
ar
X

iv
:1

70
3.

09
70

7v
1

 [
as

tr
o-

ph
.I

M
]

 2
8

M
ar

 2
01

7

Accelerating gravitational microlensing simulations

using the Xeon Phi coprocessor

Bin Chena,∗, Ronald Kantowskib, Xinyu Daib, Eddie Baronb, Paul Van der
Marka

aResearch Computing Center, Florida State University, Tallahassee, FL 32306, USA
bHomer L. Dodge Department of Physics and Astronomy, The University of Oklahoma,

Norman, OK, 73019, USA

Abstract

Recently Graphics Processing Units (GPUs) have been used to speed up
very CPU-intensive gravitational microlensing simulations. In this work, we
use the Xeon Phi coprocessor to accelerate such simulations and compare
its performance on a microlensing code with that of NVIDIA’s GPUs. For
the selected set of parameters evaluated in our experiment, we find that
the speedup by Intel’s Knights Corner coprocessor is comparable to that
by NVIDIA’s Fermi family of GPUs with compute capability 2.0, but less
significant than GPUs with higher compute capabilities such as the Kepler.
However, the very recently released second generation Xeon Phi, Knights
Landing, is about 5.8 times faster than the Knights Corner, and about 2.9
times faster than the Kepler GPU used in our simulations. We conclude
that the Xeon Phi is a very promising alternative to GPUs for modern high
performance microlensing simulations.

Keywords: gravitational lensing: micro, quasars: supermassive black holes,
accretion, accretion disks, methods: numerical, parallel processors

∗Corresponding author.
Email addresses: bchen3@fsu.edu (Bin Chen), kantowski@ou.edu (Ronald

Kantowski), xdai@ou.edu (Xinyu Dai), baron@ou.edu (Eddie Baron),
pvandermark@fsu.edu (Paul Van der Mark)

Preprint submitted to Astronomy and Computing October 15, 2018

http://arxiv.org/abs/1703.09707v1

1. Introduction

Gravitational microlensing was first discussed by Refsdal (1964) and dis-
covered in the quadrupole quasar lens system Q 2237+0305 by Irwin et al.
(1989). It has since become a powerful probe constraining the properties of
both background sources and foreground lenses. For example, microlensing
observations combined with Bayesian Monte Carlo simulations (Kochanek,
2004) have been used to constrain the emission sizes of the quasar accre-
tion disk at various wavelengths (Pooley et al., 2006; Chartas et al., 2009;
Dai et al., 2010; Morgan et al., 2012; Mosquera et al., 2013; Blackburne et al.,
2014, 2015; MacLeod et al., 2015; Guerras et al., 2017). It can also be used
to constrain foreground lens properties such as stellar/dark matter fractions
(Mao & Schneider, 1998; Mediavilla et al., 2009). The large synoptic survey
telescope (LSST) is expected to discover thousands of new strong lens sys-
tems in the next decade, and microlensing should exist in many of these new
lens systems (Abell et al., 2009). A joint analysis of many microlensing sys-
tems requires the exploration of a large parameter space but could produce
useful constraints on the cosmological parameters (Thompson et al., 2009;
Bate et al., 2010; Vernardos & Fluke, 2013; Vernardos et al., 2014). Such
a large campaign poses new challenges not only to observers, but also to
computational astrophysicists and data scientists (Vohl et al., 2015).

When light from a background source (e.g., a quasar) passes a foreground
lens galaxy or cluster of galaxies, it is gravitationally lensed by both the
galaxy (or cluster) as a whole, and by the many stars around the light beam.
The gravitational bending angle by a stellar mass lens is of the order of a
micro arcsecond, and is what one calls microlensing. The gravitational mi-
crolensing equation of a random star field can be written as (Schneider et al.,
1992)

β =

(

1− κc − γ1 −γ2
−γ2 1− κc + γ1

)

θ −
N∗
∑

i=1

mi(θ − θi)

(θ − θi)2
, (1)

or as
β = θ −α, (2)

where

α =

(

κc + γ1 γ2
γ2 κc − γ1

)

θ +
N∗
∑

i=1

mi(θ − θi)

(θ − θi)2
, (3)

is the gravitational bending angle, β and θ are respectively the source and
image angular positions. All three angles are in units of the Einstein ring

2

angle θE of a unit solar mass lens

θE ≡

√

Dds

DdDs

4GM⊙

c2
, (4)

κc is the smooth surface mass density, γ = (γ1, γ2) is the external shear, and
mi is the mass of the i th micro-lens in units of the solar massM⊙. In the above
equation Dds, Dd and Ds are the angular diameter distances from the lens
to the source, from the observer to the lens and to the source, respectively.
The microlensing equation of a random star field can not be analytically
solved, and numerical ray-tracing is the standard method to generate simu-
lated magnification patterns in the source plane (Schneider & Weiss, 1987;
Wambsganss, 1999). In practice, a large number of rays are traced backward
from the observer to the lens plane, and then to the source plane (there-
fore the name “backward raytracing”). The number of rays collected in a
given pixel in the source plane is proportional to the gravitational lensing
magnification/demagnification for a source at that pixel’s location. Given
a model for the background source size and intensity profile, the magnifi-
cation pattern can be used to generate simulated microlensing light curves,
which when compared with observational data can be used to constrain the
properties of both the foreground lens and the background source. For ex-
ample, the quasar X-ray emission size has been recently constrained to be
about 10 rg (gravitational radius) of the central supermassive black hole using
Chandra data (Chen et al., 2011, 2012) and the Bayesian Monte Carlo anal-
ysis (Kochanek, 2004; Chartas et al., 2009; Dai et al., 2010; Morgan et al.,
2012; Mosquera et al., 2013; Blackburne et al., 2014, 2015; MacLeod et al.,
2015; Guerras et al., 2017). An important step of the Bayesian Monte Carlo
microlensing analysis is to generate a large simulated magnification map
(∼20θE × 20θE) of high resolution (∼104 × 104 pixels). To constrain the
multi-dimensional parameter space of a foreground lens a large number of
such maps needs to be generated.

The Central Processing Unit (CPU)-intensive part of microlensing ray-
tracing is clearly the summation over the multitude of stars in Equation (1).
This summation has to be repeated for many rays, i.e., for a large number
of image angles θi,j covering a 2D grid at the image plane. The number
of stars N∗ in each summation is proportional to the stellar surface mass
density κ∗ and the area of the lens window. The total number of rays traced
is proportional to the area of the lens window (equivalently, the total number
of pixels in the lens window) and the number of rays chosen for each pixel

3

(the ray density). A ray density of a few hundred to a couple of thousand is
typically required to reduce the statistical error. Fixing the ray density while
increasing the lens window area by a factor of 2 will increase N∗ by a factor
of 2 and the number of rays by a factor of 2, thus increasing the computing
time by a factor of 4. Fixing the ray density and lens window size, while
increasing κ∗ by a factor of 2 will double the number of stars N∗ and thus
double the computing time.

To compute many bending angles (∼1010) by many stars (from a few
hundred to many millions) by brute force on a serial computer is very time-
consuming. To speed up microlensing simulations, either smart algorithms
which avoid brute force summations [see e.g., Mediavilla et al. (2011)] or par-
allel computing is called for. One important method to avoid the brute force
summation is the so-called hierarchical tree algorithm (Wambsganss, 1999;
Barnes & Hut, 1986). In the current paper, we focus on the other option, i.e.,
we speed up the gravitational microlensing simulation via parallel computing,
in particular, parallel computing using hardware accelerators/coprocessors:
Graphics Processing Units (GPUs) and the Xeon Phi. GPUmicrolensing ray-
tracing has been studied very recently (Thompson et al., 2009; Bate et al.,
2010; Vernardos & Fluke, 2013; Vernardos et al., 2014). Here we evaluate
the performance of parallel gravitational microlensing ray-tracing using the
Xeon Phi and compare it with the GPU version of the same algorithm.

The plan of the paper is as the following: In Section 2.1 we introduce
the Xeon Phi coprocessor. In Section 2.2 we outline the parallel ray-tracing
algorithm for the microlensing simulation used in this work. In Section 2.3 we
define the experiment we conduct to compare the performance of the Xeon
Phi coprocessors with the NVIDIA GPUs. In Section 3 we summarize our
results, and in Section 4 we discuss and conclude.

2. Parallel microlensing simulation via the Xeon Phi

2.1. An introduction to the Xeon Phi

The Xeon Phi is a family of many-core parallel coprocessors manufac-
tured by Intel for high performance computing. The first release of the Xeon
Phi was the Knights Corner (KNC) which contains some 57 to 61 cores built
on the Intel Many Integrated Core (MIC) micro-architecture. A MIC copro-
cessor core is more complicated/expensive than a GPU core, but it is much
simpler than a single core of a Xeon processor. The KNC coprocessor is used
as an accelerating device for a traditional computer node, similar to the way

4

a GPU card is used as an accelerator for a computer node. A KNC Phi card
can have 6/8/16 Giga-Bytes (GB) of high speed memory (∼320 GB/s) which
communicates with a host node through the Peripheral Component Intercon-
nect Express (PCIe) bus (16 GB/s). The most recent release of Xeon Phi,
Knights Landing (KNL), can run as an independent computer node with a
self-booting Linux operating system (i.e., not attached to a Xeon host node
anymore). Xeon Phi scales up parallel applications through its many cores
per processor, multi-threading per core (optimal performance at ∼4 threads
per core), and its powerful vector processing units (e.g., 512-bit vector reg-
isters). A big advantage of Xeon Phi is that it supports common program-
ming languages such as Fortran, C/C++, and parallel programming models
such as the distributed memory programming model Message Passing Inter-
face (MPI), the shared memory programming model Open Multi-Processing
(OpenMP), and the hybrid programming model MPI+OpenMP. Applica-
tions can run in either the native or the offload mode. In the native mode,
the application is compiled on the host, but is launched and run directly
from the Xeon Phi coprocessor. In the offload mode, the application is com-
piled and launched from the host, but the CPU-intensive part is offloaded to
the Phi coprocessor during the runtime (Jeffers & Reinders, 2013). We focus
on the offload mode in the current work, since this programming model is
very similar to the GPU programming model where the application is also
launched from the host but with the CPU-intensive part accelerated by the
GPU.

Table 1 compares the hardware specifics of a multi-core Sandy Bridge
(SB) host node (Intel Xeon E5–2670 CPU; Dell C8220 motherboard), a Xeon
Phi coprocessor (KNC), and an NVIDIA GPU (Tesla M2050) used in this
work (more information can be easily found from the vendor’s website using
the product name). The Xeon Phi coprocessor used in this work is a special
version of KNC delivered to the Texas Advanced Computing Center. It
is similar to the Xeon Phi 5120D, but with 61 cores (instead of 60) and
a slightly higher clock frequency.1 The SB host node has 16 cores, much
fewer than the Xeon Phi (61 cores) and Tesla M2050 (448 cores). However,
its memory (32 GB) is much larger than the Xeon Phi (8 GB) and Tesla
M2050 (3 GB). The Xeon Phi has the highest peak memory bandwidth, 320
GB/s, compared with the SB (102 GB/s) or the Tesla M2050 (148 GB/s).

1Refer to https://portal.tacc.utexas.edu/user-guides/stampede for more detail.

5

Table 1: Host Computer node versus Xeon Phi and Gpu.
Sandy Bridge Xeon Phi Gpu

E5–2670 KNC* Tesla M2050
Clock Frequency (GHz) 2.60 1.10 1.15

Number of Cores 16 61 448
Memory Size/Type 32GB/DDR3 8GB/GDDR5 3GB/GDDR5

Memory Clock (GHz) 1.6 1.375 1.55
Peak DP (TFLOP/s) 0.333 1.065 0.515

Peak Memory Bandwidth (GB/s) 102 320 148
Host-Coprocessor Interconnect · · · PCIe2.0x16 (16GB/s) PCIe2.0x16 (16GB/s)

*The KNC used is a special version similar to Xeon Phi 5120D, but with 61 cores.

The theoretical peak double precision performances of the host node, Xeon
Phi, and GPU are 0.333, 1.065, and 0.515 Tera Floating-point Operations
Per Second (TFLOPS), respectively. The Tesla M2050 GPU has a Fermi
architecture with compute capability 2.0.

2.2. Parallel ray-tracing Algorithm

An outline of the simple (brute force) parallel microlensing simulation is
shown inAlgorithm 1. The ray-tracing code is parallelized using the shared
memory programming model OpenMP. The host computer (a SB node with
two 8-core processors) and the Xeon Phi coprocessor each has their own
distributed memory (Table 1). The 32 GB memory on the host is shared
among its 16 cores, and the 8 GB memory on the coprocessor KNC is shared
among its 61 MIC cores, but there is no memory sharing between the host
and Phi cores. Consequently, the OpenMP code can run either solely on the
host, or be offloaded to the coprocessor. To use both the host and coprocessor
for the parallel ray-tracing, a distributed memory programming model such
as MPI is required. For example, a few MPI tasks can be launched on both
the host and the Phi card, each of these MPI tasks can spawn a few OpenMP
threads to do part of the ray-tracing. In the end, the results from each MPI
task are collected and reduced to obtain the final magnification map. For
situations where many independent simulations need to be generated, for
example, simulations with a grid of input parameters such as 〈M∗〉, γ, κ∗, κc,

etc., heterogeneous computing using both the host and Phi card can be easily
realized by letting the host and Phi each work on their own simulations. In
this paper, we present the simple case where we generate only one simulation
map using either the host or the coprocessor in the offload mode. This
makes the performances of the host node, the Xeon Phi coprocessor, and
the NVIDIA GPU accelerator easily comparable. To design a hybrid code

6

(MPI+OpenMP) with load-balancing mechanism should be straightforward
once the performance of the host and the Phi node are well understood.
To compile the code for running on the host (instead of the coprocessor),
simply comment out the line with the #pragma offload compiler directive
from Algorithm 1.

Algorithm 1 Pseudo-algorithm for microlensing ray-tracing. Pragmas for
OpenMP and Xeon Phi offloading is colored.

#pragma offload target(mic) ⊲ Offload to Xeon Phi Coprocessor
#pragma omp parallel for collapse(2) ⊲ OpenMP parallelization
for j = 0 : n rays y − 1 do

for i = 0 : n rays x− 1 do

evaluate the image angle θi,j

αi,j = α0(θi,j ; κ, γ) ⊲ The first term in Equation (3)
#pragma simd ⊲ SIMD vectorization for Xeon Phi
for k = 0 : N∗ − 1 do

αi,j += αk(θi,j, θk) ⊲ αk the bending angle by k-th star
end for

βi,j = θi,j −αi,j ⊲ βi,j the source angle
convert βi,j into pixel coordinates (is, js)
if (is, js) in the source window then

#pragma omp atomic
mag[js, is] += 1 ⊲ mag[·, ·] the 2D magnification pattern

end if

end for

end for

In order to compare the performance of Intel’s Xeon Phi with NVIDIA’s
GPU accelerator, we created a GPU version of the microlesing code using
the programming language CUDA. The algorithm is essentially the same as
Algorithm 1, except that the two outer for loops are now peeled off from
the code, a CUDA kernel function is created for the inner-most for loop, the
kernel is invoked with a 2D grid of blocks, each block with a 2D thread struc-
ture [for basics of the CUDA programming model, please refer to Cheng et al.
(2014)]. For the current work, programing the CUDA GPU code is slightly
more complicated than programming the Phi code, mainly because CUDA
requires the user to explicitly handle the data transfer between the host and
the accelerator. For example, the input data for the microlensing ray-tracing

7

(such as the data structure storing the random star field) is generated on
the host, and must be explicitly allocated and copied from the host to the
accelerator. After the computation on the GPU accelerator is finished, the
magnification map data must be copied from the accelerator back to the
host, and then deallocated from the accelerator’s memory space. Since the
Xeon Phi supports a general programming model with multiple program-
ming languages (Fortran, C/C++, etc.), the majority of the offloading and
data management is done automatically (implicitly) by the compiler. For
example, specifying the #pragma offload out(mag:length(size)) directive will
inform the compiler to create code copying the magnification map data ar-
ray “mag[size]” back to the host after the Phi coprocessor has finished the
computation.

As a summary, both the Xeon Phi (KNC) and the GPU version of the
microlensing simulation run in the “offload” mode, i.e., the input data (e.g.,
the random star field) is generated on the host, then copied to the copro-
cessor/accelerator implicitly/explicitly. All computations, i.e., Equation (3),
are done on the coprocessor or accelerator, and in the end the data is copied
back to the host. To run the microlensing simulation in the “offload” mode is
justified by the fact that the amount of data movement between the host and
coprocessor/accelerator is minimal, and the computing time is much longer
than the communication overhead. For example, a large integer magnifica-
tion matrix of dimension 104 × 104 is only 0.4 GB, copying this data to the
host through PCIe 2.0 bus takes less than 1 second, and this data movement
needs to be done only once. This overhead is negligible compared to the
microlensing simulation, which can take many hours.

2.3. Experiment of performance comparison

Our experiment is designed as the following: First, we created two sep-
arate programs using the Algorithm 1: an OpenMP code written in C
which can run either solely on the host node, or run on the Xeon Phi under
the offload mode, and a CUDA version for the NVIDIA GPUs. We run the
OpenMP and CUDA codes on the host, host+Xeon Phi, and host+GPU, to
generate a large microlensing magnification map using exactly the same set
of input parameters. The three types of runs produce the same magnification
map (i.e., the integer image matrices counting the number of rays collected
for each pixel are exactly the same). We next compare the multi-threading
performance of the host node and the Xeon Phi with and without vector
support. We use the run time of the single-thread (serial) host computer

8

code without vector support as the baseline. The speedup obtained by turn-
ing on multi-threading and/or vector support is defined to be the quotient
of the longer baseline run time by the shorter parallel run time. We next
compare the performances across the host node, Xeon Phi, and the GPU. For
this comparison we use the best performance of each code. For example, the
Xeon Phi code performs the best when the vector support is turned on and
when we overload each MIC core with multiple threads. We use the best case
for the SB host node (16 threads with vector support) as the baseline. The
speedup by Xeon Phi or GPU is defined in a similar way. We compare the
performance of Xeon Phi with NVDIA GPU using two generations of each
product, i.e., KNC (2013) and KNL (2016) for the Xeon Phi, Fermi (compute
capability 2.0) and Kepler (compute capability 3.5) for the NVIDIA GPUs.

3. Results

Figure 1 shows a simulated microlensing magnification pattern by a ran-
dom star field with mean lens mass 〈M∗〉 = 0.3M⊙, surface mass densi-
ties κc = 0.4 (smooth mass), κ∗ = 0.2, and external shear γ = (0.2, 0).
For simplicity, we have assumed a log-uniform lens mass distribution with
0.01M⊙ < M < 1.6M⊙. The image size is about 12θE × 12θE where θE is
the Einstein ring angle of the mean lens mass 〈M∗〉. Such a choice of param-
eters is typical for probing the AGN X-ray emission size using gravitational
microlensing techniques (Chen et al., 2013; Chen, 2015). The diamond-like
curves are caustics where the lensing magnification diverges for point sources.
The host computer node, Xeon Phi coprocessor, and GPU accelerator pro-
duce exactly the same magnification map.

The parallel speedup via OpenMP multi-threading on the SB host node
and on the Xeon Phi coprocessor KNC is shown in Figure 2. We also tested
the performance of the microlensing code on the latest release (July 2016)
of Xeon Phi, KNL. In Figure 2, the blue, red, and magenta curves show the
speedup via multi-threading for the SB, KNC, and KNL, respectively. The
solid lines show the results with Single Instruction Multiple Data (SIMD)
vectorization turned on, whereas the dashed curves show the performance
without vector support (see Algorithm 1). Turning on the vector support
for the host produces a ∼1.9 speedup, whereas a vectorization speedup of
∼5.8 and ∼4.5 is achieved for KNC and KNL, respectively. Being able to
vectorize the code is more critical for the coprocessor than for the processor,
given that the vector registers on the Phi are 512 bits wide (8 double precision

9

Figure 1: A gravitational microlensing magnification map generated by the parallel ray-
tracing code. We have assumed a random star field with mean lens mass 〈M∗〉 = 0.3M⊙,
surface mass densities κc = 0.4, κ∗ = 0.2, and external shear γ = (0.2, 0). The image is
of high resolution 6400× 6400 and size about 12θE × 12θE where θE is the Einstein ring
angle of a lens of mass 〈M∗〉. The host computer node, Xeon Phi coprocessor, and GPU
accelerator produce exactly the same magnification map.

10

100 101 102

threads

100

101

102

sp
ee
d
u
p

scalability (Sandy Bridge vs Xeon Phi)

KNL (68 cores)
KNL (-no-vec)
KNC (61 cores)
KNC (-no-vec)
SB (16 cores)
SB (-no-vec)

Figure 2: Scalability of the Xeon Phi coprocessor. The coprocessor KNL has 68 cores,
KNC has 61 cores, and the host SB node has 16 cores. The magenta, red, and blue curves
show the speedup via multi-threading for the KNL, KNC, and SB, respectively. The solid
and dashed curves show the results with and without vector support, respectively. There is
no performance gain when overloading each host core with 2 threads. For the coprocessor,
the maximum performance is achieved when each core runs 4 threads. Turning on the
vector support for the host produces a ∼1.9 speed up, whereas a vectorization speedup of
∼5.8 and ∼4.5 is achieved for the KNC and KNL, respectively. The speedup of KNC (61
cores, 240 threads) and KNL (68 cores, 272 threads) with respect to the SB host (16 cores,
16 threads) is about 2.04 and 11.84, respectively (all with vector support turned on).

11

floating point numbers), whereas the host processors have only 256 bit vector
registers. However, note that the 61 MIC cores in the coprocessor KNC have
much simpler architecture than the host cores. For example, the coprocessor
cores have in-order architecture, whereas the host cores have out-of-order ar-
chitecture (Patterson & Hennessy, 2011), and are running with a lower clock
rate (1.1 GHz vs 2.6 GHz, see Table 1). To hide the instruction latency for
this simple (but still pipelined) MIC architecture, multi-threading is explic-
itly required for the Phi coprocessor (if each core runs only one thread, then
half of the instruction cycles will be wasted because instructions from the
same thread can not be scheduled back to back in the pipeline). As can be
seen from Figure 2, the best Phi performance is achieved when each core
has 4 threads. On the other hand, overloading the 16 host cores with 32
threads does not produce any performance gain. As a whole, the speedup of
the 61-core KNC with respect to a 16-core SB node is about 2.04 (the 240
threads Phi vs the 16 threads host; both with vector support turned on). A
speedup of order ∼2 is quite normal when comparing the KNC and SB peak
performance (Jeffers & Reinders, 2013). The speedup by the KNL is about
11.84 with respect to the host processor.

Having scaled (through multi-threading) and vectorized the microlensing
code for the Xeon Phi, we can now compare the performance of the Intel
Xeon Phi and the NVIDIA GPU. NVIDIA has released several generations
of the GPUs, i.e., from Tesla to Fermi, Kepler, Maxwell, and Pascal. We first
compare the performance of the KNC (the first release of Xeon Phi by Intel
in 2013) with the Tesla M2050 (an early version of NVIDIA GPU released in
2010 with the Fermi architecture), and find that the performance of KNC is
about the same as Tesla M2050 (compute capability 2.0) for the microlensing
simulation. For an example, the same simulation configuration for Figure 1
takes the KNC coprocessor 7,361 seconds, the Tesla 7,640 seconds, and the
SB host 15,043 seconds. However, running the same CUDA code on the
Kepler GPU (K20, with compute capability 3.5) takes 3,669 seconds, which
is twice as fast as KNC. The performance of the KNL is about 5.8 times
better than the KNC, and about 2.9 times better than the Kepler GPU used
in this work, see Figure 3.

4. Discussion

In this paper we have shown that gravitational microlensing simulations
can be significantly accelerated using the Xeon Phi coprocessor (Figure 2).

12

SB KNC KNL FERMI KEPLER
0

2

4

6

8

10

12
sp

ee
d
u
p

Xeon Phi VS GPU
(baseline: 16-core Sandy Bridge)

1.0

2.04

11.84

1.97

4.1

Figure 3: Performance of Xeon Phi versus GPU. The best performance of the SB host
node is used as the baseline. The KNL (68 cores) is ∼5.8 times faster than the KNC (61
cores), and ∼2.9 times faster than Kepler GPU (K20) for the microlensing simulation.

We compared the performance of the Xeon Phi coprocessor with the NVIDIA
GPU (Figure 3). We have focused on the KNC coprocessor, instead of the
very recently released KNL, given that KNC is currently more commonly
available than the KNL, and that KNC as a coprocessor very much resem-
bles GPU as an accelerator. Realizing essentially the same algorithm on Xeon
Phi and GPU makes the comparison between the two hardware accelerators
a fair one. Programming for KNL is easier than for KNC, because KNL can
run parallel code as a host (not as a coprocessor) and there is no need to of-
fload code/data from a host (e.g., a SB node) to the Phi (co)processor. Many
legacy code need only be recompiled for the MIC architecture to run on the
KNL (and future generations of Xeon Phi), and there is no need to rewrite
the source code. For the example presented in this work we have found that
the performance of the KNC is comparable to that of the Fermi family of
GPUs, but not as good as modern GPUs such as the Kepler. However, the
second generation Xeon Phi, KNL, is about 3 times faster than the Kepler
GPU (K20, compute capability 3.5) used in this work. Better performance
is expected for future releases of the Xeon Phi. We did not compare the

13

performance of the Xeon Phi with GPUs more modern than the Kepler fam-
ily, such as the Maxwell (compute capability 5.x), and the Pascal (compute
capability 6.x). Given the significant performance gain when shifting from
Fermi to Kepler (see Figure 3), we expect the performance of the Maxwell
and Pascal will be better than the Kepler. In particular, it would be interest-
ing to see how the recently invented technologies, such as the NVLink high
speed communications protocol, can boost the performance of microlensing
simulations.

The performance gain obtained from the Xeon Phi coprocessor (e.g., the
KNC is about 2 times faster than a 16 core SB node) is typical according to
many benchmark examples provided by the Intel (Jeffers & Reinders, 2013).
But the relative performance between the Xeon Phi and the GPU should
depend on both the algorithms used and the specific region of the parameter
space explored. The dependence of a GPU microlensing code’s performance
on the parameter space has been investigated previously (Thompson et al.,
2009; Bate et al., 2010). For example, Thompson et al. (2009) first studied
the GPU speedup as a function of the number of stars (from ∼10 to 108),
and Bate et al. (2010) further investigated the GPU performance variation
with respect to the external shear and the smooth matter fraction, etc. In
the current work we have chosen a relatively simple algorithm and paral-
lelizing strategy which can be easily adapted to a multi-core CPU, a Xeon
Phi coprocessor, and a GPU. We have run the simulation assuming a set of
parameters which is typical for probing the AGN emission sizes in different
wavelengths, in particular, the high energy X-ray band, using the microlens-
ing techniques (Chen et al., 2013; Chen, 2015). This does not mean that
the algorithm used in this work is necessarily optimal for either Xeon Phi
or GPU, or the numbers reported in this work comparing Xeon Phi with
GPU (e.g., the KNL is about 3 times faster than K20) will remain valid for
the whole parameter space. Even for a simple brute force microlensing code,
different parallelizing strategy can be applied depending on the hardware
used and the region of the parameter space explored. For example, in the
current work the bending angle at one image position by all microlenses are
computed by a single thread for both the Xeon Phi and the GPU (i.e., a
CUDA device function for the GPU). This is reasonable for the case pre-
sented in this paper where we need very high resolution magnification maps
to resolve compact AGN X-ray coronae (a few rg of the central supermas-
sive black hole) which requires many rays to be traced, but the number of
stars needed for the simulation is only modest, e.g, from a few hundred to

14

∼104. But for cases with a very large number of microlenses, say, of order
109, as is needed for some cosmological microlensing simulations, packaging
the computation of the bending angle by billions of microlenses into a single
thread is probably not a good choice for GPUs, given that a modern GPU
like K20 can spawn millions of threads, in constant to Xeon Phi which runs
with only a few hundred threads. For such cases, more flexible parallelizing
strategy should be used, e.g., the bending angle by billions of stars could be
split between multiple threads, the star field data could be loaded from the
host memory to device memory in multiple batches, or even be split among
multiple GPUs. A full exploration of such possibilities is beyond the scope of
this work, and interested readers should refer to Thompson et al. (2009) and
Bate et al. (2010) for alternative GPU microlensing algorithms and for more
discussion about the dependence of the GPU performance on the parameter
space explored.

Besides gravitational microlensing, there are other computational astro-
physics calculations which the Xeon Phi coprocessor can significantly speed
up. One example is the Kerr black hole ray-tracing (Schnittman & Bertschinger,
2004; Dexter & Agol, 2009; Kuchelmeister et al., 2012; Chan et al., 2013;
Chen et al., 2013; Chen, 2015; Dexter, 2016). Generating the image of an
accretion disk strongly lensed by a central black hole using backward ray-
tracing is an embarrassingly parallel computational problem, and it does not
involve large data transfer or many memory operations. Consequently, the
Xeon Phi might perform very well. Another good candidate is Monte Carlo
radiation transfer (Schnittman & Krolik, 2013) which is also highly parallel
in nature. How much the performance of these simulations can be improved
by using the Xeon Phi is a question for future work. Given that future re-
leases of the Xeon Phi have been already scheduled (e.g., Knights Hill and
Knights Mill in 2017+) and will be deployed in several large national labs
(for example, the KNC is already available at the “Stampede Cluster” at
the Texas Advanced Computing Center, the KNL is being tested and will
be deployed for Phase II of the supercomputer “Cori” at the NERSC, and
the Knights Hill will be deployed for the supercomputer “Aurora” at the
Argonne National Lab), it is important for astronomers and astrophysicists
to be aware of such computing possibilities offered by the Xeon Phi. We
conclude that the Xeon Phi is a very promising alternative to GPUs for high
performance astronomical simulations.

15

5. Acknowledgements

The majority of the simulation was performed on the HPC cluster at
the Research Computer Center at the Florida State Univ. This research
used resources of the National Energy Research Scientific Computing Center
(NERSC), which is supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231. The authors acknowl-
edge the Texas Advanced Computing Center (TACC) at The University of
Texas at Austin for providing HPC resources that have contributed to the
research results reported within this paper. B. C. thanks Prasad Maddumage
and Edson Manners for discussions about Xeon Phi and GPU. The authors
thank the anonymous referee for a careful review of this work.

References

Abell, P. A., Allison J., Anderson, S. F., et al. LSST Science Book, Version
2.0, arXiv:0912.0201

Barnes, J., & Hut, P. 1986, Nature, 324, 446

Bate, N. F., Fluke, C. J., Barsdell, B. R., Garsden, H., Lewis, G. F. 2010,
NewA, 15, 726

Blackburne, J. A., Kochanek, C. S., Chen, B., Dai, X., Chartas, G. 2014,
ApJ, 789, 125

Blackburne, J. A., Kochanek, C. S., Chen, B., Dai, X., Chartas, G. 2015,
ApJ, 798, 95

Chartas, G., Kochanek, C. S., Dai, X., Poindexter, S., & Garmire, G. 2009,
ApJ, 693, 174

Chan, C.-K., Psaltis, D., & Özel, F. 2013, ApJ, 777, 1

Chen, B., Dai, X., Kochanek, C. S., et al. 2011, ApJL, 740, L34

Chen, B., Dai, X., Kochanek, C. S., et al. 2012, ApJ, 755, 24

Chen, B., Dai, X., Baron, E. 2013, ApJ, 762, 122

Chen, B. 2015, Sci. Rep. 5, 16860

16

http://arxiv.org/abs/0912.0201

Cheng, J., Grossman, M., & McKercher, T., Professional CUDA C Program-
ming, (John Wiley & Sons, Inc., Indianapolis, 2014)

Dai, X., C. S. Kochanek, C. S., Chartas, G., et al. 2010, ApJ, 709, 278

Dexter, J., & Agol, E. 2009, ApJ, 696, 1616

Dexter, J. 2016, MNRAS, 462, 115

Guerras, E., Dai, X., Steele, S., et al. 2017, ApJ, 836, 206

Irwin, M. J., Webster, R. L., Hewett, P. C., Corrigan, R. T., & Jedrzejewski,
R. I. 1989, AJ, 98, 1989

Jeffers, J., & Reinders, J. Intel Xeon Phi Coprocessor High Performance
Programming, (Morgan Kauffman, Waltham, 2013)

Kochanek, C. S. 2004, ApJ, 605, 58

Kuchelmeister, D., et al. 2012, CpPhC, 183, 2282

MacLeod C. L., Morgan, C., Mosquera, A., et al. 2015, ApJ, 806, 258

Mediavilla, E., Munõz, J. A., Falco, E., et al. 2009, ApJ, 706, 1451

Mediavilla, E., et al. 2011, ApJ, 741 42

Mao, S., & Scheider P. 1998, MNRAS, 295, 587

Morgan, C. W., Hainline, L. J., Chen, B., et al. 2012, ApJ, 756, 52

Mosquera A. M., Kochanek, C. S., Chen, B., et al. 2013, ApJ, 769, 53

Patterson, D. A., & Hennessy, J. L., Computer Architecture: A Quantitative
Approach, (Morgan Kaufmann, Waltham, 2011)

Pooley, D., Blackburne, J. A., Rappaport, S., Schechter, P. L., & Fong, W.-F.
2006, ApJ, 648, 67

Refsdal, S. 1964 MNRAS, 128, 295

Schneider, P., & Weiss, A. 1987, A&A, 171, 49

17

Schneider, P., Ehlers, J., & Falco, E. E., Gravitational Lenses, (Springer-
Verlag, Berlin, 1992)

Schnittman J. D., & Bertschinger, E. 2004, ApJ, 606, 1098

Schnittman, J. D. & Krolik, J. H. 2013, ApJ, 777, 11

Thompson, A. C., Fluke, C. J., Barnes, D. G., Barsdell, B. R. 2009, NewA,
15, 16

Vernardos, G., & Fluke, C. J. 2013, MNRAS, 434, 832

Vernardos, G., & Fluke, C. J., Bate, N. F., & Croton, D. 2014, ApJS, 211,
16

Vohl, D., Fluke, C. J., & Vernardos, G. 2015, A&C, 12, 200

Wambsganss, J. 1999, JCoAM, 109, 353

18

	1 Introduction
	2 Parallel microlensing simulation via the Xeon Phi
	2.1 An introduction to the Xeon Phi
	2.2 Parallel ray-tracing Algorithm
	2.3 Experiment of performance comparison

	3 Results
	4 Discussion
	5 Acknowledgements

