leading-order C6 dispersion
coefficients in this set of 25 molecular geometries were also
computed using frequency-dependent polarizabilities obtained

via the Cauchy moment expansion at the LR-CCSD level with
further corrections for basis set and core electron contribu-
tions. This procedure has yielded the so-called C6S-H2O-
25++ benchmark database, which represents the most accurate
theoretical values of C6 for the water molecule obtained to
date.

A detailed analysis of the vibrational contributions to the
dipole polarizability for a H2O molecule in its ground vibra-
tional state was also performed using first-order perturbation
theory at the CCSDT/d-aug-cc-pVTZ level of theory. In doing
so, we found that the magnitude of this correction to the
isotropic and anisotropic measures of the dipole polarizability
tensor is far from negligible and represents approximately 3%
and 50% of the electronic contributions to these quantities,
respectively. By including electronic and vibrational contribu-
tions in our estimate of the total dipole polarizability—both
of which were computed using the highest level of theory to
date—we obtain a value of 9.8307 bohr3, which is in perfect
agreement with the experimental value of 9.83 ± 0.02 bohr3.54

As such, our nearly exact theoretical results for this quantity
provide strong support for the above experimental estimate of
Russell and Spackman and should therefore largely settle the
debate associated with the range of experimental results for
this quantity.54,82–87

SUPPLEMENTARY MATERIAL

See supplementary material for the tabulated values,
least-squares fits, and heat maps for the DPS-H2O-3K
database.
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