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Abstract

Global genome nucleotide excision repair (GG-NER) is the main pathway for the removal of 

bulky lesions from DNA and is characterized by an extraordinarily wide substrate specificity. 

Remarkably, the efficiency of lesion removal varies dramatically and certain lesions escape repair 

altogether and are therefore associated with high levels of mutagenicity. Central to the multistep 

mechanism of damage recognition in NER is the sensing of lesion-induced thermodynamic and 

structural alterations of DNA by the XPC-RAD23B protein and the verification of the damage by 

the transcription/repair factor TFIIH. Additional factors contribute to the process: UV-DDB, for 

the recognition of certain UV-induced lesions in particular in the context of chromatin, while the 

XPA protein is believed to have a role in damage verification and NER complex assembly. Here 

we consider the molecular mechanisms that determine repair efficiency in GG-NER based on 

recent structural, computational, biochemical, cellular and single molecule studies of XPC-

RAD23B and its yeast ortholog Rad4. We discuss how the actions of XPC-RAD23B are integrated 

with those of other NER proteins and, based on recent high-resolution structures of TFIIH, present 

a structural model of how XPC-RAD23B and TFIIH cooperate in damage recognition and 

verification.
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1. Introduction: Multistep, broad substrate recognition by GG-NER and 

TC-NER.

Nucleotide excision repair (NER) is a conserved pathway for the repair of a wide variety of 

bulky DNA lesions that destabilize the DNA duplex [1]. Although the genes involved in 

prokaryotes and eukaryotes are not conserved, the principles of damage recognition are 

conceptually similar [2]. NER can occur in two modes. It can be initiated anywhere in the 

genome by global-genome NER (GG-NER), the main topic of this review, and by a stalled 

RNA polymerase II in the transcribed strand of active genes by transcription-coupled NER 

(TC-NER) [3]. Biochemical studies and a number of structures have shown that bulky 

lesions generally prevent the translocation of RNA polymerase during mRNA synthesis 

triggering TC-NER, among other responses [4,5].

For efficient recognition in GG-NER, lesions are often substantially larger than normal 

nucleotides and alter the thermodynamic stability of the local double-stranded DNA 

structure. Famously, of the two prominent adducts formed by solar UV irradiation, 

cyclobutane pyrimidine dimers (CPDs) are excised by NER with much slower kinetics than 

the 6-4 photoproducts (6-4PPs) [6,7], as the latter have a much more destabilizing effect on 

the DNA duplex [8]. As a consequence, and as shown by recent UV damage-specific whole 

genome sequencing efforts, CPDs are much more persistent in cells and are therefore 

thought to be the main cancer-causing lesion generated by UV irradiation [9–11].

Similarly, certain carcinogenic compounds such as the environmental pollutants 

benzo[a]pyrene (B[a]P) and dibenzo[a,l]pyrene (DB[a,l]P), or the plant-borne mutagen 

aristolochic acid, can form adducts of different structures that are repaired with dramatically 

different efficiencies [12]. For example, an N6-dA adduct of DB[a,l]P is DNA helix-

stabilizing and fully resistant to GG-NER; while an N2-dG adduct, with the same 

stereochemistry at the linkage site to the base as the N6-dA adduct, is an excellent substrate 

[13]. Similarly, an aristolochic acid adduct of dG (N2-dG-aristolactam, dG-AL) is readily 

repaired by NER, while a dA adduct (N6-dA-aristolactam, dA-AL) is almost entirely 

resistant to NER, owing to its unusual and relatively helix stabilizing properties [14,15].

The lack of GG-NER recognition can have very dramatic consequences; dA-AL adducts 

have been found in cellular DNA samples decades after exposure [16]. As a consequence, 

A:T -> T:A transversion mutations induced by aristolochic acid are associated with upper 

urothelial cancer. These mutations are exclusively found on the non-transcribed strand of 

target genes such as p53 and are distinctly recognizable in mutation signatures of tumors 

[17].

It is well known that the repair efficiency of various NER substrates is generally, although 

not always, correlated with the degree of thermodynamic destabilization of the DNA double 

helix caused by a lesion [12,18]. Biochemical and structural studies have further revealed 

how XPC binding affinity to a given lesion can in many but not all cases explain NER 

efficiencies [12]. A number of recent reviews, including one in the Cutting Edge in Genome 

Maintenance series have discussed the mechanisms of damage recognition in NER [3,19–
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21]. Here we develop a detailed model of the mechanism of lesion binding by XPC-

RAD23B based on recent progress from structural, biophysical, single molecule, 

computational and biochemical studies and discuss how damage recognition by XPC-

RAD23B is integrated with the activities of UV-DDB to recognize lesions, especially CPDs. 

Finally, we will consider how the handover from XPC to TFIIH takes places, proposing an 

integrated structural model for damage recognition and verification.

2. The central role of and mechanism used by XPC-RAD23B in damage 

recognition in NER

2.1. XPC initiates NER for bulky and distorting NER lesions

In in vitro reconstituted NER reactions, XPC is necessary and sufficient for the initial 

damage recognition step [7, 22]. This system, consisting of six core NER factors – XPC-

RAD23B, TFIIH, XPA, RPA, XPG and ERCC1-XPF – efficiently repairs large, helix-

destabilizing lesions (Fig. 1), while it is very inefficient at repairing some non-destabilizing 

lesions, notably CPDs [6, 23–25]. CPDs are however repaired in cells, albeit with relatively 

low efficiency, and their repair is dependent on UV-DDB, which facilitates access of XPC in 

chromatin in cells (see below).

Several lines of evidence have established XPC-RAD23B as the initial damage recognition 

factor in GG-NER. Competition experiments suggested that XPC-RAD23B binds to lesions 

before the other core NER factors [22]. Footprinting assays to monitor open DNA formation 

during NER and sequential binding studies of NER factors to lesion-containing DNA further 

supported the notion that XPC arrives before TFIIH, XPA, RPA, XPG and ERCC1-XPF 

[26–28]. Cellular experiments, in which the dynamics of NER proteins was monitored at 

spatially localized UV damage were consistent with the XPC-first model, as XPC was 

required for the assembly of all other core NER factors at sites of UV damage [29–31].

2.2. The architecture of the XPC-DNA complex explains its substrate binding preference

The X-ray crystal structure of Rad4, the yeast ortholog of XPC, revealed how the protein 

binds DNA lesions, using a CPD located in a mismatched sequence as a lesion [32]. It has a 

sequence- and damage-independent DNA binding domain (TGD/BFID1, yellow and blue, 

respectively in Fig. 2) that anchors the protein on the DNA and a damage-specific binding 

domain, made of two β-hairpin modules (BFID2/BFID3, orange and green, respectively in 

Fig. 2) that interact with the lesion site. XPC might therefore initially bind to DNA non-

specifically and use the BHD2/BHD3 domains to search for and sense the presence of DNA 

lesions. This hypothesis is consistent with the damage-independent association of XPC with 

chromatin in cells, and a two-stage process to fully engage with lesions [29,33]. The two 

hairpins of BHD2/BHD3 encircle the undamaged strand of DNA (indicated by the two blue 

Ts in Fig. 2), sensing the single-stranded character induced by the lesion without interacting 

with the lesion directly [32]. This structure satisfactorily explains the binding preference of 

XPC-RAD23B and substrate specificity of the overall NER reaction for the majority of 

lesions [7,34–36].
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2.3. Models for XPC recognition from biophysical studies

The question thus arises how XPC-RAD23B finds damaged sites once it has engaged with 

DNA in the non-specific DNA binding mode. A first clue as to how this may happen came 

from a structure of Rad4 bound to DNA that did not contain damage [37], made possible by 

crosslinking the protein to non-damaged DNA through a disulfide crosslink which 

immobilized the protein bound to DNA in a limited register. Surprisingly, the structure of 

Rad4 bound to non-damaged DNA was almost indistinguishable from the one with the CPD 

in a mismatch. A possible answer for how Rad4 may differentiate between lesioned and 

undamaged sites was obtained using fluorescence spectroscopy experiments measuring the 

dynamics of opening and closing of a DNA duplex after equilibrium perturbation. These 

studies showed that the time required for Rad4-induced DNA opening of a 3-base pair 

mismatched DNA sequence (mimicking lesion-containing DNA) is around 7 ms, which is 

expected to be much shorter than that for duplex DNA with normal Watson-Crick base-

pairing. These studies led to the proposal of the “kinetic gating model”, which suggests that 

lesion recognition by Rad4 is a result of competition between the residence time of the 

protein at the lesion site and the time required to form the ‘open’ recognition complex; in 

damaged DNA the protein resides at the lesion site long enough to form the ‘open’ complex 

(Fig. 3, biophysical time scale), while this is not the case in undamaged DNA.

More detailed analysis of the Rad4 reaction trajectory using T-jump spectroscopy with 

fluorescent probes refined this model and revealed a two-step recognition process, termed 

‘twist-opening’; it consists of a fast initial “untwisting” step, likely constituting a first test 

for the deformability of the DNA duplex; this is followed by the slower helix opening and 

hairpin insertion step [38]. Consistent with this interpretation, BHD3 deletion mutants can 

mediate the twisting motion but not the full opening, showing that BHD3 is dispensable for 

the twisting step and lending further support to the two-step model.

2.4. The existence of initial encounter complexes is supported by single molecule studies

The encounter of Rad4 with DNA lesions was further studied in single-molecule studies 

containing UV-induced CPD lesions strung along DNA duplex “tightropes” [39]. This work 

demonstrated that Rad4-Rad23 interacts with UV-damaged DNA in three ways. A fraction 

of Rad4 in this model system is immobilized on the DNA, suggesting tight lesion binding; a 

second fraction moves randomly along the DNA, representing an unbound fraction; and at 

first glance unexpectedly, a third fraction displays a constrained motion within 1000 - 2000 

base pairs of the lesion. Intriguingly, this constrained motion state can be achieved with 

Rad4 lacking the BHD3 domain and may therefore be related to the untwisting step 

delineated from structural data and T-jump experiments (Fig. 3, single molecule). It has been 

proposed that this constrained motion may be akin to a first responder state that surveys and 

marks the damaged region, before proceeding to the proper full binding mode. Intriguingly, 

loss of the tip of the BHD3 domain (a crucial element of the interaction of Rad4/XPC with 

lesion sites, does not affect overall NER activity or cellular UV survival. Additionally, AFM 

experiments showed that Rad4 lacking the BHD3 entirely can still bend DNA, suggesting 

that lesion recognition by Rad4/XPC is a multifaceted process and that perhaps the 

constrained motion mode can be a highly dynamic mode of homing in on a lesion. A key 

structural question is how Rad4 can move along the helix by a one-dimensional diffusion 
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mechanism and to what extent this involves twisting and bending. It is worth noting that this 

diffusive motion is most likely bi-directional. Earlier biochemical studies have shown that 

XPC-RAD23B can bind to a mismatch in the absence of a lesion, and together with TFIIH 

and XPA translocate along the DNA duplex for up to ∼ 1000 base pairs in order to locate a 

little-distorting CPD residue [40]. This observation is consistent with the “first responder” 

concept and it will be interesting to see how addition of TFIIH and XPA would change the 

motion of Rad4/XPC on DNA in single molecule experiments [40, 41]. It is furthermore 

possible that the fraction of the protein with constrained motion would be significantly lower 

with lesions that bind Rad4/XPC more avidly than CPDs or fluorescein-modified thymine 

(FI-dT), a hypothesis that could readily be addressed in future single molecule studies.

2.5. Computational modeling of XPC-RAD23B recognition trajectories

While these biophysical studies have yielded profound insights into the dynamics of the 

interaction of Rad4/XPC with duplexes containing various degrees of destabilization, they 

have not yet revealed how Rad4/XPC binds to a physiologically relevant lesion, as they were 

all carried out with artificial substrates. The question therefore arises if there are additional, 

lesion-dependent binding modes of XPC. This void is beginning to be filled by 

computational studies using molecular dynamics simulations with free energy calculations. 

In these efforts, the trajectories and energetics of Rad4 engaging with different lesions is 

explored. A first study determined the pathway for Rad4 binding to a CPD lesion in a 3-base 

pair mismatch [42], identical to the DNA used in the original Rad4 crystal structure [32]. 

The most energetically favorable trajectory consisted of an initial encounter of the BHD2 

hairpin with the nucleotides opposite the lesion in the minor groove (Fig. 3, computed 

binding pathway, CPD). This results in some initial DNA distortion with low free energy for 

this intermediate state (∼0.8 kcal/mol). The subsequent steps are the full flipping and 

encircling of the two T bases opposite the lesion in a correlated motion to the transition 

state, followed by the insertion of the BHD3 hairpin from the major groove to achieve the 

open complex observed in the X-ray structure [32]. The transition state energy of this 

pathway is ∼4.2kcal/mol and thus represents the rate limiting step of Rad4 lesion binding. 

Importantly, the binding free energy profile and the structures along the pathway provide 

molecular explanations for several previous experimental observations, such as the energy 

profile derived from the T-jump studies [37, 38] and the observation that the BHD3 domain 

was not required for an initial encounter with UV-damaged sites in cells or single molecule 

studies [33, 39]. The study also highlights the importance of the aromatic residues on BHD3 

for full damage recognition (Fig. 3) [32].

Subsequent molecular dynamics / free energy studies explored the binding of Rad4 with a 

B[a]P-derived DNA lesion [43]. The polycyclic aromatic B[a]P is one of the most important 

environmental pollutants; metabolic activation produces diol epoxide intermediates that 

react with the exocyclic amine groups of dA and dG, yielding several stereoisomeric 

covalent DNA adducts. These adducts assume different three-dimensional conformations 

that depend on their stereochemistry [44] as well as sequence context [45, 46]. These 

parameters greatly influence their rates of excision by NER mechanisms [13, 35, 47]. The 

computational studies focused on a cis-B[a]P-dG adduct of which the NMR solution 

structure is known [48], which is an excellent substrate of NER [43]. In the NMR structure 
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the cytosine opposite the cis-B[a]P-dG is extruded from the helix into the major groove. The 

simulations showed the cytosine to be the first point of encounter with Rad4 – in this case 

with the BHD3 domain; specifically Phe599 on the tip of the BHD3 hairpin engages with 

the orphaned base by stacking early on (conformational capture of the extruded partner C, 

Fig. 3, Initial Binding). This leads to BHD2 and BHD3 further probing and distorting the 

duplex, rupturing the base pair adjacent to the lesion and displacing the B[a]P ring system 

toward the minor groove, coupled with the BHD3 hairpin becoming poised for insertion 

from the major groove (Fig. 3, Transition State). Subsequently, the cytosine base opposite 

the lesion and its 3’ neighbor become fully encircled by their binding pockets in BHD2 and 

BHD3, the B[a]P residue fully extrudes into the minor groove while the BHD3 hairpin 

becomes fully inserted and the Phe599 on its tip is stacked with an adjacent base pair (Fig. 3, 

Productive Binding State). This binding path differs significantly from the one deduced for 

the small CPD lesion opposite mismatched thymines, where the partner bases are not 

initially extruded and captured. These two studies illustrate how lesion-binding by 

Rad4/XPC can be achieved by different pathways to initiate NER.

2.6. Predicting NER susceptibility from initial encounter complexes

Since lesion recognition by Rad4/XPC is necessary for the subsequent cascade of events in 

GG-NER, we sought to explore how the initial binding of XPC might be influenced by the 

conformations of bulky B[a]P-dG adducts in DNA. The objectives of such studies are to 

elucidate the reasons why there is such a variation in the repair rates of different DNA 

adducts [12]. Molecular dynamics simulations of initial encounter complexes of Rad4/XPC 

with lesion-containing duplexes were conducted to obtain initial binding trajectories and 

structures. The results revealed a dependence of Rad4/XPC binding on the conformations of 

the lesions in the initial stages (Mu, Geacintov, Zhang, and Broyde, unpublished). The 

following are examples of interdependent parameters investigated to characterize the initial 

binding of XPC to the lesions and show promise as gauges of experimentally observed NER 

resistance: (1) conformational capture of the partner base on the strand opposite the lesion; 

(2) the occupied alpha space (AS) volume; this volume reflects the curvature and surface 

area of the minor groove that is occupied by BHD2 ; (3) untwist angle of the DNA around 

the lesion site. These are illustrated here with examples of three B[a]P adducts.

In the case of the high NER efficiency (+) cis-B[a]P-dG:dC adduct (Fig. 4A, Movie S1), the 

partner dC is initially extruded from the helix into the major groove by the intercalated 

B[a]P polycyclic aromatic ring system, and is readily captured by the aromatic residues on 

the tip of the BHD3 (especially F599). The binding of BHD2 is further stabilized by the 

interaction of arginine R494 with the backbone of the orphaned C, with concomitant 

establishment of a large occupied AS volume in the minor groove, leading to local DNA 

untwisting of about 32°.

In the case of the minor groove (+) trans-B[a]P-dG:dC adduct (G*), the G*:C base pair is 

intact and the B[a]P residue is located in the minor groove (Fig. 4B). Consequently, the 

initial interaction between BHD2 and the minor groove and the untwisting are less 

pronounced. Furthermore, the intact base pair hinders the engagement of the aromatic tip of 
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BHD3 with the base opposite the lesion. These factors are consistent with the lower NER 

activity of this lesion compared to the corresponding (+)-cis adduct.

An example of an NER-resistant adduct is the (+) cis-B[a]P-dG lesion in the context of a 

deletion duplex (G*:Del), that is lacking a partner nucleotide opposite G*. The G*:Del 

duplex is not bound by XPC (K. Feher, N.E. Geacintov, to be published) and it is fully 

resistant to NER [35, 49]. The bulky B[a]P residue in the G*:Del duplex is intercalated 

between adjacent base pairs; the multiple aromatic rings of the B[a]P that replace the 

position of the absent partner C more than compensate energetically for the deleted dC [2, 

49]. Due to the thermodynamic stability of the G*:Del duplex and the lack of the nucleotide 

opposite the lesion, neither the BHD3 nor the BHD2 hairpin can engage with the lesion site 

(Fig. 4C, Movie S2). As a consequence, the BHD2 domain establishes more limited contact 

with the lesion site than even the (+)-trans-B[a]P-dG* adduct and fails to untwist the G*:Del 

duplex to initiate NER.

These examples show that molecular modeling/dynamics of initial encounter complexes, 

with determination of the occupied AS volume by BHD2 in the DNA minor groove and 

untwist angles provide structural hallmarks of initial XPC binding. These characteristics 

explain the lack of XPC binding with consequent absence of NER activity, here exemplified 

by the (+)-cis-G*:Del duplex, and show potential in estimating NER resistance of DNA 

adducts with known conformations. Hence weak initial binding is a first indicator of poor 

NER activity; this has been shown in a study of a series of 12 adducts whose NER activities 

vary from resistant to highly efficient (Mu, Geacintov, Zhang, and Broyde, to be published).

XPC binding affinity is correlated with NER efficiencies in human cell extracts for many 

DNA lesions [7, 15, 50, 51], but not for B[a]P in certain base sequence contexts or for 

certain other polycyclic aromatic DNA adducts [52]. Indeed, experiments using such model 

substrates suggest that XPC can also form non-productive complexes with DNA adducts that 

do not lead to proper NER preincision complex assembly and formation of dual incision 

products. The molecular modeling studies are providing structural insights into how the 

differences in the recognition by Rad4 of structurally diverse DNA lesions result in variable 

levels of repair susceptibility [42, 43]. The availability of sets of DNA lesions with known 

structural features and characterization of relative NER efficiencies in human cell extracts 

[12] provides a fertile experimental basis for further elaboration of the structure-function 

relationship in lesion recognition and NER resistance by computational approaches.

3. Handover from UV-DDB to XPC and from XPC to TFIIH

While XPC-RAD23B clearly occupies a central role in damage recognition and the initiation 

of the multi-step NER mechanism, factors acting upstream and downstream of this binding 

step are important for damage recognition and verification. Much progress has been made in 

elucidating how UV-DDB recognizes CPD lesions in chromatin, the handover from UV-

DDB to XPC-RAD23B, and the damage verification step by TFIIH. These aspects of NER 

have been the subject of several recent reviews [19–21, 53, 54]. We will therefore focus our 

discussion here on the interplay of these factors with XPC-RAD23B and present a structural 
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model for how XPC-RAD23B and TFIIH work together to recognize and verify DNA 

lesions.

3.1. UV-DDB: Delivering non-distorting and chromatinized DNA lesions to XPC

The mechanism of damage-recognition by XPC/Rad4, described in section 2, does not 

explain how the minimally distorting CPD UV lesion is repaired by NER. It also does not 

explain how NER occurs in the context of chromatin. The UV-damaged DNA binding 

protein (UV-DDB, consisting of DDB1 and DDB2/XPE) is central to both of these aspects 

of NER (Fig. 1). UV-DDB has a higher affinity for DNA lesions than XPC-RAD23B, 

especially for CPD [55–57]. Structural studies have shown that DDB2 inserts itself as a 

wedge into the duplex at the lesion site, flipping out the two nucleotides of the CPD into a 

shallow binding pocket, which can accommodate lesions such as CPDs, 6-4PPs, or abasic 

sites by shape complementarity [58–60]. In contrast to XPC, DDB2 therefore directly 

interacts with lesions. It induces a kink into the duplex that may facilitate the subsequent 

handover to XPC. Simple overlay of the structures of XPC/Rad4 and DDB2 bound to DNA 

suggests that the two proteins cannot bind DNA lesions simultaneously. Furthermore, adding 

UV-DDB to an in vitro reconstituted NER reaction does not appear to dramatically increase 

the repair of CPDs [6], suggesting that a more complex handover mechanism is at work.

In cells, DDB2 is clearly required for the recruitment of XPC and the repair of CPDs [61, 

62]. The complexity of the roles of UV-DDB2 became apparent when it was found that 

DDB1 serves as a connector protein for the ubiquitin ligase CUL4-RBX1 [63]. The UV-

DDB2-CUL4-RBX1 complex ubiquitinates a number of proteins in response to UV damage, 

including UV-DDB itself, XPC and histones via Lys48-linked ubiquitin chains [64], 

initiating a number of regulatory cascades of NER. The ubiquitination of DDB2 leads to its 

proteasomal degradation after extraction from NER complexes by the segregase VCP/p97 

[64,65]. Ubiquitination of XPC by contrast increases its DNA binding activity [64]. XPC is 

however sumoylated and ubiquitinated for a second time, now via K48 ubiquitin chains by 

RNF111 [66,67]. These modifications have been shown to be important for the handover of 

DDB2 to XPC and also for the release of XPC from damaged sites, which is required for 

progression through the NER pathway.

The activities of XPC-RAD23B and NER more generally are also profoundly influenced by 

proteins that alter the chromatin state, including chromatin remodelers or histone modifying 

enzymes, consistent with the access-repair-restore model originally proposed for the repair 

of DNA lesions in chromatin 40 years ago [68]. Details of how such enzymes influence 

XPC-RAD23B and NER activity have been reviewed elsewhere and is not our focus [69, 

70]. New facets of regulation of NER in chromatin continue to be discovered: recent 

findings include chromatin modifiers that facilitate the UV-DDB2 to XPC and the XPC to 

TFIIH handovers as well as the direct interaction of XPC with histone variants [71–73]. The 

discovery that polyribosylation by PARP1 of DDB2, XPC and chromatin remodelers in an 

CUL4A-RBX1-independent fashion contribute to damage recognition in chromatin further 

add to the complexity of the NER reaction in a chromatin environment and certainly 

stimulate further investigations [74–78].
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3.2. Handover from XPC to TFIIH: transitioning from damage recognition to damage 
verification

Since the propensity to bind to a destabilized duplex without a lesion allows XPC-RAD23B 

to interact with DNA that is simply destabilized by base pair mismatches, NER employs a 

second damage verification step that ensures the presence of a lesion. All the available 

evidence points to a key role for TFIIH in this process. TFIIH is a ten-subunit complex 

consisting of the core (XPB, XPD, p62, p52, p44, p34 and p8) and CAK (CDK7, cyclin H 

and MAT1) subunits [79]. While the CAK subunit dissociates from TFIIH during NER [80], 

core TFIIH remains bound to the lesion-containing fragment until after excision and it is 

found associated with the excised damage-containing oligonucleotide [81, 82].

Of critical importance for NER are the activities of the two helicase subunits of TFIIH, XPB 

and XPD. Current models suggest that the role of XPB may be to pry open the DNA to 

allow the loading of TFIIH and specifically XPD to DNA [83, 84]. Therefore, its role in 

NER is not as a processive helicase. XPD by contrast is an active 5’->3’ helicase in NER 

and key to the damage verification process [85, 86]. Structural and functional studies of 

XPD suggest that it tracks along DNA while pulling the DNA through a narrow tunnel that 

would be too small for bulky DNA lesions to pass through [87–92]. This observation 

provides a remarkably easy mechanism for damage verification, simply based on size. It has 

been known for a long time that the helicase activity of the yeast homolog of XPD, Rad3, is 

blocked by DNA lesions [93]. Similarly, it has been shown that the translocation of archaeal 

XPD homologs can be blocked by bulky lesions, although the molecular details of XPD 

stalling at lesions are not yet fully understood [94–96].

Intriguingly, TFIIH has the ability to locate and stall at a lesion from a distance, for example 

when XPC-RAD23B is loaded onto a mismatch and is allowed to track along the DNA until 

it encounters a CPD lesion a few hundred nucleotides away [40]. It will be intriguing to 

determine if TFIIH would be able to similarly add directionality to the constrained motion 

mode of XPC-RAD23B in single molecule experiments [39]. The XPA protein has also been 

shown to be present in a ternary complex in the lesion scanning mode. XPA has furthermore 

been shown to stimulate the overall helicase activity of TFIIH, while at the same time 

inhibiting the helicase activity in the presence of lesions [41]. It is therefore likely that XPA 

also contributes to damage verification. This is consistent with its ability to bind kinked 

DNA structures, which may reflect NER reaction intermediates, in which bubble-like 

structures are beginning to form [97,98].

3.3. A structural model for the interplay of XPC and TFIIH

XPC has two known interaction sites with TFIIH. It interacts via its N-terminus with the 

pleckstrin homology (PH) domain of the p62 subunit [99, 100] and the C-terminus of XPC 

with the XPB subunit [101–103] and both interactions are needed for full NER activity. The 

interaction between p62 and XPC has been characterized at the structural level and it has 

been shown that a C-terminal region of XPC (residues 124-141) binds to the PH domain of 

p62 [100]. Mutation of conserved residues, such as W133, which occupies a binding pocket 

on the surface of the PH domain, impacts NER activity.
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Recent advancements in Cryo-EM approaches have yielded unprecedented insights into the 

structure of TFIIH. Two high-resolution structures of TFIIH have been solved, as the ten-

subunit complex [104] and as part of a transcription complex [105]. Although not all the 

parts of TFIIH are resolved to high resolution, both structures show that TFIIH assumes a 

horseshoe-shaped structure with XPB and XPD positioned at either open end and the 

remaining core subunits aligning with the arc (Movie S3). Each of the two structures 

provides information on unique elements. The structure by Greber et al. shows how a long 

α-helix of the CAK subunit MAT1 links XPB and XPD, suggesting that they assume a rigid 

conformation in the presence of the CAK subunit [104]. One possible implication is that 

upon dissociation of the CAK subunit from the core TFIIH during NER [80], the relative 

position of XPB and XPD becomes more flexible, which may be important during the 

translocation of XPD toward the lesion. This idea is supported by an overlay with the second 

TFIIH structure by Schilbach et al. [105], which lacks MAT1. If the two structures are 

superimposed at the XPB/Ssl2 subunits, the conformational change of TFIIH in the absence 

of MAT 1 becomes apparent (Movie S3). The distance between XPB and XPD at the 

opening of the horseshoe is much greater in the absence MAT1 and this increased flexibility 

is likely critical for the translocation of XPD during the damage verification step. The 

structure by Schilbach revealed two additional unique features: i) XPB is bound to a DNA 

duplex, revealing how XPB engages with DNA and ii) clear density maps for larger parts of 

p62, in particular the PH domain that interacts with XPC and is located adjacent to XPD 

[105].

These structures together with our knowledge of Rad4/XPC and functional data, have 

allowed us to construct a model for how XPC and TFI IH interact to transition from the 

damage recognition to the damage verification step (Fig. 5). After XPC engages with the 

lesion, its C-terminus is located on the 5’ side of the lesion (left in Fig. 5A), where it is able 

to interact with XPB. We modeled the DNA-bound XPB (green ribbons) from the Schilbach 

structure [105] adjacent to the C-terminus of XPC/Rad4, which positions the horseshoe of 

TFIIH such that the subunit located closest to the lesion is XPD (salmon color in Fig. 5). We 

envision that the flexibility of TFIIH, facilitated by the departure of the CAK subunit and 

with it the MAT 1 helix that connects XPB and XPD (Movie S3) will allow the XPD 

helicase to load onto the DNA, where it can then track along the DNA in a 5’ -> 3’ direction 

until it engages with the lesion (Fig. 5B). In this position, the PH domain of p62 (blue in Fig. 

5) that is on the back side of XPD, is in the vicinity of the N-terminus of XPC (which is 

lacking from the X-ray structure of Rad4), so that the two can engage in an interaction to 

stabilize the XPC-TFIIH-DNA complex.

Following engagement of TFIIH with the XPC-lesion complex, damage recognition and 

verification is accomplished, and the asymmetry of the NER complex is established. The 

NER pre-incision complex assembly is completed by XPA, which interacts with TFI IH and 

stabilizes the opened bubble together with the single-stranded binding protein RPA [27, 

106]. XPA is also responsible for the engagement of ERCC1-XPF [107], the nuclease 

making the incision 5’ to the lesion [108]. XPG, the second endonuclease making the 

incision 3’ to the lesion arrives at the NER complex by interaction with TFIIH [109, 110] 

and replaces XPC in the pre-incision complex. The first incision 5’ to the lesion by ERCC1-

XPF only takes place after the pre-incision complex assembly is completed, followed by 
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initiation of repair synthesis, 3’ incision by XPG, completion of repair synthesis and ligation 

of the nick to restore the original DNA sequence [111–113].

4. Conclusions and perspectives

The characteristic NER dual incision reaction was discovered and reconstitution of the NER 

reaction achieved in the 1990s [23, 24]. Since then studies of the repair of many different 

lesions has revealed that the repair rates vary greatly, depending on the physical size, 

conformation, base sequence context, and impact on the local B-DNA structure. These 

properties affect how lesions interact with NER proteins, in particular the damage sensor 

XPC-RAD23B, resulting in efficient, slow or no repair. Here we reviewed advances in 

understanding the interaction of XPC and its yeast ortholog Rad4 with DNA lesions, based 

on biochemical, biophysical, single molecule and computational studies. In particular, recent 

studies have provided computationally derived binding pathways with Rad4/XPC that offer a 

tool for gauging the overall NER efficiencies that are experimentally benchmarked. 

Furthermore, studies of the earliest encounter of Rad4 with lesion-containing duplexes have 

indicated promise in predicting NER repair resistance. We furthermore discussed the 

subsequent step in NER, the verification of the size of the lesion by TFIIH. Drawing from 

recent cryo-EM structures of TFIIH, we generated a model for how XPC-RAD23B and 

TFIIH cooperate to detect and verify DNA lesions based on specific protein-DNA and 

protein-protein interactions. We expect that the coming years will provide further exciting 

structural and mechanistic insights into how NER is able to achieve the repair of a very wide 

range of structurally diverse lesions, without incising undamaged DNA.
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Fig. 1. Model of the mechanisms of damage recognition in NER.
Distorting bulky DNA lesions are directly recognized by XPC-RAD23B. Less distorting 

lesions in chromatin, especially CPDs, are first detected by UV-DDB. Chromatin structure is 

altered with a series of modifications by ubiquitin and sumo as well as by the activities of 

histone modifiers and chromatin remodelers allowing XPC-RAD23B to gain access to the 

lesion. XPC-RAD23 recognizes the local helical destabilization caused by a DNA lesion and 

interacts with TFIIH, which loads on DNA near the lesion via its XPB subunit, allowing the 

helicase XPD to track along the DNA to verify the presence of the lesion. The inherent 
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asymmetry of the XPC-TFIIH-Lesion complex ensures proper loading of the pre-incision 

complex consisting of TFIIH, XPA, RPA, XPG and ERCC1-XPF to make a dual incision on 

the damaged strand to remove the damage as part of an oligonucleotide.
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Fig. 2. Crystal structure of Rad4.
Rad4, the yeast orthologue of human XPC, productively bound to the CPD damaged DNA 

with mismatched thymines opposite the CPD (PDB ID: 2QSG [32]). The unresolved CPD 

(red) and BHD2 (orange) hairpin tip are indicated by dashed lines. The mismatched 

thymines (T) that are flipped into their binding pockets are indicated in blue. Color codes of 

other domains: TGD, yellow; BHD1, marine; BHD2, orange; BHD3, green; DNA, grey.
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Fig. 3. Key binding states in the full pathway from initial to productive binding of Rad4.
Structures represent Rad4 binding to a (+) cis-B[a]P-dG containing DNA duplex with 

extruded normal partner C obtained from molecular dynamics/free energy calculations [43]. 

The table also presents details concerning pathway simulations for the CPD lesion [42], 

which manifests key difference from the (+) cis-B[a]P-dG case. Insights from biophysical 

measurements are also summarized [37–39]. Color scheme as in Figure 2.
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Fig. 4. Correlation of Rad4 BHD2 occupied alpha space volume, DNA untwist angle, and NER 
efficiency.
Representative structures, alpha space volumes occupied by BHD2 in the minor groove, and 

untwist angles obtained from MD simulations of Rad4 initial binding complexes, and 

experimental relative NER excision efficiencies [12] for the (+) cis-B[a]P-dG:dC, (+) trans-

B[a]P-dG:dC and (+) cis-B[a]P-dG:deletion duplexes. Shown are the best representative 

structures of the trajectory from 1 - 1.5 μs obtained using the AMBER 16 package [114]. 

Full size and zoomed in views are given for each structure. Occupied alpha-space volumes 

were calculated for the representative structures using AlphaSpace [115]. These volumes 

reflect the curvature and surface area of the DNA minor groove that is bound by BHD2. 

Each untwist angle is the difference between the twist angle over 5 base pair steps (between 

the cyan base pairs) before BHD2 enters the minor groove and after BHD2 has stably bound 

the minor groove and a stable twist angle has been achieved. This value reflects the 

untwisting induced by BHD2 binding to the minor groove around the lesion site.
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Figure 5. Structural Model for the Interplay of XPC and TFIIH.
A. Initial TFIIH binding mediated by the interaction of XPB with DNA and the N-terminus 

of XPC. B. Damage verification complex formation after XPD engages with the lesion and 

the N-terminus XPC binds to the PH domain of p62.The TFIIH complex was modeled based 

on the Cryo-EM structure of yeast TFIIH by Schilbach et al. (PDB ID: 5OQJ): in order to 

reveal more of the structure of the XPB N terminus, Ssl2/yeast XPB was replaced by the 

XPB structure in the Cryo-EM structure of human TFIIH by Greber et al. (PDB ID. 5OF4), 

through superposition of XPB residues 368-381 and 631-642 to Ssl2 residues 414-427 and 

678-689. The undamaged DNA bound to XPB was modeled using DNA in PDB ID: 5OQJ. 

The lesion-containing DNA in complex with XPC was then modeled using the productively 

bound state of Rad4/XPC in complex with a cis-B[a]P-dG containing DNA [43]. For the 

XPC N terminal binding to the PH domain of Tfb1/yeast p62, we docked a section of the 

XPC N terminus (residues 109-156) to the PH domain, through superposition of the p62 PH 

domain from the solution structure of the complex between the XPC N terminus and the p62 
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PH domain (PDB ID: 2RVB) [100] to the PH domain in our TFIIH model. This section of 

the XPC N terminus is shown in gray spheres. In order to reveal the XPC N terminal binding 

to p62, the p62 is shown as a transparent surface in B.
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