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ABSTRACT  Self-assembly of ensembles of supported 2D or 3D nanoclusters (NCs) by surface 
deposition, and of unsupported 3D NCs by solution-phase synthesis, produces intrinsically non-
equilibrium systems. Individual nanoclusters can have far-from-equilibrium shapes and 
composition profiles. The free energy of the ensemble can be lowered by coarsening which can 
involve Ostwald ripening or Smoluchowski ripening (NC diffusion and coalescence). 
Preservation of individual NC structure and inhibition of coarsening is key for, e.g., avoiding 
catalyst degradation. In this review, we focus on crystalline metallic NCs. Atomistic-level 
modeling of equilibration processes typically utilizes stochastic lattice-gas models to access 
appropriate time- and length-scales. However, predictive modeling requires incorporation of 
realistic rates for relaxation mechanisms, e.g., periphery diffusion and intermixing, in numerous 
local environments (rather than the use of generic prescriptions). Alternative coarse-grained 
modeling must also incorporate appropriate mechanisms and kinetics. At the level of individual 
NCs, we present analyses of reshaping, including sintering and pinch-off, and of compositional 
evolution. We also discuss modeling of coarsening including diffusion and decay of individual 
NCs, and unconventional coarsening processes. We describe high-level modeling integrated 
with STM studies for 2D epitaxial NCs, and developments in modeling for supported and 
unsupported 3D NCs motivated by in situ TEM studies. 
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1. INTRODUCTION 
 

Nanostructured materials, and specifically crystalline nanoclusters or ensembles 
thereof, can have unique and desirable properties relative to macroscale crystals.1,2 
However, these systems tend to be intrinsically unstable which can limit their utility for 
applications including catalysis, plasmonics, and energy storage and conversion. The 
lack of stability derives from two features. First, the synthesis process either in the 
solution-phase or by deposition onto surfaces can generate far-from-equilibrium 
nanoscale structures. For example, shapes or morphologies for individual metallic 
nanoclusters can deviate dramatically from the equilibrium forms (e.g., dendrites and 
diverse geometric growth shapes which are distinct from the equilibrium Wulff 
polyhedra), as can composition profiles (e.g., core-shell versus intermixed alloy 
structures).3-9 Second, the nanostructured nature of the system means that there is a 
high free energy cost associated with the large amount of interface area. Thus, there is 
a natural tendency for coarsening which has the effect of increasing the characteristic 
length scale, thereby reducing the overall interface area and thus reducing the excess 
free energy.10-15 For nanocluster ensembles, coarsening corresponds to increasing the 
mean size of the nanoclusters while reducing their number (or density). 

In this review, we focus on ensembles of metallic nanoclusters or nanocrystals 
(NCs) each of which has a defect-free crystalline structure. These systems are of 
particular relevance to catalysis for both single-component and multi-component (e.g., 
bimetallic) NCs.16-19 However, other prominent applications relate to plasmonics and 
related Surface Enhanced Raman Spectroscopy (SERS), nanomagnetism, etc. Thus, 
many concepts and issues considered in this review will have general applicability and 
interest. Three different subclasses of systems are considered: (i) 2D supported 
epitaxial metal NCs, where often the supporting substrate is a crystalline metal with little 
or no lattice-mismatch;7-9 (ii) 3D supported metal NCs where the substrate could be a 
crystalline metal, but is often non-metallic (including oxides, graphite, and 
graphene);18,20-22 both 2D and 3D supported NCs are typically formed by vapor 
deposition; (iii) 3D unsupported metal NCs generally formed by solution-phase 
nanosynthesis from metal-containing precursors in the presence of capping agents 
which guide crystal growth and inhibit aggregation.3,15  

Our presentation will include extensive discussion of 2D epitaxial metal NCs for 
the following reasons. First, detailed experimental data, particularly from Scanning 
Tunneling Microscopy (STM) studies from as early as the late 1980’s, is available for 
NC formation and subsequent evolution under well-controlled ultra-high-vacuum (UHV) 
conditions.7-9,13,14 To develop a reliable understanding of fundamental behavior, the 
UHV environment is important since even trace amounts of impurities can dramatically 
impact NC formation and evolution. Second, high-fidelity modeling,8,9,14 including 
predictive atomistic-level models based on ab-initio energetics for both thermodynamics 
and kinetics,23-27 is most advanced for these systems. Various insights from this close 
integration of experimental and high-level theoretical studies should carry over to other 
systems, particularly 3D supported and unsupported NCs, where the same level of 
understanding and predictive modeling capability has yet to be achieved.  

Actually, there exists extensive historical analysis of 3D supported NCs originally 
driven by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy 
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(TEM) experiments since the 1960’s, the availability of which long predated STM.20 
Here, primarily coarse-grained modeling and theory was implemented, which did not 
capture atomistic-level details of the relevant kinetics. There has been extensive interest 
in characterizing coarsening kinetics for these 3D supported NC system motivated in 
part by the challenge of mitigating catalyst degradation.18,28-30 Finally, there have been 
immense advances since the 1990’s in the capabilities of solution-phase synthesis to 
enable control of NC shape and composition profiles.3 Also more recently, in-situ liquid-
cell TEM is providing detailed insights into NC dynamics.31-36 However, the view is still 
expressed that the field is more of an art than a science.3 We should note that there 
exists extensive rate equation and related modeling for solution-phase NC formation 
and coarsening15,37-39 with recent interest in unconventional pathways.40-44 Also, coarse-
grained modeling of growth shapes has been developed.5,45,46 Higher-level realistic 
atomistic modeling with predictive capability is currently limited, although recent efforts 
have produced significant advances.47-51   

The goal of this review is to highlight advances and remaining challenges with a 
focus on stochastic atomistic-level modeling, but also describing coarse-grained 
modeling. One aim is also to illustrate the insights that have been gained by close 
integration of such modeling efforts with experimental microscopy studies. We will 
emphasize the importance of a realistic and precise atomistic-level treatment of the 
relevant local environment-dependent kinetics in stochastic lattice-gas modeling, as this 
is essential for a predictive description of evolution far-from-equilibrium.9,25 Such 
treatment necessarily incorporates a correspondingly precise treatment of system 
thermodynamics through detailed-balance constraints. This requirement for reliable 
kinetics applies both to the evolution of the structure (shape and composition profiles) of 
individual NCs, and also to the selection of the overall coarsening pathway for NC 
ensembles. Common generic Metropolis-type or bond-counting-type Initial Value 
Approximation (IVA) prescriptions of kinetics in atomistic-level modeling52,53 do evolve to 
correct equilibrium, given that detailed-balance is satisfied. However, they do not 
generally capture correct nanoscale evolution or mesoscale coarsening pathways. 

Extensive focus will be on behavior at the level of individual NC’s, and in the 
context we will review the current capabilities of predictive modeling for: reshaping of 
NCs synthesized with far-from-equilibrium shapes; the coalescence or sintering of pairs 
of NCs upon collision; and also the diffusion for supported NCs. In addition, for 
multicomponent NC’s, we describe the current status of analysis of compositional 
evolution. These studies assess, e.g., the stability of core-ring or core-shell structures 
against intermixing, and also to explore issues related to more complicated nanoscale 
Kirkendall voiding.54,55 At the ensemble level, we review classic treatments of Ostwald 
ripening and Smoluchowski ripening (cluster diffusion and coalescence),10-12,14 but still 
with a focus on the evolution of individual NCs. Also, we describe recent observations 
“anomalous” Ostwald ripening with non-equilibrated shapes of individual NCs in contrast 
to the classical theory.56,57 We also describe examples of dramatic additive-enhanced 
ripening where mass transport is facilitated by metal-additive complex formation, a 
process long speculated to facilitate degradation of supported NC catalysts.58,59 
 In Sec.2, we provide a brief synopsis of key aspects of the synthesis via self-
assembly of metallic NCs and their subsequent evolution and coarsening. This 
discussion covers both 2D and 3D supported NCs, as well as unsupported solution-
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phase NCs. Detail understanding and theoretical description of these systems is 
provided by stochastic atomistic-level modeling as described in Sec.3. As noted above, 
a key requirement is the realistic description of system kinetics as well as 
thermodynamics. In Sec.5, we describe coarse-grained continuum modeling which 
provide a complementary strategy and additional insight to atomistic-level modeling. 
Continuum formulations are also traditional applied to describe coarsening, particularly 
Ostwald ripening. The remainder of the review focuses on examples from a diversity of 
specific systems of post-synthesis evolution of metallic NCs with most emphasis on 
behavior for individual NCs. In Sec.5, we describe shape evolution for single-component 
epitaxial NCs, and in Sec.6 describe corresponding evolution for both supported and 
unsupported 3D NCs. Here shape evolution includes equilibration of NCs with simple 
convex geometric initial shapes, sintering or coalescence of pairs of NCs, and pinch-off 
of elongated nanorod NCs. Compositional evolution in multicomponent (typically 
bimetallic) NCs is described in Sec.7 including behavior associated with the Kirkendall 
effect. Diffusion of supported NCs underlying Smoluchowski Ripening, and decay of 
individual NCs associated with Ostwald Ripening, are described in Sec.8. A summary is 
provided in Sec.9. 
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2. SYNOPSIS OF SELF-ASSEMBLY AND COARSENING FOR 
METALLIC NC SYSTEMS 
 
This section provides an overview of key concepts and phenomena without the 
inclusion of extensive theoretical or mathematical formalism. A more detailed technical 
formulation is provided in Sec.3 and Sec.4, and also in later sections. 
 
2.1. Basics of NC self-assembly  
 
There are two key ingredients generally operative for the formation of nanocluster (NC) 
ensembles:60 (i) presence of mobile species which facilitates aggregation; and (ii) some 
degree of relaxation of species within the aggregated state, a process which plays a 
critical role in determining the structure of individual NCs. As eluded to by the first 
requirement, two standard scenarios for self-assembly are: (a) deposition on flat single-
crystal surfaces; (b) solution-phase synthesis, both of which will be considered in this 
review. In general, one anticipates non-equilibrium or even far-from-equilibrium 
structures of individual NCs will be manifested if the characteristic time scale for growth 
(i.e., for aggregation and incorporation of species) is shorter than the characteristic time 
for relaxation within the NC (by periphery diffusion, detachment-reattachment, etc.) 

Another generic characterization of types of classes of aggregation phenomena 
relates to the detailed nature of transport to and the ease of attachment to or 
incorporation into the growing cluster. First, consider the extreme case where there is 
no relaxation upon aggregation, which is illustrated in Figure 1. If transport to the cluster 
is diffusion-limited, and if there is no barrier to attachment or incorporation, then one 
obtains so-called Witten-Sander or Diffusion-Limited Aggregation (DLA) clusters.61,62 

These have irregular fractal structure (Haussdorff-Besicovitch dimension df  1.71 in 2D, 
and df = 1.9 in 3D) reflecting a Mullins-Sekerka type shape instability associated with 
preferential attachment at protrusions. On the other hand, if attachment or incorporation 
is strongly inhibited (so-called attachment- or interface- or reaction-limited growth), then 
the details of transport to the cluster are not so relevant, and in the simplest picture 
attachment occurs at essential random locations on the cluster periphery. The resulting 
so-called Eden clusters63 are compact and nearly (but not exactly) rotationally 
symmetric in the large size regime, i.e., circular in 2D or spherical in 3D.62 However, on 
a length scale smaller than the radius, the cluster periphery is kinetically roughened with 
detailed features such as local spatial correlations described by Kardar-Parisi-Zhang 
theory.62,64  
 

 
 

Figure 1. Schematics of the structure of 2D clusters formed by aggregation without relaxation. 
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It should be emphasized, however, that neither true DLA nor true Eden clusters 

are typically observed in experimental realizations of NC formation. There is invariably 
some degree of relaxation of aggregated species on the time scale of growth. For DLA-
type processes, even with limited relaxation, the spindly “arms” of Witten-Sander 
clusters (the width of which is on the order of a few atoms) are thickened.8,65-67 In 
addition, these clusters can adopt and overall dendritic structure or even compact 
structure reflecting a combination of relaxation kinetics and equilibrium structure8,9.  
Similarly, but perhaps less dramatically, relaxation would impact compact Eden type 
cluster growth. However, for attachment-limited growth, in general different surface 
orientations or facets will be associated with different attachment rates, thereby 
producing compact non-spherical and often kinetically faceted non-equilibrium growth 
shapes. Various possible regular and irregular growth shapes are shown for 2D 
epitaxial metal islands in Figure 28,23,57,68 and various kinetically faceted growth shapes 
for unsupported 3D crystalline NCs are shown in Figure 3. Of course, if relaxation is 
sufficiently facile, then at least close to equilibrium Wulff shapes or their analogues for 
supported NCs5,69,70 would be achieved during growth for either diffusion-limited or 
attachment-limited growth.  
 

 
 
Figure 2. Illustrations of growth shapes of 2D epitaxial NCs. Insets in the left three frames show 
the equilibrium shapes. The equilibrium aspect ratio for Ag/Ag(110) is Req = 3. Reprinted with 
permission from Ref.s [(a)68, (b)8, (c)23, (d)57]. Copyright 2005 (a) 2013 (d) American Physical 
Society; 2004 Springer Verlag; 2011 American Institute of Physics. 
 

The above focuses on NC shape which is of primary interest for single-
component NCs. Additional challenges and opportunities arise for multi-component 
NCs. One can synthesize core-shell structures, or more complex layered onion-like 
structures, by sequential or alternating deposition of different components for the case 
of supported NCs, or by sequential or alternating introduction of metal precursors for 
solution-phase synthesis. Perhaps surprisingly, there are relatively few examples 
available for 2D epitaxial core-ring structures (i.e., the analogue of core-shell structures 
in 3D) formed by deposition, although at least for some systems STM imaging can 
provide a detailed characterization of these features.71-73 For 3D supported NCs formed 
by deposition, there have been several studies of sequential codeposition,74-78 but there 
is a lack of high-resolution imaging characterizing of core-shell structure. For solution-
phase synthesis of core-shell and onion-like structures, high-fidelity control of such 
processes has now been developed, and there is extensive TEM and EDX imaging 
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providing detailed characterization of the resulting structures.79-82 Often the synthesized 
core-shell structure will not correspond to the equilibrium NC structure, which might 
instead be an intermixed alloy or intermetallic structure. Thus, post-synthesis evolution 
will involve intermixing on a time scale reflecting the relevant intermixing mechanism 
and kinetics. This opens the possibility for more exotic behavior such as a nanoscale 
version of Kirkendall voiding,54,55 as will also be discussed in the following sections. 
 

 
 

Figure 3 Kinetically faceted growth shapes for 3D unsupported crystalline NC3. Facet color 
scheme: orange = {111}, green = {100}, purple = {110}. Reprinted with permission from Ref.3. 
Copyright 2009 Wiley-VCH. 

 
We emphasize that the focus of this review is not on growth, but rather on post-

assembly or post-synthesis evolution, which can also be characterized as an analysis of 
the stability (or lack of stability) of synthesized non-equilibrium NC ensembles. This 
presentation will include description equilibration processes both at the level of 
individual NCs (reshaping, compositional evolution), and at the ensemble-level 
(coarsening via OR or SR).  
 
2.2. Self-assembly 2D and 3D supported NCs via surface deposition 
 
A schematic for the formation of supported NC by deposition is shown in Figure 4 for 
the case of 2D epitaxial NCs on a fcc(100) or bcc(100) surface with square symmetry. 
Specifically, Figure 4 illustrates the case of sequential co-deposition resulting in a core-
ring or core-shell NC. The basic features are: random deposition on the surface; facile 
diffusion of deposited species; nucleation of NCs when a sufficient number of diffusing 
species meet; and growth of nucleated NCs by incorporation of subsequently deposited 
species. The latter involves shape relaxation of NCs by periphery diffusion of 
aggregated atoms and possible detachment-reattachment. These are also the 
ingredients for the formation of 3D supported NCs.  
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Figure 4. Schematic of NC nucleation and growth by (co-)deposition on a metal (100) surface. 

 
2.2.1 Ensemble-level features. First, here we describe ensemble-level features 

of NC self-assembly during deposition. In the commonly adopted far-from-equilibrium 
picture, there exists a well-defined critical size, i, such that islands of greater than i 
atoms are regarded as being stable. Subcritical NCs of size i and below are regarded as 
being in a quasi-equilibrium with adatoms, and supercritical NCs with size above i 
effectively grow irreversibly.9,83 As a consequence, in this picture, we effectively assume 
a separation of time scales between NC formation and post-synthesis evolution. We 
emphasize that for metallic systems at temperatures around room temperature or 
below, the critical size is often small including the case i = 1 corresponding to 
irreversible NC formation nucleated when a pair of adatoms meet and involving 
irreversible incorporation of subsequent adatoms. In some sense, for i = 1, the deviation 
from equilibrium is most extreme. 

Mean-field rate equation treatments dating from late 1960’s83,84 which are based 
on this picture correctly predict the mean island density, Pisl, for surface deposition as a 
function of control parameters (deposition rate, F, and surface temperature, T, and 

coverage, ) and system parameters including critical size, i. More sophisticated rate 
equation formulations determine “capture numbers” which control NC growth rates in a 
self-consistent fashion by solving the deposition-diffusion equation for aggregation with 
a single stable island in an appropriately described effective medium of other 
islands.84,85 This analysis incorporates the feature that the adatom density vanishes 
approaching the periphery of the island which is a trap for deposited atoms. This in turn 
implies that islands are less likely to nucleate, and thus less likely to be found close to 
other islands, i.e., the island distribution is non-random. However, even these self-
consistent MF treatments fail to describe more detailed features such as the NC size 
distribution.9,86,87 

The failure of MF treatments to predict the NC size distribution reflects the 
feature that the local environment of islands is not independent of their size (as 
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assumed in the effective medium picture). Specifically, there is a correlation between 
NC size and separation, larger NCs being further separated from the neighboring 
islands.9,88 This feature is best illustrated by the introducing the concept of capture 
zones (CZs) where these are constructed by tessellating the entire surface into cells or 
CZs, one per island.83,88-90 The basic idea is that deposited atoms tend to aggregate 
with the island associated with the CZ into which they were deposited. See Figure 5. 
Except for a very short initial transient regime, the system is in a quasi-steady state in 
the sense that there is a rough balance between the gain in adatom density due to 
deposition and the loss due primarily to aggregation with islands. Thus, CZ areas 
multiplied by the deposition flux determine NC growth rates, and thus CZ areas are 
essentially equivalent to the capture numbers mentioned above. CZ’s can be 
reasonably be described by modified Voronoi cells constructed based on distance to the 
edge rather than the center of the islands.91,92 Exact construction involves solving a 
boundary value problems for the deposition-diffusion equation for the complete 
distribution of islands.71,91,92 Specifically, CZ’s correspond to collections of deposition 
points for which following the surface diffusion flux lines leads to the same island. 
However, the key point is that larger NCs tend to have larger CZs, so the environment 
of a NC is strongly dependent on its size, and this feature controls the NC size 
distribution.88 
 

 
 
Figure 5. Stochastic geometry representation of the nucleation and growth process for 2D 
epitaxial NCs formed during deposition. 

 
Two additional observations should be made regarding NC nucleation9,93,94. 

During a short transient regime at the onset of deposition, the adatom density grows 
uniformly until it reaches a sufficient magnitude where islands start nucleate at 
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essentially random positions. Depletion zones (in which the adatom density is reduced 
due to capture at NC peripheries) grow quickly about these NCs, colliding with each 
other and soon covering the surface. It is at this point, the steady-state regime emerges 
and one regards the entire surface as tessellated into CZs surrounding islands.  It 
should also be emphasized that nucleation of new islands persists (and is generally 
dominant) in the steady-state regime, but now most nucleation occurs away from NCs 
along the CZ boundaries where the adatom density tends to be maximized. See again 
Figure 5.  

An exact analysis at the ensemble-level of the NC formation process is not 
available. However, the most fundamental and comprehensive analyses should 
simultaneously consider both NC sizes and CZ area distributions.95-98 Finally, we remark 
that subsequent post-deposition coarsening of the NC ensemble will reflect not just the 
island size distribution at the end of deposition, but also more detailed correlations 
between nearby island sizes and between size and separation.  
 

2.2.2. Individual NC structure. As noted in Sec.2.1, facile relaxation on the time 
scale of growth lead to equilibrium shapes. For 2D epitaxial NCs, these shapes are 
determined by a 2D version of the Wulff construction where the input is the orientation-
dependent (free) energy of steps bordering these NCs.69 We note the existence of exact 
analysis of step energy at finite temperature for simple Ising-like models with NN lateral 
interactions.99 There are no true facets for 2D shapes, no matter how large. However, 
step edges can be effectively faceted in the low temperature regime where the mean 
separation between thermally-generated kinks exceeds the characteristic linear size. 
For 3D supported NCs, the equilibrium shape is determined by a so-called 
Winterbottom modification to the traditional 3D Wulff construction.5,70,100 This 
construction not only involves the orientation-dependent surface (free) energy, which 
tends to have local minima for low-index facets, but it also accounts for the adhesion 
energy of the cluster to the substrate. A supported NC has the same shape as the 
unsupported case, except that a portion of the NC adjacent to the supporting facet is 
removed, the extent of this removed portion increasing with the adhesion energy. See 
Figure 6. For the case of isotropic surface energy, this construction recovers the Young-
Dupre equation prescribing the contact angle for the truncated spherical cluster. 

With regard to deviations from equilibrium shape and structure, we first quantify 
the time scale for the growth of individual NCs. As noted above, after the short transient 
regime, the rate of growth of any NC is determined by the associated CZ area multiplied 
by deposition flux, F.  Since the mean CZ area is given by ACZ = 1/Pisl, it follows that the 
mean NC growth rate is given by KG = F/Pisl. Correspondingly, the mean time between 

aggregation events is given by G = 1/KG = Pisl/F. This characteristic growth time should 

be compared with the mean time scale for relaxation, R, to determine the extent of 

equilibration during growth. Of course, R depends on the mechanism of relaxation. For 
most of our studies, we will consider relaxation mediated by periphery diffusion (PD). If 
DPD denotes the effective periphery diffusion rate, and Lc denotes the characteristic 
linear dimension of the NC, then the characteristic relaxation time should correspond to 
the typical time to diffusion around the NC. According to Einstein’s relation, this implies 

that9,66 (Lc)2 = DPD R. Thus, shape relaxation is facile (inhibited) for R << G (G << R). 
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Figure 6. Equilibrium shapes of supported crystalline NCs. A denotes the surface energy of the 

NC material A, and  denotes the adhesion energy between A and the substrate B. For isotropic 

surface energy, the Young-Dupre equation becomes A cos  =  - A where  is the contact 

angle to the substrate  = 0 () for complete wetting (no adhesion). Often behavior is cast in 

terms of an A-B interface energy defined as * = A + B - . Reprinted with permission from 
Ref.20. Copyright 1979 North Holland. 

 
In fact, shape relaxation mediated by PD can be significantly more complex than 

suggested by the above. For 2D epitaxial NC’s, there are a variety of edge diffusion 
barriers depending on the local edge configuration. However, perhaps most important is 
to distinguish between diffusion along straight close-packed step edges, and diffusion 
around kinks or corners. The latter is potentially subject to an additional so-called kink 
Ehrlich-Schwoebel (ES) barrier, and the presence of such a barrier impacts the overall 
relaxation process. In general, limited edge diffusion will induce a DLA-type fractal 
growth instability. Even in the presence of substantial diffusion along straight step 
edges, presence of a substantial kink (1D) ES barriers will induce a shape instability 
where active edge diffusion will fatten the arms of the NC relative to DLA clusters, and 
dendritic rather than isotropic fractal shapes may develop.66,101  

For 3D supported NC, concepts from multilayer epitaxial metal film growth8,9 are 
relevant. One particularly significant additional kinetic parameter is the presence of a 
possible additional (2D) ES barrier for adatoms to cross single atom-high steps (either 
upward or downward). For downward transport of isolated atoms, this barrier is in 
addition to the terrace diffusion barrier. For upward transport, this 2D ES barrier is in 
addition to the terrace barrier plus an additional cost to extract from the step edge. The 
situation is more complex if multi-atom high facets develop on the sides of growing 3D 
NC’s. Then atoms must cross between facets during growth in which case they may 
encounter a so-called 3D ES barrier102-104 which is generally distinct from the standard 
(2D) ES barrier. One might anticipate that for the assembly of 3D NCs, where most 
aggregating atoms diffuse across the substrate and incorporate with the growing NC, 
that the presence of 2D and 3D ES barriers will inhibit upward transport and thus result 
in kinetically flattened NCs relative to their equilibrium shape. However, it might be 
noted that at least for the case of glancing angle-deposition105 where shadowing effects 
are also important, the presence of a 3D ES barrier has been associated with the 
formation of nanorods protruding upward from the surface, i.e., structures which are 
more vertically elongated than equilibrium shapes.106,107  
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2.3. Post-assembly coarsening pathways for supported NCs 
 
For ensembles of supported metal NCs formed by surface deposition, it should be 
emphasized that there generally exists a clear separation of time scales between NC 
formation (occurring on the time scale of deposition of tens of seconds or a few 
minutes) and the subsequent post-deposition coarsening (occurring on the time scale of 
tens of min, or of hours).12-14,28,30 Thus, treatment and analysis of NC formation and of 
post-deposition coarsening, are naturally often performed separately. This time scale 
separation will not be so evident for solution-phase processes. 

As indicated in Sec.1, the standard coarsening pathways are Ostwald ripening 
(OR) and Smoluchowski ripening (SR). These processes are illustrated in Figure 7 for 
2D supported NCs. As discussed further in Sec.3, OR is usually described by Lifschitz-
Slyosov-Wagner (LSW) theory.12,14 LSW integrates an analysis of the growth or decay 
of individual NCs (which involves solving a boundary value problem for a simple steady-
state diffusion equation) into a formulation to describe the size distribution for the 
evolution of the overall NC ensemble. As also discussed further in Sec.3, SR (NC 
diffusion and coalescence) is described in terms of Smoluchowski’s equations for 
“coagulation”,108 where the key input is the size-dependent diffusivity of individual 
NCs.14  
 

 
 
Figure 7. Schematic of coarsening pathways for supported 2D NCs: OR versus SR. Also shown 
are images of Ostwald (top right; http://www.wissen.de/lexikon/ostwald-wilhelm) and 
Smoluchowski (bottom right; https://jbc.bj.uj.edu.pl/dlibra). 

 
For 2D epitaxial NCs which completely wet the substrate, perhaps the default 

expectation is that coarsening should occur via OR which involves diffusion of detaching 
adatoms across the surface12 (but see below). For 3D supported NCs, it is less clear as 
to whether OR or SR dominates, and there has been extensive debate on this issue 
particularly for catalytic systems.28,30,58 In the standard picture for OR, individual NC’s 
are regarded as having equilibrated shape, and thus a well-defined chemical potential. 
Smaller islands have higher periphery curvature, and thus higher chemical potential 
according to the Gibbs-Thompson relation.10,12-14 Thus, the adatom density associated 
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with attachment-detachment equilibrium at the island periphery is also higher. 
Consequently, adatom diffusion across the surface, which is downhill in chemical 
potential and adatom density, is from smaller to larger islands. See Figure 7. This 
results in the shrinkage and ultimate disappearance of smaller than average islands and 
growth of larger than average islands. 

However, STM studies for 2D epitaxial NCs in the 1990’s revealed that SR rather 
than OR can actually dominate in these systems.14,109 Indeed, the great advantage of 
these UHV studies in well-controlled environments is that one can generate an STM 
movie in real time of the coarsening processes and directly assess whether OR, SR, or 
a combination of the two dominates evolution. Actually, the dominant pathway is system 
and condition specific. For fcc metals where NC’s are 2D epitaxial adatom islands of the 
same material (i.e., homoepitaxial systems), it appears that OR does generally 
dominate coarsening for (111) surfaces, but that SR dominates for (100) surfaces. In 
these systems, NC diffusion is mediated by periphery diffusion (PD) of atoms around 
the edge of the NC.13,14 The difference between behavior for (111) versus (100) 
systems ultimately derives from the feature that diffusion of atoms along close-packed 
straight steps on (100) surface is much more facile than terrace diffusion, but the 
opposite applies for (111) surfaces.  

Determination of the dominant coarsening mechanism is complicated by a 
number of factors some of which we now list. (i) The selected mechanism naturally 
reflects the relative magnitude of the effective barriers Eeff, for various pathways which 
will be described in Sec.3. (ii) However, behavior is complicated by the feature that 
rates for different pathways have different exponents describing the variation of 
coarsening rate with the typical linear size or “radii” of NCs110 as also described in 
Sec.3.  Thus, the dominant pathway potentially depends on the characteristic size of the 
NCs. For example, in systems where SR dominates for some regime of typical NC 
sizes, we will predict a crossover to OR for larger sizes (later in coarsening). (iii) The 
default mass carrier for OR is assumed to be adatoms diffusing across the surface, but 
it could instead be vacancies diffusing through the top surface layer.14 This introduces 
additional possibilities for dominant coarsening mechanism and for switching between 
mechanisms. An even more novel possibility for mass carriers is described below. (iv) 
For SR, in principle the mechanism of cluster diffusion can change from PD-mediated to 
attachment-detachment mediated (and potentially this could involve not just detachment 
of atoms to the exterior of the NC, but detachment of vacancies to the interior). 
However, if detachment is facile, then this would also favor OR over SR. 

There are additional possibilities for complex and unconventional behavior in OR. 
One relates to the default assumption that the individual NC’s have equilibrated shapes 
and structure and thus well-defined chemical potentials. If there is a lack of complete 
equilibration of individual NCs, then there is the possibility of introducing partial 
chemical potentials, and developing a modified LSW type theory of OR based on 
these.56,57,111,112 Another possibility relates to behavior in non-pristine systems where 
chemical additives even in trace amounts, where there is the potential of complex 
formation between the metal atoms and the additives.58,59 These complexes could 
facilitate more facile mass transport during OR than is possible if transport is mediated 
by adatoms. Analysis of these significantly more complex systems involves solving an 
appropriate boundary value problem for a coupled non-linear set of reaction-diffusion 
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equations (describing complex formation, diffusion, and dissolution),113 rather than the 
usual simple linear diffusion equation for transport of metal adatoms. 

It is also appropriate to note that most theoretical studies of coarsening at the 
ensemble level, have focused on asymptotics, i.e., temporal scaling of the divergence of 
the mean NC size for long time, and particularly the non-trivial selection of an 
asymptotic shape of the NC size distribution.12 However, in practice, experimental 
observations cover a substantial non-asymptotic regime, where behavior is impacted by 
the NC formation process and the details of the resulting NC distribution (as described 
in Sec.2.2). Thus, analysis of the associated transient behavior should also be of 
interest. 

In addition to ensemble-level issues for coarsening described above, there is 
interest in and insight to be gained from analysis of behavior at the level of individual 
NC. In this review, we actually emphasize these features. We have already noted the 
feature that self-assembly can produce far-from-equilibrium structures for individual 
NCs. Thus, in general, there will be an initial post-assembly regime where these 
individual NC shapes are equilibrating. (However, in some unusual situations, non-
equilibrium shapes persist throughout the coarsening process, as mentioned above.) 
For OR, it is common and instructive to analyze the decay of individual (smaller than 
average) NCs, as this provides insight into the details of the coarsening process13,29.  
For SR, as indicated above, the diffusivity, DN, of individual NC’s of size N atoms is of 
central importance,14 and will be discussed in detail in Sec.8. Also since coarsening 
involves collision and coalescence of NC pairs, detailed analysis of this sintering 
processes is of particular interest.27,114 and is described in Sec.5 and Sec.6. 

Finally, with regard to 2D epitaxial NCs, we note that there exists the novel 
possibility to assess and compare with the “photographic negative” process of the 
coarsening of 2D single-atom deep vacancy nanopit NCs.13,14,109 For systems described 
by pairwise lateral interactions, there is a particle-hole symmetry in the equilibrium 
properties. Also, in the regime of large sizes, adatom NCs and vacancy nanopits have 
the same equilibrium shape. However, any particle-hole symmetry is broken for kinetic 
processes such as coarsening. In fact, interestingly for fcc surfaces, there tends to be 
the opposite behavior for adatom NCs versus nanopits in terms of whether OR or SR 
dominates coarsening. 
 
2.4. Solution-phase self-assembly and coarsening of 3D unsupported NCs 
 
Formulations for solution-phase nucleation and growth of NCs tend to be based on 
classical nucleation theory (CNT)115,116 combined with concepts from coarsening theory. 
We should also note that various refinements of the standard CNT picture have been 
developed in recent years which could be relevant to solution-phase NCs 
formation.117,118 The latter include non-classical nucleation involving magic-sized 
subcritical clusters, and stepwise phase transitions involving amorphous to crystalline 
transitions for subcritical clusters.118 

Traditional LaMer burst nucleation mechanism of sequential nucleation and 
growth considers the following three-stage picture: (i) a rapid increase in the 
concentration of free monomers in solution (e.g., obtained by reduction) to exceed a 
critical value; (ii) a “burst” of nucleation of NCs which rapidly reduces the free monomer 
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concentration below this value, thereby terminating nucleation; and (iii) sustained 
growth of NCs due to diffusion of monomers through the solution and aggregation with 
the NCs.  See Figure 8. A more detailed characterization of the NC growth regime 
consistent with this mechanism showing different possible single-crystal growth shapes 
is presented in Figure 9. In this figure and more generally, it is common to distinguish 
somewhat ill-defined and poorly characterized “nuclei” (which presumably should be 
regarded as sub-critical clusters) from “seeds” (where the latter corresponding to super-
critical stable clusters). Here “critical” refers to the critical size in class nucleation theory. 
The structure of the seeds (single-crystal, singly twinned, multiply twinned) naturally 
impacts the structure of the subsequent NCs. The single-crystal case is most relevant 
for the studies presented in this review.  In the case of thermodynamic rather than 
kinetically controlled formation of critical cluster, classical nucleation theory implies that 
cluster shape should minimize the surface energy cost at the critical volume. 
Consequently, the Wulff construction also applies here to predict critical seed shape3. 
 

 
 
Figure 8. Schematic of LaMer burst nucleation process. Reprinted with permission from Ref.3. 
Copyright 2009 Wiley-VCH. 
  

For solution-phase synthesis, the separation of the NC formation (nucleation and 
growth) stage and the coarsening stage is not as clear as for supported NCs formed by 
deposition. Indeed, coarsening is often intertwined with and identified as part of the 
growth stage for solution-phase synthesis (in contrast to growth during deposition of 
supported NCs with well-defined critical size which is quite distinct from coarsening). 
For solution-phase systems, Ostwald ripening (dissolution of smaller NCs and growth of 
larger ones) can be the dominant coarsening pathway. Traditional LSW theory is 
sometimes refined for solution-phase systems to incorporate the possibility of growth 
due to strong super-saturation of monomers in solution.15 Associated simplified analysis 
of specific behavior (e.g., NC size distribution focusing or narrowing) is also extracted.15 
However, significant attention is being paid to the possibility of quite distinct 
Smoluchowski ripening type pathways, i.e., NC coalescence including the special case 
of oriented attachment.40-44 The latter produces single-crystal aggregates versus multi-
grain aggregate where the individual grains are separated by grain boundaries. See 
Figure 10 showing these possibilities. Again we note that the focus of this review will be 
on the evolution of single-crystal NCs, so the orientated attachment pathway is 
particularly relevant for such studies. 
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Figure 9. Schematic of the solution-phase nucleation and growth processes leading to various 
single-crustal NC structures. Color coded facets green, orange, purple = {100}, {111}, {110}. 
Reprinted with permission from Ref.3. Copyright 2009 Wiley-VCH. 

 
A contrasting mechanism from LaMer burst nucleation is a Finke-Watzky two-

step mechanism characterized by persistent nucleation in the first stage followed by so-
called autocatalytic surface growth.119 Generally, there is also regarded to be some 
overlap between these regimes. See Figure 10. By kinetic fitting using traditional mean-
field rate equations, it has been suggested that this picture applies for many metallic 
systems including Ir, Pt, Ru, and Rh.15  
 

 
 
Figure 10. Overview of various NC formation and subsequent coarsening processes. Reprinted 
with permission from Ref.15. Copyright 2014 American Chemical Society. 

  



18 
 

3. OVERVIEW OF ATOMISTIC-LEVEL STOCHASTIC MODELING 
STRATEGIES 
 
For atomistic-level modeling of the evolution of crystalline NCs, to assess the relevant 
time scale, it is particularly natural to implement stochastic lattice-gas models. In these 
models, atoms are located at a periodic array of crystalline lattice sites. The atoms 
move (e.g., hop) between these lattice sites with prescribed rates (e.g., mediating shape 
relaxation of NCs). The hop rates, h, will be assumed to have an Arrhenius form,  
 

h =  exp[-Eact/(kBT)],         (1) 
 

where  is an attempt frequency. For simplicity,  = 1012-1013 s-1 is chosen to be the 
same for all hops, but this is a reasonable assumption. The variation of these rates is 
thus determined by variation in activation barriers, Eact, which depend on the local 
environment of the hopping atom. Technically, it is assumed that there is an exponential 
waiting time between hops, where the mean waiting time is simply determined as the 
reciprocal of the corresponding hop rate. Within this framework, evolution corresponds 
to a Markov process in the state space of NC configurations, and is in principle 
described exactly by the corresponding master equations.120 In practice, the state space 
is too large for effective analytic treatment of these equations, and thus instead model 
behavior is efficiently and precisely determined by Kinetic Monte Carlo (KMC) 
simulation which can track evolution over the appropriate time and length scales.52 

In the context of supported 2D epitaxial NCs, the overall self-assembly process 
can be modeled within this framework by allowing form the addition of atoms to 
adsorption sites at a prescribed rate (corresponding to the deposition flux), and 
subsequent lateral surface diffusion of hopping between such sites which leads to both 
nucleation on NCs and subsequent growth.8,9 The main challenge is accurate 
description of edge diffusion rates in the various local configurations at the periphery of 
the NC, and of rates for any intermixing processes for multi-component NCs.24,25 As 
noted previously, NC structure is highly sensitive to the details of this prescription. For 
supported 3D epitaxial NCs (or more generally for multilayer epitaxial film growth), 
additional challenges include the treatment of interlayer transport where possible 
additional Ehrlich-Schwoebel type barriers can control behavior.8,9,102,104,107 

In such modeling of self-assembly on supported NC ensembles, it is sometimes 
the case that various processes can be treated as effectively irreversible on the time-
scale of the assembly process (at least at sufficiently low temperatures).97 For example, 
prescription of critical size i = 1 means that atoms aggregate irreversibly. In a less 
extreme regime, one might anticipate that singly-coordinated atoms at the NC periphery 
are mobile around the periphery, but that more highly-coordinated edge atoms are 
effectively permanently trapped. However, for our focus on post-synthesis shape 
evolution and coarsening, it will be important to incorporate with non-zero rates all 
processes which could impact such evolution generally on longer time scales. 
Furthermore, it will be critical to ensure that the selected rates for such processes are 
consistent with detailed-balance120 so that evolution will lead NCs to achieve their 
correct equilibrium shapes and structures. 
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For unsupported 3D crystalline NCs, stochastic lattice-gas modeling is naturally 
and efficiently used to describe structural evolution of the NC itself.121-124 It should 
however be noted that there are a vast number of local environments even just at the 
surface of the NC in which atomic hopping must be reliably described. For self-
assembly and growth, it is necessary to describe diffusion to and aggregation with the 
NC which might be achieved within an off-lattice or continuum formulation appropriately 
coupled to the lattice-based treatment on NC structure evolution. However, our focus 
will again be on post-synthesis shape and structure evolution including sintering. For 
nanoscale metallic NCs, there is a general expectation that these processes will be 
dominated by surface diffusion rather than attachment-detachment processes.125,126 
Consequently, relevant analysis can be performed completely within the framework of a 
lattice-gas model. 

In addition to atomistic level stochastic-lattice gas modeling, it is valuable to 
explore coarse-grained continuum theory and modeling to assess NC self-assembly 
and stability, where the latter is our focus. Naturally for evolution of NC ensembles, 
atomistic-level treatment is generally computationally inefficient compared to continuum 
formulations (or possibly hybrid formulations).10,12 Coarse-grained modeling might also 
be applied to analyze the evolution of individual NC’s, as has been done for NC 
growth,46 but more traditionally and more extensively for reshaping and sintering of NCs 
which is of central interest in this review. In fact, deterministic continuum modeling of 
reshaping mediated by surface diffusion goes back to classic work of Herring, Mullins, 
and others in the 1950’s.125,127,128 In addition to potential computational efficiency, a 
great advantage of such coarse-grained modeling is the additional insight into the 
evolution process which can derive from such formalisms. Finally, it might be noted that 
for nanoscale evolution, fluctuation effects can be significant. Then, the above 
deterministic treatments do not provide a complete picture, and thus it is natural to 
augment them with the appropriate addition of noise within a continuum Langevin type 
formulation129.  
 
3.1. Stochastic lattice-gas modeling of equilibrium NC structure 
 
While our focus is on non-equilibrium evolution of NCs, it is necessary for the models to 
accurately describe equilibrium NC shape and structure. We thus provide some brief 
related comments here. For 2D epitaxial NCs, the equilibrium shape is determined by a 
2D version of the Wulff construction for which the required input is the orientation-
dependent step free energy. For fcc(100) or bcc(100) surfaces with a square array of 
adsorption sites, the simplest lattice-gas model with NN attractive pair interactions 
corresponds to the ferromagnetic Ising model on a square lattice. An exact analysis is 
available in this case for this system determining the T-dependence of equilibrium NC 
shapes.99,130 Naturally, there have been various extensions of this work to treat 
hexagonal close-packed fcc(111) and hcp(0001) surfaces, and the effect of longer-
range pair interactions.131-133 For these 2D systems, we note that strictly step edges are 
never facetted for the fundamental reason that phase transitions do not occur in 1D 
systems. However, step edges can be effectively facetted on the length scale of the NC 
at lower T. It should be noted that for non-equilibrium NC shape evolution (and for 
equilibrium step fluctuations), a key parameter is the step stiffness which is determined 
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by the step free energy. Accordingly, some effort has been invested to produce 
conveniently usable expressions for this quantity.134 

The presence of trio- and higher-order many-body lateral interactions as well as 
NN and longer-range pair interactions is well recognized for 2D epitaxial systems. Of 
particular relevance for this study is the feature that the equilibrium shape of 2D NCs on 
fcc(111) surface cannot in general be described by Ising type models with pairwise 
interactions, as these do not distinguish between distinct between {100} micro-facetted 
A-step edges and {111} micro-facetted B-step edges of NCs. Thus, it is necessary 
instead to apply so-called Awning models,8 or to incorporate many-body interactions 
(the latter more realistic modeling being our strategy). Generally, a more complete set of 
pair and many-body interactions is determined systematically from ab-initio DFT 
calculations within a cluster expansion framework.25,26,135-139 This larger set of 
interactions provides the input for Monte Carlo or KMC simulation. The cluster 
expansion approach was initially developed to describe the configuration-dependent 
energetics of multi-component bulk metallic alloys,140 where a rigorous framework for 
convergence has been developed. However, it is recognized that there are practical 
complications when applied to epitaxial NCs since lateral relaxation of atoms near the 
step edges, i.e., near the NC periphery, can be quite distinct from that in the NC 
interior.137,138 Finally, we mention that novel refinements of conventional cluster 
expansion approaches may be more effective in some 2D epitaxial systems.141 

For 3D unsupported NCs, again fundamental insights into equilibrium shapes 
come from application of simple 3D Ising type models with pairwise interactions.142 In 
3D, true facets can exist below the roughening temperature, and the “phase 
boundaries” bordering these facets can be either first-order (slope discontinuity, shape 
edges) or second-order (no slope discontinuity, smooth edges). Higher-level treatments 
for both single- and multi-component NCs are again naturally based on ab-initio DFT 
energetics in combination with cluster expansions. However, analogous to concerns 
with the treatment of energetics near step edges for 2D epitaxial systems, there is an 
issue with conventional application of cluster expansion for bulk systems as relaxation 
of atoms near the surface of the NC will be distinct from that in the NC interior. This 
complication can be addressed using generalized cluster expansions where the 
strength of various pair, trio, etc., interactions depend on location relative to the NC 
surface.143,144  
 
3.2. Generic and refined lattice-gas modeling of kinetics for individual NCs 
 
A key requirement is the appropriate prescription of activation barriers for hopping of an 
atom from an initial site (i) to unoccupied final (f) neighboring lattice sites, where these 
barriers will depend on the occupancy of nearby sites. It will be convenient to introduce 
energies Ei and Ef equal to the total interaction energy for the atom at these sites at the 
initial and final sites, respectively, and we let ETS denote the total interaction energy at a 
transition state (TS) for hopping between these sites. Then, a generic prescription for 

the activation barrier, Eact(if), is given by   
 

Eact(if) = ETS - Ei, where ETS is “symmetric” in i and f.     (2) 
 



21 
 

By “symmetric” in i and f, we mean that ETS is the same for forward (if) and reverse 

(fi) transitions. This condition guarantees that detail-balance is satisfied,120 which as 
noted above is key for reliable treatment of post-synthesis evolution (relaxation or 
equilibration). 

Given the above symmetry constraint, there are several conventional 
formulations for the choice of ETS which we now enumerate: 
 
Metropolis (MET):53 ETS = C + max[Ef, Ei] = C + max[0, Ef - Ei] + Ei,  (3) 
 
so that Eact = C + max[0, Ef - Ei]. Specifically, one has that Eact = C + (Ef – Ei) for 
energetically uphill transitions with Ef > Ei, and one has the same Eact = C for all downhill 
transitions with Ef < Ei. 
 
General Brønsted-Evans-Polyani (BEP):145,146 ETS = C + a(Ef + Ei).  (4) 
 
Butler-Volmer (BV) type BEP with a = ½:147,148 ETS = C + ½(Ef + Ei), (5) 
 
which has been used extensively for surface diffusion and where Eact = C + ½(Ef - Ei). 
 
IVA or bond-counting type BEP with a = 0:9,52 ETS = C.   (6) 
 
The latter Initial Value Approximation (IVA) choice is quite common, and corresponds to 
the case where Eact = C - Ei is determined entirely by the initial state (i). The IVA is 
sometimes interpreted as corresponding to a scenario where the transition state is close 
to the final state (although there is no reason to expect that this is the case for surface 
hopping). For this reason, one might anticipate that the BV choice will in general be 
more appropriate. 

A simple but particularly relevant example illustrating the limitations of the above 
choices is the case of 2D epitaxial NCs on fcc metal surfaces. Here, one naturally 
selects C to recover the terrace diffusion barrier, Ed, for isolated adatoms. These 
choices are very common in extensive modeling of both the formation of 2D epitaxial 
NCs during deposition, as well as post-deposition evolution. However, we shall see 
below in Sec.3.1.2 that these common choices fail completely to describe the most 
basic features of edge diffusion even in simple homoepitaxial systems.9 To resolve this 
failure of conventional formulations of Eact to capture realistic kinetics, it is 
straightforward and effective to implement refined formulations for the choice of barriers. 
In these formulations described below, all possible hopping processes are divided into 

multiple classes labeled by , say. Then, refinement allows each class to have its own 

C = C in the above prescriptions of rates. Detailed-balance will still be satisfied 
provided that forward and reverse processes are always included in the same class.  
 
3.3. Application to 2D epitaxial nanoclusters.  
 
As indicated above, metal homoepitaxial systems provide perhaps the simplest 
benchmark systems in which to test the effectiveness of the various prescriptions of 
kinetics described above. The most extensive experimental and theoretical studies are 
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available for Ag, Cu, and Pt. For these systems, we can write Ei(f) = E0 + i(f) where i(f) 
denotes the total lateral interactions in the initial (final) state, and E0 is the energy for an 
isolated terrace adatom at the most stable hollow adsorption site. 
 

3.3.1 Conventional Formulations. Choosing the single C in the formulation of 
Sec.3.2 to recover the terrace diffusion barrier, Ed, yields 
 

Eact = Ed + max[0, f - i] (MET), Eact = Ed + (f - i)/2 (BV), or Eact = Ed - i (IVA).   (7) 
 
The simplest but still reasonable model that one can adopt includes just NN attractive 

lateral interactions of strength  > 0, so one has that  = -m < 0 for lateral coordination 
number m. This prescription provides a reasonable description of the thermodynamics 
of metal homoepitaxial systems, as discussed further below. Initially, we also consider 
models where just hops to NN adsorption sites are incorporated, i.e., hops of distance 
‘a’ (the surface lattice constant).  

The two main cases of interest are: (a) fcc(100) and bcc(100) surfaces 
characterized by a square lattice of adsorption sites (coordination number 4), and which 
we will for brevity denote as {100} surfaces; (b) hexagonal close-packed fcc(111) and 
hcp(0001) surfaces characterized by a triangular lattice of adsorption sites (coordination 
number 6), and which we will denote as {111} surfaces. The above prescriptions for Eact 
for Metropolis and Butler-Volmer choices imply a barrier for edge diffusion along close-
packed steps of Ee = Ed. This prescription fails severely since Ee is actually well below 
Ed for {100} surfaces at least for Ag and Cu, and far above Ed for {111} surfaces.  The 

IVA prescription sets Ee = Ed +  for {100} surfaces, and Ee = Ed + 2 for {111} surfaces. 
Thus, IVA fails even more dramatically than Metropolis or BV for {100} surfaces, and it 
actually also overestimates Ee for {111} surfaces (although less severely).  

Figure 11 provides a schematic of the edge diffusion along close-packed steps 
(as described above) and diffusion around kinks. Table 1 lists reasonable choices of the 
key energetic parameters for a few fcc metals, from which the above assessment of the 
failure of conventional Metropolis, BV, and IVA prescriptions can be quantified. 
 

 
 
Figure 11. Schematics of key energetics for (a) {100} and (b) {111} surfaces. 
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Table 1. Approximate effective values of key barriers for hopping for fcc surfaces of Ag, 
Cu, and Pt (rounded to 0.05 eV). See Ref. 8, 9, 27, 149, 150. Note that for {111} 
surfaces, edge diffusion barriers actually differ somewhat for A- and B-steps. Results for 

Pt(100) are for an unreconstructed surface (where exchange has Ed  0.50 eV). 
 

 Ed (eV) Ee (eV) KESE (eV)  (eV) 

Ag(100) 0.45 0.25 0.15 0.25 

Ag(111) 0.10 0.30 0.05 0.20 

Cu(100) 0.50 0.30 0.20 0.30 

Cu(111) 0.05 0.35 ? 0.05 ? 0.25 ? 

Pt(100) 1.05? 0.60? 0.40? 0.55 ? 

Pt(111) 0.25 0.85 0.50 0.50 

Pd(100) 0.75  0.45 0.37 0.35 

Pd(111) 0.35 ? ? 0.30 

 
3.3.2 Refined Formulations. The resolution to the above shortcomings of 

conventional formulations is simply achieved in a refined formulation by grouping 

hopping processes into two classes,  = T (terrace diffusion, attachment, detachment) 

and  = E (periphery diffusion), and assigning different values of C = C to different 
classes. One can choose a Metropolis or Butler-Volmer type prescription where 
 

Eact = C + max[0, f - i] (MET)  or Eact = C + (f - i)/2 (BV),   (8) 
 
with CT = Ed and CE = Ee (MET or BV),        (9) 
 
and where Ed and Ee values are selected appropriately for the system of interest. See 
Table I. This refined Metropolis choice has been applied to assess NC diffusion on 
{100} surfaces.151 It provides an effective description of attachment-detachment 
processes (from kinks to step edges, and from NC step edges to the terrace). Refined 
BV choice provides a somewhat less reliable description. A third reasonable alternative 
is a refined IVA type choice where 
 

Eact = C - Ei = k - i with kT = CT – E0 = Ed and kE = CE – E0 = Ee -  (IVA), (10) 
 
for which description of attachment-detachment mimics the refined Metropolis 
prescription. 

For fcc metal surfaces, there is in general an additional “kink Ehrlich-Schwoebel 
barrier” (KESE) for an atom to round a kink or corner at the edge of an island relative to 
the barrier for diffusion along a close-packed kink-free step edge. See again Figure 11. 

The refined Metropolis choice sets KESE =  which somewhat overestimates the barrier 
on {100} surfaces, and greatly overestimates it on {111} surfaces. The refined IVA type 

choice sets KESE = 0 neglecting a finite barrier. The refined BV choice yields KESE = /2 
somewhat underestimating the value for {100} surface, and somewhat overestimating it 
for {111} surfaces. In summary, overall any of the refined Metropolis, IVA and BV 
choices are reasonable, each one having advantages and disadvantages. 
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As an aside, we note that treatment of vacancy diffusion through the NC (where 
atoms hop to adjacent isolated vacancies and are this coordinated before and after 

hopping) corresponds to the  = E (periphery diffusion) class within the above refined 

formulations. Thus, for {100} surfaces, IVA predicts Ev = Ee + 3, whereas Metropolis 
and BV choices predict Ev = Ee. In fact, Ev tends to be just slightly below Ed, at least for 
Ag and Cu.152 So IVA corresponds to a large over estimate, and Metropolis and BV 
correspond to a significant underestimate. 

Formulations incorporating more diverse dynamics than just hopping to NN sites, 
e.g., also including 2NN hops, provide additional options for simple prescriptions of Eact 
which capture more precisely the actual kinetics in experimental systems. Labeling 

different types (or lengths) of hops by , we are free to choose different values of C = C 
of each type of hop, and still preserve detailed-balance in the above prescriptions of 

Eact. More generally, one can identify different classes, , and lengths, , of hops and 

select different C = C, for each. For example, consider the addition of 2NN hops to 

diagonally adjacent sites with separation 2a on {100} surfaces. Then, considering class 

 = E of hops associated with periphery diffusion, for Metropolis and BV choices, we 
select 
 

CE,NN = Ee for  = NN hops, and CE,2NN = Ee + KESE for  = 2NN hops (MET,BV).  (11) 
 

For the IVA choice, where Eact = k, - i with k, = C, - E0, we select 
 

kE,NN = Ee -   for  = NN hops, and kE,2NN = Ee -  + KESE for  = 2NN hops (IVA). (12) 
 
These simple MET and IVA prescriptions do an excellent job of capturing not just edge 
diffusion, but also kink or corner rounding rates. The IVA choice has been used to 
effectively and elucidate fundamental NC diffusion, reshaping, and sintering processes 
on (100) surfaces.153-156 See Figure 12 and also Sec.5.2, 5.4 and 8.1. 

For the class  = T of hops, one could reasonably select CT,NN = CT,2NN = Ed for 
MET and BV, and kT,NN = kT,2NN = Ed for IVA. However, our main focus with these 

models is in analysis of PD-mediated processes where these  = T choices do not have 
a significant impact. Furthermore, it is often convenient in these studies to impose a 
connectivity constraint which actually blocks detachment (and so attachment also does 

not occur), in which case  = T hops are not active or relevant. 
 

 
 

Figure 12. Schematic of dominant periphery diffusion processes and barriers in tailored model 
with NN and 2NN edge diffusion hops. 
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3.4. Application to 3D unsupported (and epitaxial supported) nanoclusters. 
 
A modeling framework is presented here first to describe surface diffusion processes for 
unsupported 3D fcc metal NCs. For predictive modeling of NC reshaping, it is important 
not just to reliably describe terrace diffusion across the most prominent {100} and {111} 
facets, but also to describe diffusion along step edges and around kinks and corners on 
both of these facets, and diffusion across step edges and between facets. This 
constitutes a vast number of possible local configurations. Characterization of these 
numerous configurations, as well as description of system thermodynamics, in the 
model formulated below is motivated by work of Abild-Pedersen and coworkers.157 With 
regard to the prescription of thermodynamics, similar to the above discussion for 2D 
epitaxial NCs, we will assume that energetics is dominated by NN attractive interactions 

of strength  > 0 noting that each atom has 12 neighbors for the fcc lattice. This 
simplified description has been shown reasonable at for various metals.158 In this model, 
the Wulff shape is a truncated cuboctahedron bounded by {111} and {100} facets. The 
length edges joining {111} facets to {100} facets (a100), and to other {111} facets (a111), 
are equal in the macroscopic regime.70 On the nanoscale, these shapes are most 
closely achieved for certain magic numbers of atoms.159 Choices with a111 = a100 and 
with a111 = a100 +1 (in surface lattice constants) should correspond to local energy 
minima.70 The number of atoms, NW(a100, a111), in the NC satisfies NW(3,3) = 201, 
NW(3,4) = 314, NW(4,4) = 586, etc. 

In the most basic model, atoms are just allowed to hop to vacant NN fcc sites. 
Thus, the initial site has 11 neighbors (other than the final vacant NN site) which could 
have various occupancies. Likewise, the final site has 11 neighbors (other than the 
initial site). Also, 4 of the 11 neighbors of the initial and final sites are shared. Thus, 
there are a total of 11+11 - 4 = 18 sites whose occupancy potentially impacts the 
activation barrier, Eact, for hopping. The number of distinct possible configurations is 
large, but less than 218 = 26,112 accounting for symmetry equivalence. See Figure 13 
where the NN of the initial (final) site that are not shared are labeled mi (mf) with m = 1-
7. The shared sites are labeled 1, 2, 3, and 4.  

 

 
 
Figure 13. Illustration of 18 sites impacting barriers for the black hopping atom. 4 sites NN to 
both initial (i) and final (f) sites labeled 1-4. 7 additional sites NN to i (1i-7i) and 7 additional sites 
NN to f (1f-7f).  Some sites are not visible (4i,6i,6f).  
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The key challenge is the realistic description of activation barriers, Eact, or 

equivalently of transition state energies, ETS, for all possible local configurations around 
the hopping atom. By way of illustration, here we will present a refined Volmer-Butler 
type scheme to describe the activation barriers, Eact, for these 3D fcc NC systems160 
which as noted above has the form 
 

Eact = ETS - Ei with ETS = C + (Ef + Ei)/2,       (13) 
 

with Ei = -ni ϕ, and Ef = -nf  where ni (nf) is the number of occupied sites which are NN 

to site i (f). The constants C are assigned for multiple judiciously selected classes  of 
diffusion processes, as described in the following paragraph. Our strategy is to choose 

the C to capture experimentally validated values of surface diffusion energetics on 
multiple facets, across terraces, along steps across step edges and between facets. 
This validation process has exploited a substantial set of integrated Scanning Tunneling 
Microscopy and stochastic modeling studies for homoepitaxial thin film growth on 
extended fcc(100) and fcc(111) surfaces. Such studies are most extensive for Ag68,161-

164 and Pt.8 From such studies, one might reasonably select ϕ = 0.225 eV for Ag160 and 
ϕ = 0.347 eV for Pt.15. 

Specifically, it is appropriate to consider four basic classes of hopping processes, 
each of which will be divided into two subclasses.160 These four basic classes are: (i) 

terrace diffusion on a {100} terrace or facet ( = 100TD); (ii) terrace diffusion on a {111} 

terrace or facet ( = 111TD); (iii) edge diffusion along a {100}-microfaceted A-step on a 

{111} terrace or facet ( = 111A); and (iv) edge diffusion along a {111}-microfaceted B-

step on a {111} terrace or facet ( = 111B). It is particularly appropriate to note that 
edge diffusion along an A-step on a {111}-facet is locally equivalent to edge diffusion 
along a close-packed step on a {100} terrace or facet. Thus, our modeling framework 
will constrain these processes to have the same barrier. In fact, diffusion barriers for 
these two processes are close, at least for Ag, as determined by direct energetic 
analysis of these cases. Thus, the constraint in this modeling framework that they are 
set equal is not unreasonable. In addition, we note that in-channel terrace diffusion on a 
{110} facet is locally equivalent to diffusion along a B-step on a {111}-facet, so barriers 
are set equal in this modeling framework, which is also realistic. These key relationships 
between barriers for diffusion processes on different facets have not been emphasized 
previously. 

The first subclass of these process corresponds to intralayer diffusion where both 
the initial and the final state are fully supported at a hollow site created by atoms in the 

lower supporting layer. In this case, C adopt “base values” denoted by c, i.e.,  
 

C(intra) = c (= cTD100, cTD111, c111A, or c111B),      (14) 
 
where values for Ag and Pt are given in Table 2. There is one possible point of 

ambiguity for  = 111A which we now clarify: in order for the final state to satisfy the 
criterion for intralayer diffusion, one needs either 3 supporting sites on a {11} facet, or 4 
supporting sites on a {100} facet to be populated (but not both). See Figure 14 for a 
characterization of these intralayer diffusion classes. For the {100} facet, the supporting 
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layer could include atoms at sites 3i,4i,3,4,3f,4f (or instead 1i,2i,1,2,1f,2f). For the {111} 
facet, the supporting layer could include atoms at sites 4i,4,4f,6i,6f (or 3i,3,3f,5i,5f). 
 

Table 2. Values for c (in eV) for intralayer diffusion for Ag and Pt. 
 

 cTD100 cTD111 c111A c111B 

Ag 0.425 0.100 0.275 0.300 

Pt 0.47 0.26 0.84 0.90 

 

 
 
Figure 14. Four classes of intralayer terrace and edge diffusion 

 
The second subclass of these processes corresponds to interlayer diffusion. 

More precisely, this subclass corresponds to the first stage of interlayer diffusion, where 
the atom hops out over the edge of a step. A reliable analysis of interlayer diffusion, not 
just across monatomic steps, but between facets, is clearly important for reliable 
modeling of the reshaping of 3D NCs. Thus, modeling must account for the possible 

presence of an Ehrlich-Schwoebel (ES) barriers, ES, i.e., an additional barrier beyond 
that for terrace diffusion. To treat this behavior, when an atom hops from a site with a 
complete facet to incomplete facet, one sets 
 

C(inter) = c - mϕ/2 (+ ES), where m is the number of missing supporting atoms. (15) 
 

The term -m/2 compensates for the contribution of +m/2 which comes from the term 

(Ef – Ei)/2 in Eact = C + (Ef - Ei)/2. As noted above, the same C must be assigned to 
the corresponding reverse process in order to preserve detail-balance, and describe in 

the following when the ES term is included. Whether or not the ES barrier is included 
depends upon the details of the step edge configuration as described below. 

To elucidate this prescription regarding inclusion of the ES barrier, we first 

consider the case of interlayer diffusion from an “incomplete” {100} facet for  = 100TD. 
Figure 15 shows a case of an incomplete {100} facet where relative to the above 
example for intralayer diffusion, either two atoms are missing to create a close-packed 
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step (m=2) or just one atom is missing to create a kink. For example, if all of 
3i,4i,3,4,3f,4f are populated in the complete {100} facet, then removing atoms at both of 

3f and 4f correspond to m = 2, and at just 3f corresponds to m = 1. In this case, c = 
c100TD, which corresponds to the terrace diffusion barrier on {100} facets, and since      

(Ef - Ei)/2 = +m/2 = +, it follows that Eact = c100TD (+ ES). The ES barrier, ES, is 
included for m = 2 corresponding to descending a close-packed step edge, but not for m 
= 1 corresponding to descending at a kink site. The rationale is that there does 
generally exist a finite ES barrier for hopping down a close-packed step (m=2), where 
the barrier for descent by exchange is even higher so hopping dominates downward 

transport. We choose ES = 0.10 eV for Ag which is close to the best experimental 
estimate of around 70 meV.161,163 (As an aside, DFT estimates149,165 do not seem 
consistent with experimental observations.) However, for m=1, downward exchange is 
more facile than hopping and has a negligible ES barrier. The modeling framework just 
incorporating hopping captures this feature by not including the ES barrier term for m = 
1. Related to this simplification, we note that a previously utilized successful strategy to 
model epitaxial thin film growth with a hopping model has been to choose barriers to 
mimic the dominant process be it either hopping or exchange.9  
 

 
 
Figure 15. Examples of {100} interlayer diffusion with (top) and without (bottom) an ES barrier.  
(a) {100} facet is formed by 3, 4, 3i, 4i; while 3f and 4f are missing, leaving the {100} facet 
incomplete, C = c -2ϕ/2 + δES. Thus Eact = cTD100 + δES. (b) {100} facet is formed by 3, 4, 3i, 4i, 3f; 
while 4f is missing, corresponding to a kink site in this {100} layer, C = c - ϕ/2. Thus Eact = cTD100. 

 
For interlayer transport from a {111} facet, a simple general prescription which is 

appropriate for Ag (but not Pt), is that the ES barrier is included if m = 1 (one atom 
missing), but not for m = 2 (two atoms missing). The rationale is as follows. One 
example of m = 1 is descent at a straight A-type step corresponds to a scenario where, 
e.g., 3, 3i, 5i, and 5f are occupied, but 3f is missing.  For Ag(111) system, it is believed 
that the A-step has the largest ES barrier and that downward transport is mediated by 
hopping. One example of m = 2 is descent at a straight B-type step corresponds to a 
scenario where, e.g., 3, 3i, 5i are occupied, but 3f and 5f are missing. Here, it is 
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believed that the ES barrier is lower, and that exchange dominates hopping as the 

pathway for downward transport. We set ES = 0.10 eV for Ag.164 Our prescription 
reasonably treats other more complicated cases. For example, descent at a kink on an 
A-step where the pathway is believed to be exchange with a low barrier for Ag and 

corresponds to m = 2 where we do not include ES. Descent at a kink on a B-step where 
the pathway is believed to be hopping with a higher barrier for Ag corresponds to m = 1 

where we do include ES. See Figure 15. 
For Pt(111) surfaces, the details of interlayer transport are believed to contrast 

those for Ag(111).8 Downward transport is more facile at straight A-step (ES barrier: 
0.02 eV exchange, 0.24 eV hop) than at a straight B-step (ES barrier: 0.35 eV 
exchange, 0.51 eV hopping). This is the opposite of Ag.  Thus, the prescription used for 
Ag must be reversed to include an ES barrier for {111} terraces for Pt for m = 2, but not 
m = 1.  

Finally, we offer some comments on modifications required to the above 
formalism to treat supported epitaxial NCs. In a simple but reasonable scenario, the NC 
is adhered to a {100} (or {111}) surface of a supporting lattice-matched substrate by a 
single low-index {100} (or {111}) facet. Then, atoms just in the lowest layer of the NC 
are directly interacting with the substrate in a NN interaction model. Thus, an additional 

NN interaction, s, describing the strength of the attractive interaction between NC and 
substrate atoms must be specified. The strength of adhesion to the substrate is 

determined by s, and the equilibrium NC shape prescribed via a Winterbottom 

construction5,100 (in the large size regime) is determined by the ratio c/. Atoms both in 
the lowest layer of the supported NC can be regarded as located at a periodic lattice of 
adsorption sites provided by the crystalline substrate. Any atoms detaching to or 
attaching from the surface are regarded as located at and hopping between adjacent 
sites on this same lattice of substrate adsorption sites. Except for the lowest layer of 
atoms in the NC, and for atoms in the second layer hopping to the lowest layer, the 
prescription of hopping kinetics discussed above for unsupported NC’s can be used to 
describe surface diffusion around the NC. These rules need to be appropriately 
modified for the lowest layer where the atoms are interacting with those of the substrate 
(and possibly also for those hopping to the lowest layer). These modifications will reflect 

the strength, c, of adhesion of metal NC atoms to the substrate.  
 
3.5. Stochastic lattice-gas modeling with ab-initio based kinetics 
 
For single-component systems, the refined formulations described in Sec.3.3 and 3.4 
can reasonably, but not precisely, describe diverse diffusion behavior. Thus, there is 
some motivation to develop more precise treatments not only for single-component 
systems, but also for multi-component systems where it is less viable to develop 
effective “simple” refined formulations. The precise treatments, potentially incorporating 

ab-initio DFT energetics, will be based on the exact result, Eact(if) = ETS - Ei, where 
ETS is “symmetric” in i and f. The Ei are determined from the specification of system 
thermodynamics, i.e., the specification of energetics for all allowed crystalline 
configurations of the system. In lattice-gas modeling of equilibrium single-and multi-
component systems, typically precise DFT analysis of system energetics is used to 
systematically extract a complete set of pair, trio, quartet, etc. interactions via cluster 
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expansion techniques140 thereby allowing efficient determination of all Ei. However, ETS 
involves a configuration with at least one atom at a non-crystalline site, and thus cannot 
be precisely determined by the thermodynamic interactions (despite the attempt in BEP 
and other formulations to do so). Thus, it is required to directly and systematically probe 
interactions in the TS. In other words, one needs not only an ab-initio treatment of 
system thermodynamics, but also of kinetics. The latter is relatively uncommon. Below 
we describe ab-initio kinetics formulations for 2D epitaxial and 3D NCs. 
 

3.5.1. 2D epitaxial NCs. We will refer to the formulation described below as a 
multi-site lattice-gas (msLG) formulation since we consider not just conventional lateral 
adatom interactions between atoms at a single type of adsorption site (and possibly 
between atoms at multiple stable adsorption sites), but also unconventional lateral 
interactions between collections of adatoms where one is as a transition site for hopping 
(rather than at a stable adsorption site). 

For simplicity, we first describe an ab-initio based formulation of such an analysis 
for 2D epitaxial NC’s on {100} surfaces with four-fold hollow (4fh) adsorption sites 
forming a square grid, and transition states (TS) located close to bridge sites midway 
between these hollow sites. However, we will describe methods applicable to multi-
component as well as single-component NCs. We will focus on a formulation to 
precisely describe periphery diffusion (see Figure 16) which is key for describing both 
growth shapes during self-assembly and post-synthesis reshaping, e.g., sintering of 
pairs of NCs. In Sec.7.1.3, we will describe refinements required to accurately describe 
vacancy diffusion through the interior of NCs which is a primary mechanism for 

intermixing in multicomponent NCs. In the basic formula Eact(if) = ETS - Ei, in is 

instructive to write Ei = Eads + i, where Eads is the adsorption energy of an isolated 

adatom at the 4fh site, and i is the total lateral interaction of the atom with other nearby 

atoms in the initial state. Similarly, we write ETS = Ed + Eads + TS, where Ed is the 
terrace diffusion barrier for an isolated adatom (i.e., the difference in adsorption energy 

at 4fh and bridge sites), and TS is the total lateral interaction energy in the TS. 
 

 
 
Figure 16. Key periphery diffusion processes for an Au + Ag bimetallic 2D epitaxial NC on 
Ag(100). Reprinted with permission from Ref. 25. Copyright 2014 American Chemical Society. 

 

Determination of i can be achieved with conventional thermodynamic cluster 
expansion methods which have been applied extensively to epitaxial metal 
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adlayers.25,26,135-139 The basic idea is that the lateral interaction energies, i, can be 
obtained from a many-body cluster expansion as a sum of pair, trio, quartet, etc. 
contributions. For {100} surfaces, the expected dominant pair and trio interactions are 
shown in Figure 17 (left frame), although in some systems other interactions can be 
significant.26,139 One direct large unit-cell strategy to determine the constituent pair, trio, 
etc. interactions using large unit cell DFT analysis is sequential determination of: (i) 
adsorption energies for isolated adatoms; then (ii) the energy of isolated pairs of atoms 
for various separations (from which the pair interaction energy is obtained after 
subtracting adsorption energy contributions); then (iii) the energy for isolated trios of 
atoms with various configurations (from which the true trio interaction can be obtained 
after extracting pair and single-atom adsorption energy contributions); etc. A possible 
concern is the computational cost of these large unit cell calculations. Most often an 
alternative cluster expansion procedure is applied where a priori it is decided to retain M 
pair, trio, etc. interactions. Here, one directly calculates the total energy of M distinct 
periodic overlayer configurations, thus providing M independent relations (for a suitable 
selection of adlayer configurations) for M unknowns. Various refinements of this basic 
approach have been developed to assess the robustness of such estimates.138,166 A 
general issue is that lateral relaxation of isolated pairs, trios, etc. of atoms or of atoms in 
periodic overlayer configurations might be quite different from that of atoms in NCs 
particularly near NC edges.137,138 
 

 
 
Figure 17. Anticipated dominant pair and trio interactions on {100} surfaces. Reprinted with 
permission from Ref. 25. Copyright 2014 American Chemical Society. 

 
One could however argue that a less generic and more application-targeted 

approach would be more appropriate and effective, particularly given the anticipated 
limitations of conventional cluster expansion analysis for epitaxial NCs due to distinct 
relaxation of atoms at the periphery and in the interior.137,138  For example, for analysis 
of sintering of pairs of NCs, it is the accurate description of the step edge 
thermodynamics (rather than the thermodynamics of periodic adlayer structures) that is 
most relevant for accurate description of NC shape evolution. Such step edge specific 

thermodynamics includes: (orientation-dependent) step energy, ; step stiffness, 
~

; kink 

creation energy, k (which is related to step stiffness via 
~

 ~ exp[2k/(kBT)] for large 

k/(kBT)); edge atom formation energy (associated with moving kink atoms to step 
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edges); and other “extraction” energies, e.g., for moving atoms from straight steps of 
various orientations to become isolated edge atoms27,69  Thus, optimal determination of 
pair, trio, etc, interactions should be based on recovery of these key step edge 
energies.27  

Determination of TS is not a conventional problem, and has received less 
attention.23-27 Again, cluster expansion based approach is natural, but now the 
constituent pair, trio, etc., interactions are “unconventional” in the sense that no longer 
are all atoms located at adsorption sites. Rather one atom is located at a bridge-site TS 
in the systems considered here, and one must determine interactions between this atom 
and nearby atoms. For {100} surfaces, the expected dominant unconventional pair and 
trio interactions are shown in Figure 17 (right frame). Again, a straightforward direct 
large-unit cell strategy to determine these constituent interactions is to sequentially 
analyze energies for isolated configurations of atoms, pairs, trios, etc., although now 
one atom must be fixed (laterally) at the TS location.23,24 However, again it may be more 
effective to adopt an alternative application-targeted procedure. Considering again 
sintering of pairs of NCs mediated by periphery diffusion, key parameters are the 
barriers for edge diffusion along close-packed steps, and additional KESE barriers to 
round kinks or corners. One could also consider barriers for other rearrangements of 
atoms on step edges which would impact step fluctuation dynamics. Then, the 
unconventional pair, trio, etc., interactions are ideally determined within a cluster 
expansion framework to recover these various edge diffusion barriers.25,27 

Analysis of 2D epitaxial NCs on {100} surfaces is perhaps the simplest possible 
system in which to develop an ab-initio based description of kinetics in part due to the 
assumed well-defined unique bridge-site transition state. In fact, even this picture is an 
approximation since the TS location will depend somewhat on the local NC 
configuration for edge diffusion, but such deviations are relatively small. An example of 
typical values for both conventional and unconventional interactions for the Ag+Au on 
Ag(100) system is provided in Table 3, where we note that it is necessary not just to 
specify interactions between Ag, and between Au, but also Ag-Au lateral interactions. 
Additional complications arise in the determination of unconventional interactions if 
interactions are fairly long ranged, and if a cluster expansion based approach is used 
exploiting energies of configurations for relatively small sized unit cells.139 

However, analysis can be substantially more complicated for other 2D epitaxial 
systems. One such example where there has been previous ab-initio based multi-site 
lattice-gas (msLG) modeling involves the self-assembly and post-assembly equilibration 
of Ni + Al NCs on the binary alloy NiAl(110). This system provides a setting for ab-initio 
studies of alloy self-growth for deposition of stoichiometric 1:1 ratio of Ni:Al, but it also 
has the advantage that the equilibrium structure of NCs is clear as this structure must 
propagate the perfect binary alloy ordering of the substrate. Here, there are two distinct 
types of adsorption sites which might be described as Ni-bridge and Al-bridge for both 
species. For terrace diffusion of Al in the two orthogonal directions aligned with the 
principle substrate axes, there are two distinct transition states. A separate diffusion 
pathway with diagonal hops has a separate TS. Ni has a single diffusion pathway with 
diagonal hops and a single TS. See Figure 18. The modeling of this system has just 
incorporated pair interactions See Figure 19 and Table 4.   
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Table 3. Ag (S) + Au (G) on Ag(100) interactions. We set b2t = (3b1t + tt)/4. 
 

conventional conventional conventional unconvent. unconvent. unconvent. 

1p(SS) 

-0.283 
lt(SSS) 

-0.016 
bt(SSS) 

+0.032 
1p(SS) 
-0.212 

b1t(SSS) 
-0.020 

tt(SSS) 
+0.049 

1p(GG) 

-0.201 
lt(GGG) 

-0.065 
bt(GGG) 

+0.016 
1p(GG) 
-0.141 

b1t(GGG) 
-0.031 

tt(GGG) 
+0.044 

1p(SG=GS) 

-0.285 
lt(SGG=GGS) 

-0.046 
bt(SGG=GGS) 

+0.026 
1p(SG) 
-0.188 

b1t(SGG) 
-0.049 

tt(SGG) 
+0.059 

2p(SS) 

-0.027 
lt(GSS=SSG) 

-0.021 
bt(GSS=SSG) 

+0.036 
1p(GS) 
-0.225 

b1t(GSS) 
-0.027 

tt(GSS) 
+0.054 

2p(GG) 

+0.030 
lt(SGS) 

-0.022 
bt(SGS) 

+0.028 

 b1t(SGS/SSG) 
-0.038/-0.001 

tt(SGS/SSG) 
+0.033 

2p(SG=GS) 

-0.010 
lt(GSG) 

-0.034 
bt(GSG) 

+0.030 

 b1t(GSG/GGS) 
-0.011/-0.045 

tt(GSG/GGS) 
+0.043 

 
 

 
 

Figure 18. Terrace diffusion for Ni and Al on NiAl(110). Adsorption energies in eV are shown. 
Reprinted with permission from Ref. 24. Copyright 2012 American Physical Society. 

 

 
 

Figure 19. Pairwise interactions incorporated in Ni+Al on NiAl(110) model: conventional Al-Al 
and Ni-Ni interactions (left); Al-Ni interactions (middle); unconventional interactions (right). 
Reprinted with permission from Ref. 24. Copyright 2012 American Physical Society. 
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Table 4. Unconventional pair interactions in eV with one atom at Al-br or at Ni-br and one at a t 
or b transition state. 

 

Ni(b)-Ni(1)   -0.30 Al(b)-Al(1)   -0.45 Al(t)-Al(4)   -0.02 

Ni(b)-Ni(2)   -0.14 Al(b)-Al(2)   -0.40 Al(t)-Al(5)   +1.00 

Ni(b)-Ni(3)   -0.18  Al(b)-Al(3)   -0.20 Al(t)-Al(6)   +12.00 

Ni(b)-Ni(4)   -0.25 Al(b)-Al(4)   -0.29 Al(t)-Al(7)   -0.12 

Ni(b)-Al(1)   -0.85 Al(b)-Ni(1)   -0.73 Al(t)-Ni(4)   -0.01 

Ni(b)-Al(2)   -0.28 Al(b)-Ni(2)   -0.24 Al(t)-Ni(5)   -0.44 

Ni(b)-Al(3)   -0.14 Al(b)-Ni(3)   -0.18 Al(t)-Ni(6)   +6.55 

Ni(b)-Al(4)   -0.71 Al(b)-Ni(4)   -0.62 Al(t)-Ni(7)   -0.06 

 
Although the formation of epitaxial NCs on hexagonal close-packed fcc(111) 

surfaces is in some sense simpler than for the above binary alloy surface, there are 
some substantial complications not seen above. In the default picture for terrace 
diffusion, the pathway is natural and well-defined: an atom starting in the preferred fcc 
adsorption site hops through a bridge site TS to a neighboring hcp adsorption site 
(which is locally stable but slightly less favorable than the fcc site); then the atom 
returns to an fcc site after hopping through a bridge site TS. Thus, it is reasonable for 
the modeling to include both fcc and hcp adsorption sites (which also enables the 
description of the formation and evolution of stacking-fault islands).167,168 However, the 
complication arises for edge diffusion where the diffusion path is significantly distorted 
from that of an isolated adatom in the center of a terrace. Our analysis for Ag/Ag(111) 
using semi-empirical (2NN MEAM) potentials indicates that for edge diffusion along a 
{100}-micro-faceted A-step, the pseudo-hcp adsorption site on the diffusion path is 
displaced inward by 0.36 A towards the A step edge.  See Figure 20 (left). For edge 
diffusion along a {111}-micro-faceted B-step, one could anticipate “inner” and “outer” 
paths for edge diffusion. See Figure 20 (right). We find that the inner path is preferred 
for Ag/Ag(111), but that the pseudo-hcp adsorption site on the diffusion path is 
displaced outward by 0.99 A from the B step edge.  Thus, ab-initio level analysis of the 
kinetics in these systems is more complex, however a multisite lattice-gas (mslg) 
framework could still be implemented including geometric and multiple shifted fcc and 
hcp adsorption sites, and also geometric and multiple shifted br site TS.  
 

 
 
Figure 20. Edge diffusion in fcc(111) homoepitaxial systems. Outer B-path is not preferred. 
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3.5.2. 3D fcc NCs. The simplest case is naturally unsupported NCs, but the 
basic strategy developed for those systems extends to epitaxial supported NCs (at least 
after some approximations or assumptions). Just as for the tailored models described in 
Sec.3.3 and 3.4, analysis is based upon the fundamental relation for the activation 

energy for hopping, i.e., Eact(if) = ETS - Ei, where ETS is “symmetric” in i and f. Here, 
we describe the implementation of Abild-Pedersen and coworkers.157 For the 
determination of initial state energy, Ei, the same approximate formulation as described 
for out tailored model was implemented, i.e., Ei = -ni ϕ varies linearly with the 
coordination number ni of the atom in the initial site, and where the effective NN 

interaction strength  was determined from DFT analysis for atoms in various 
configurations. This approximation could be improved by accounting for coordination to 
nearby atoms in the second shell, but at significant additional computational cost in 
KMC simulations. Thus, the simpler treatment was implemented in Ref. 157. 

The bigger challenge is reliable determination of ETS without resorting to crude 
IVA and Metropolis, or imperfect BEP treatments, or even refined versions of these. The 
strategy involving direct NEB-based determination implemented in Ref. 157 was to 
develop a database of precise values for hopping barriers obtained from nudge-elastic-
based (NEB)  analysis based on DFT energetics for diffusion processes on {111}, {100}, 
and {211} surface facets with various local environments of the hopping atom. This 
analysis noted the presence of atoms along the diffusion pathway can lower the barrier 
(rather than increase it due, e.g., to steric hindrance), a feature which is most dramatic 
for {100} surfaces as described above in Sec.3.3. Then, for atom hopping in the 3D fcc 
NC simulations, the local configuration is mapped onto an entry in this data-base 
accounting particularly for the occupancy of the 4 NN sites which are shared by both the 
initial and final site (see Figure 12). 

Incorporation of both 2D and 3D ES barriers is clearly important for reshaping of 
unsupported 3D NCs. Traditionally, these barriers have been discussed primarily in the 
context of multilayer film growth,8,9 and for the case of 3D ES barriers also for growth 
and relaxation of supported 3D NC’s, including 3D nanorods protruding from the 
substrate.104 Here, the most reliable strategy for incorporation of these barriers into 
modeling would be to perform direct NEB-aided DFT analysis to determine the barriers 
for key step edge and facet boundary geometries.104 Then, the barriers would be utilized 
in KMC simulation which however would need to identify interlayer or inter-facet hops 
for these specific geometries. Such modeling has not been implemented to date. 

Next, we consider the treatment of supported 3D epitaxial NCs. Abild-Pedersen 
and coworkers157 used an implicit treatment of the substrate in that substrate atoms 
were not explicitly included, but an adhesion energy was assigned to atoms in the 
lowest layer of the cluster which depended on their coordination to other metal NC 
atoms. Heuristic account of strain due to possible lattice mismatch was also included. 
See Sec.8.3. A simple alternative for perfect epitaxy (with negligible mismatch) as 
indicated above is to regard atoms in the lowest layer of the NC (generally assumed to 
correspond to a {100} or {111} facet of the NC) as residing at a periodic array of 
adsorption sites on the substrate) with the same lattice constant as the NC.  Adaption of 
the above algorithms naturally refines the analysis of initial state energies for atoms in 
the lowest layer as these are directly coordinated to atoms in the substrate. As also 
noted above, one introduces a different NN binding energy of NC atoms to substrate 
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atoms of strength s, say. In principle, a separate additional assessment of TS energies 
is needed for atom hops between the lowest layer to the next highest layer, as these 
energies will generally be affected by interaction with the substrate, and thus differ from 
those for hops in geometrically equivalent local configurations in higher layers. An ab-
initio level incorporation of such refined barriers has not yet been implemented (but 
rather approximate estimation has been used). It should also be noted that one could 
include attachment-detachment of atoms from the lowest layer to the substrate 
adsorption sites between which they could hop, as would be appropriate, e.g., for 
modeling of growth of 3D supported NCs during deposition. 

Finally, we mention that one might consider an msLG type cluster expansion 
alternative25,27 for the ab-initio level analysis of TS energies as discussed extensively for 
2D epitaxial NCs. With the assumption that the transition states (TS) for hopping are 
located mid-way between the initial and final fcc lattice sites, then one can use a cluster 
expansion based approach using directly calculated energies for M configurations with 
the hopping atom fixed at this TS to determine a set of M unconventional interactions. 
This approach has not been implemented to date. We caution, however, that the above 
assumption of a geometrically simple TS location has its limitations. Even for diffusion 
on {100} facets for the TS is close to the bridge site, it is not exactly between the initial 
and final hollow sites as its height relative to the {100} plane is greater (a feature 
incorporated into our modeling for 2D epitaxial NCs). For diffusion on {111} facets, we 
have indicated above more severe complications. 
 

3.5.3. Concerted many-atom processes. From studies of homoepitaxial thin 
film growth, it is well recognized that concerted processes (typically two-atom 
processes) can dominate single-atom hopping as the dominant mass transport 
pathway.150 For terrace diffusion on unreconstructed Pt(100) facets, exchange of an 
adatom with the substrate atom dominates hopping.169,170 The surface atom displaces 
one of the four supporting atoms which is pushed up to a second NN hollow site. For 
terrace diffusion on {110} facets, often cross-channel exchange dominates hopping150. 
For interlayer transport, often exchange dominates (e.g., at kinked steps on {100} 
facets, or at straight B-steps or at kinks on A-steps on {111} facets for Ag) as discussed 
in Sec.3.4.9 Thus, rather than single atom hopping to NN fcc sites as discussed above, 
ideally one should also implement at least two-atom exchange processes. In fact, this 
was also done in the analysis of Ref. 157 for Pt NCs.  

It is appropriate to also comment on possible strategies for reliable determination 
of TS energies for these two-atom exchange processes (where initial and final state 
energies are determined within the framework described above). Naturally, direct NEB-
based determination is the most precise approach. However, it is necessary to tabulate 
such TS energies for all possible local environments, so generally some approximation 
must be adopted to obtain energies for general configurations from a limited subset. 
One might also consider an msLG type cluster expansion alternative for ab-initio level 
analysis. However, for the case of two-atom exchange, this will involve determination of 
a separate class of unconventional interactions where not just one atom is at a non-fcc 
lattice TS, but both atoms in the exchanging pair are displaced from fcc sites and are 
interacting with other nearby atoms at fcc sites. One complication is the need to 
determine these TS atom locations. This could be done for one choice of local 
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environment must be determined for each t as determined by NEB analysis, and then 
the same choice of locations used for analysis of TS energies for other environments.  
 
3.6. Off-lattice atomistic-level stochastic modeling for supported NCs 
 
For supported NC’s, in general lattice mismatch between the NC and the crystalline 
substrate will induce strain in the NC, and in more extreme situations defects such as 
dislocations and stacking faults. In these cases, conventional lattice-based stochastic 
models and KMC simulation have clear limitations. For a precise treatment, it is 
necessary to resort to off-lattice formalisms171-173 where atom positions are free to 
adjust to accommodate strain (but where in the simpler case, the NC is still crystalline, 
and is in coherent or epitaxial contact with the substrate).  Stochastic kinetic modeling 
must appropriately evolve the NC between locally stable configurations (in the simplest 
case, distorted or strained fcc structures) with the appropriate rates. Again a standard 

Arrhenius form is adopted with barriers, Eact(if) = ETS - Ei, where ETS is “symmetric” in i 
and f. Now, in principle Ei must be determined after each Monte Carlo step by relaxing 
the entire NC which is computationally significantly more expensive than for lattice-
based models (and as a result sometimes just partial or local relaxation of atoms close 
to the hopping event is implemented). However, even more demanding is the off-lattice 
search for the possible TS at each step. There appears to be currently limited 
application of these methods on analysis of strained supported metal NCs.  
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4. OVERVIEW OF COARSE-GRAINED CONTINUUM MODELING AND 
COARSENING THEORIES 
 
4.1. Coarse-grained continuum modeling of shape evolution for individual NCs 
 

4.1.1. Shape evolution of 2D epitaxial NCs. We focus on so-called Lagrangian 
front-tracking approaches for periphery-diffusion (PD)-mediated shape evolution in 2D 
epitaxial systems which treat the peripheral step edge of the NC as a “sharp” 
continuous curve. Here, we focus on shape evolution mediated by periphery diffusion. 
Then, neglecting fluctuations (cf. Sec.4.2), a deterministic macroscopic continuum 
formulation gives the normal propagation velocity, Vn, of the step edge in terms of the 
flux, JPD, of atoms diffusing around the NC periphery where JPD is a function of its local 
geometric properties (orientation, curvature) and of system parameters (orientation-
dependent step edge stiffness and step edge mobility). This two-dimensional theoretical 
formulation is analogous to the classic treatments of the relaxation of film morphology 
due to surface diffusion in three dimensions.125,127,128  

Let  denote the chemical potential of the step edge, PD the mobility of step 

edge atoms, 
~

 the step edge stiffness, and  the step edge curvature which is defined to 

be negative for a circular NC. We note that PD might be better described as the step 
edge conductivity by analogy with electrical conductivity and within the general 
framework of transport theory where conductivity is the product of a carrier density and 
an intrinsic carrier mobility.153,174,175 Then, neglecting fluctuations in step edge evolution, 
one has that153,176,177 
 

Vn = -s JPD, where JPD = -(kBT)-1PD s  with  = -
~

 ,    (16)  
   

where s = /s denotes the derivative with respect to arc length, s, along the step. Both 

PD = PD() and 
~

 = 
~

() depend in general on step orientation , and where 
~

() = () 

+ ()  is determined by an orientation-dependent step energy  = ().14,69 These 
system parameters describing step edge thermodynamics and kinetics can be 
determined by non-trivial statistical mechanical analysis of atomistic models. For {100} 
facets accounting for just NN attractive interactions between adatoms, we can exploit 
the exact result of Rottman and Wortis for the T-dependent step energy.99 For {111} 
facets, analogous results are also available, as well as guidance on practical numerical 

implementation.131,134 Usually the anisotropy in PD is ignored assuming that the 

anisotropy of 
~

 will dominate shape evolution. Indeed, PD is isotropic in simple solid-on-
solid model without a kink ES barrier.175 However, introduction of a kink ES barrier does 

introduce anisotropy in PD
153, and a simple form for this dependence has been 

proposed.178 
With regard to numerical analysis of (16), the default approach is to suitably 

distribute discrete points around the perimeter of the NC. One tracks the coupled 
evolution of these points which is determined by a version of (16) replacing continuous 
derivatives by discrete differences based on the location of nearby points to that of 
interest. Particularly for strongly anisotropic step energies and for complicated 
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morphological evolution, it may be necessary to occasionally redistribute these points to 
sufficiently accurately treat regions with high curvature, etc. We note that there are 
refined high-precision algorithmic approaches which suitably move the points both along 
the NC perimeter as well as orthogonal to the perimeter.179,180  

Next, we present some additional general comments giving an additional 
perspective on the origin of the evolution equation (16) and also on the nature of its 
solutions. Equation (16) can be obtained adopting so-called model B conserved 

dynamics associated with an appropriate free energy functional F = ds ((s)) where 

((s)) depends on the step orientation (s) at s. To illustrate this approach, it is more 
convenient to consider a benchmark analysis for an extended step oriented in the x-
direction with small displacement y(x) in the orthogonal direction. The x-direction is 

assigned here as having an orientation  = 0, typically corresponding to a local 
minimum in step energy which is typically a local maximum in stiffness. Then, one has  
 

F = dx [1 + (dy/dx)2]1/2 ((x)) = F0 + ½ dx  
~

(0) (dy/dx)2,    (17) 
 
where F0 is the free energy for the perfectly straight step, and where a Taylor expansion 

has been employed for (y) about zero slope y = dy/dx = 0 to obtain the latter 
expression. Then, evolution of the step edge accounting for mass conservation has the 
form  
 

/t y(x, t) = -/x J(x ,t), where J(x,t) = -(kBT)-1PD /x [F/y],   (18) 
 

and where evaluation of the functional derivative yields F/y = -
~

 2/x2 y.  
Continuing this benchmark analysis for small perturbations of the extended 

straight step, (18) becomes     
 

y/t  Lx y with Lx = -(kBT)-1PD(0) 
~

(0) 4/x4.       (19) 
 
The differential evolution operator, Lx, has eigenfunctions yq(x) = eiqx with a continuous 

spectrum of negative eigenvalues, q, and corresponding decay times q = 1/|q| of the 
form 
 

q = -(kBT)-1 PD(0) 
~

(0) q4 and  q = (kBT)/[ PD(0) 
~

(0) q4].    (20)  
 

The q extend to the origin (i.e., there is no spectral gap), and the q diverge for small 

wavenumbers q0. Solutions of (19) have the form  
 

y(x,t) = dq yq(t) eiqx where yq(t) = exp(-t/q) yq(0) for q  0,     (21) 
 

and mass conservation implies that yq=0  0. One can show that y(x,t) ~ t-1/4 exhibits 
slow algebraic decay in time.  We shall contrast this algebraic decay with exponential 
decay for NC shape relaxation below. 
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Now, we return to more general analysis relevant to NC shape relaxation. First, 

we assess size scaling based on the general form of (16). Since  is given by the 
second derivative of step position, there are a total of four derivatives along the step 
edge in the expression for Vn. Consequently, increasing the length scale by a factor of b 
will slow the time evolution by a factor of b4.  Consequently, the characteristic time for 

relaxation, eq, scales with linear feature size, L, like eq ~ L*, with * = 4. 
Next, we provide a more detail analysis of time evolution for reshaping of finite 

NCs. To analyze this problem, it is convenient to introduce polar coordinates, where  

r(, t) gives the distance of the step edge from the origin for polar angle , where 0    

2. For the problems of interest, the natural choice of origin is clear as the “center of 
mass” of the cluster. In this coordinate system, one has that181 

 

Vn = [1 + (r-1 r/)2]-1/2 r/t  and  = [1 + (r-1 r/)2]-3/2 [r-1 + 2/2(r-1)].  (22) 
 

Then the evolution equation (16) becomes 
 

/t r(, t) = - [1 + (r-1 r/)2]1/2 (kBT)-1 /s [PD /s ( 
~

 )],    (23) 
 

with  from (22) and where s  r . We also introduce the equilibrium radius, req(), 

where r(, t)  req(), as t. This req() is determined from a 2D Wulff construction 

given  = (), which implies that the corresponding curvature eq() satisfies 
~

() eq() 

= -eq which is constant (i.e., independent of  or ). Considering asymptotic decay of 

an NC to its equilibrium shape, it is also natural to introduce a measure g(, t) of the 

deviation of r(, t) from req() via 
 

r(, t) = req() + <req>g(, t) where <req> is an average of req,    (24) 
 

and g(, t)  0, as t  . See Figure 21. For small g, the right-hand-side (RHS) of (23) 

becomes a fourth-order differential evolution operator (in ) with periodic boundary 

conditions on 0    2 which must have discrete eigenvalues, n. Apart from growth 

(n=0) and translational (n=1) eigenmodes, one should specifically have n < 0, 

corresponding to decay times of n = 1/|n|. Asymptotic decay is exponential on a time 

scale eq = max(n>1), i.e., g(, t) ~ exp(-t/eq). 
 

 
 
Figure 21. Schematic of NC geometry and polar coordinates (with req reflecting a {100} facet). 
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Given the variable coefficients in the general evolution operator described above 

for anisotropic surface energy, the analysis of corresponding eigenmodes and 

eigenvalues, n, is non-trivial. For this reason, it is instructive to consider the simple 
special isotropic case, behavior for which should illustrate the basic features of the more 

general case. Here, 
~

 =  and PD are independent of orientation, and req = <req> is 
constant, i.e., the equilibrium shape is circular. For g << 1, one has that                         

[1 + (r-1 r/)2]m/2 = 1 + O(g2), so these terms are replaced by unity, and  
 

  -(req)-1 (g + 2/2 g) and 2/s2   -(req)-3 (2/2 + 4/4) g.   (25) 
 
Consequently, (23) reduces to  
 

/t g(, t)  - (kBT)-1 PD  (req)-4 (2/2 + 4/4) g(, t).     (26) 
 

(cf. Ref. 174 which is missing the 2/2 term). Now, the eigenfunctions of the evolution 

operator on the RHS of (26) have the simple form n() = ein. As a result, the 

eigenvalues, n, and decay times, n = 1/|n|, satisfy181 
 

n = - (kBT)-1 PD  (req)-4 n2(n2 -1), so that n = (kBT)(req)4/[PD  n2(n2-1)].   (27) 
 

Note that n = 0 corresponds to a pure growth/decay mode, and n = 1 correspond to 
translational modes to lowest-order which do not evolve under mass-conserving 

periphery diffusion, and thus have 0 = 1 = 0. Solutions of (26) have the form  
 

g(, t) = n gn(t) ein where gn(t) = exp(-t/n) gn(0).     (28) 
 
With regard to asymptotic shape evolution, the equilibration time is given by 
 

eq = max(n>1) = 2 = (kBT)(req)4/(12 PD ).      (29) 
 

This result for eq will be directly compared with experimental observations in Sec.5.1. 
From the above discussion, it should be clear that PD-mediated shape evolution, 

which is described by a fourth-order differential evolution operator, is quite distinct from 

curvature-driven evolution where Vn  , which is described by a second-order 
differential evolution operator. This is particularly clear regarding consideration of pinch-
off phenomena. For curvature-driven evolution in 2D, Grayson’s theorem182 states that 
any shape no matter how irregular can never pinch-off into sub-clusters, but rather 
shrinks achieving an increasingly circular shape. It has been argued177 that the lack of 

pinch-off also applies for a modified model Vn  ( - 0), which corresponds to shape 
evolution via an evaporation-condensation pathway (see below). Numerical 
implementation the above 2D continuum formulation of PD-mediated shape evolution 
has enabled effective description of the evolution of large irregular shaped vacancy 
nanoclusters where pinch-off is observed experimentally.177 See Sec. 5.5.1. This 
phenomenon can be described qualitatively even with an isotropic formulation. 
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Quantitative description is achieved by including anisotropy in the step energy.  There 
also exist generic modeling studies revealing pinch-off in these 2D systems.183 

However, we should emphasize that while the above continuum formulation must 
provide a precise description of evolution for sufficiently large sized clusters, it can fail 
on the nanoscale. A dramatic example is provided by consideration of the evolution of 
convex elongated NCs back to their equilibrium Wulff shapes.176 A breakdown of 
continuum theory applies if the linear size, L, of the NCs is less than the characteristic 

separation between kinks on close-packed step edges, Lk  ½ exp[+k/(kBT)] (in units of 

surface lattice constants), where k denotes the kink creation energy, so the step edges 
are effectively faceted. In this case, reshaping is limited by nucleation of new edge 
layers on these facetted step edges in order to widen the elongated NC, and size 

scaling of the relaxation time, eq ~ Ln, is described by n < 4. Even in cases where 
reshaping is not mediated by nucleation of new edge layers, continuum theory can fail 

in the presence of large kink Ehrlich-Schwoebel barriers, k, specifically in the case 

where the corresponding kink ES length, L = exp[k/(kBT)] - 1, exceeds L.153 
Furthermore, the presence of large kink ES barriers produces even greater deviations 
from the predictions of continuum theory in cases where reshaping is nucleation 
mediated.153 Examples of such deviations will be presented in Sec.5. 

Above, we have focused exclusively on PD-mediated NC reshaping. We note 
that a general universal continuum formulation exists accounting for shape evolution via 
all of: periphery-diffusion (PD); detachment and correlated reattachment (also known as 
terrace diffusion or TD) noting that in the absence of an attachment barrier, 
reattachment will generally occur close to the detachment point; and uncorrelated 
detachment-reattachment (also known as evaporation-condensation or EC) applying for 
a significant step attachment barrier.129,174 Different size-scaling applies to TD and EC 
versus PD. However, since PD-mediated reshaping applies for system of interest here, 
we do not discuss further the more general formulation. 

 
4.1.2. Shape evolution of 3D NCs. Next, we consider analogous Lagrangian 

front-tracking approaches for surface-diffusion-mediated shape evolution of 3D NCs. As 
indicated above, such studies have a long history. Traditional continuum modeling for 
PD mediated-shape evolution has been based on classic work of Herring, Mullins, 
Nichols, et al.125,127,128, motivated by early experiments.184 There exists more recent 
sophisticated simulation analysis by Eggers.126 The basic formalism is entirely 
analogous to that presented above after accounting for diffusion across the 2D surface 
of 3D NCs versus the 1D periphery of 2D NCs. Following the treatment and notation of 

the classic Mullins papers which considered isotropic surface tension, , (which is thus 
equivalent to the isotropic surface stiffness) and isotropic surface diffusivity, the velocity, 
Vn, normal to the surface satisfies 
 

Vn = -  s  JSD, where JSD = -(kBT)-1 DS  s  with  = + S .   (30)  
 

Here JSD is the (vector) surface diffusion flux, s is the surface divergence, DS is a 

surface diffusion coefficient, and  is the density of diffusing surface atoms (i.e., of mass 
carriers). The form of the chemical potential is analogous to 2D except that now the 

surface curvature, S, is obtained from S = 1/R1 + 1/R2 where R1 and R2 are the 
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principle radii of curvature.  is the atomic volume. Since the expression for Vn includes 
four spatial derivatives as in the 2D case, it still follows that the characteristic time for 

relaxation, eq, scales with linear NC size, L, like eq ~ Lb*, with b* = 4.  
As for the 2D case, it is also appropriate to assess the nature of the time 

evolution. Again, one naturally considers the asymptotic behavior for the approach to 
3D equilibrium Wulff shapes of convex 3D NCs.  However, complete analytic treatment 
is only viable assuming isotropic surface energy and surface diffusivity, so that the Wulff 

shape is a sphere of radius req. Let r(, , t) gives the distance of the surface from the 

center of mass origin for polar angle , where 0     and asimuthal angle , and set    

r(, , t) = req [1+ g(, , t)], so that g(, , t)  0, as t  . Then, for small deviations 
from spherical shape g << 1, one has that  
 

S  -2/r + r-2 , r, and (s)2 S  -(req)-3 [2, + (,)2] g,    (31) 
 

where , = (sin )-1 / (sin  /) + (sin )-2 2/2 is the angular part of the 
Laplacian. Consequently, one has that 
 

/t g(, , t)  -(kBT)-1 DS  (req)-4 [2, + (,)2] g(, , t),    (32) 
 
The eigenfunctions of the differential operator on the RHS of (32) are spherical 

harmonics, Yl
m(,), with eigenvalues are l = -(l-1)l(l+1)(l+2) (kBT)-1 DS  (req)-4. 

Analogous to the discussion of shape evolution in 2D, the corresponding to decay times 

are l = 1/|l|. Note that l = 0 corresponds to a growth/decay mode, and l = 1 
corresponds to translational modes to lowest order which do not evolve under mass-

conserving periphery diffusion, and thus have 0 = 1 = 0. With regard to shape 

evolution, the asymptotic equilibration time is given by eq = max(n>1). Consequently, 
the above results imply that 
 

eq = 2 = 1/|2| = (kBT)(req)4/(24 DS  ).       (33) 
 

Rather than focus on asymptotic decay to equilibrium, classic studies have 
considered initial neck growth behavior for sintering problems. Benchmark geometries 
correspond to sintering of two spheres of radius R (i.e., sintering of unsupported 
spherical 3D NCs),126,128 and sintering of a single sphere of radius “a” with a plane (i.e., 
wetting or merging of a 3D supported spherical NC with a support of the same 
material).128,184 Specifically, interest is in initial growth of the radius of the neck, r, for 

these geometries.  Early analysis utilized simplified models for the geometry in the neck 
region (cf. Figure 22a taken from the Kuczynski paper184 for sintering of a sphere with 
the plane). The result was that128 
 

r7/R3 = C (kBT)-1 DS   t,         (34) 

 
where the numerical constant C differs for the two cases, but for both r ~ tn with n = 1/7. 

Early numerical analysis indicated at least transient behavior closer to n = 1/6. 28  
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Figure 22. (a) Sintering of a sphere with a plane. Reprinted with permission from Ref. 184. 
Copyright 1949 American Institute of Physics. (b) Sintering of 2 spheres revealing void 
formation in the neck region. Reprinted with permission from Ref. 126. Copyright 1998 
American Physical Society. 
 

Later more sophisticated numerical analysis of evolution of sintering for two 
equal sized spheres126 found extraordinarily rich and topologically distinct behavior from 
the traditional picture involving the formation of enclosed voids behind the advancing 
neck. See Figure 22b. This study confirmed the classic exponent n = 1/7, but also 
rationalized the occurrence of a transient regime with n = 1/6. Finally, we note that early 
analysis has also considered the effect of anisotropy in surface energy.185 

Just as for the 2D cases, pinch-off phenomena are evident when considering 
evolution of more complex NC shapes. In fact, one might anticipate that these 
phenomena will be more prevalent in 3D as there is no Grayson’s theorem to block 
pinch-off even for curvature driven evolution. The classic example which has received 
considerable recent attention is the surface-diffusion analogue of the Rayleigh-Plateau 
instability for fluid jets.186,187 For an effectively infinite cylindrical NC (nanorod) of radius 
r0 and diameter d0 = 2r0, linear stability analysis of evolution under surface diffusion 

predicts a most unstable wavelength of 0 = 8.89 r0 = 4.44 d0 leading to pinch-off into a 
sequence of NC droplets.124,188 Numerical integration (beyond the linear stability regime) 

yielded a consistent estimate of 0 = 4.5 d0 .189 Analogous instability naturally does not 
occur for an infinite nanorod in 2D since opposite sides do not communicate with each 
other. However, we will discuss in Sec.5.5.2 analogous pinch-off in 2D for finite 
nanorods where fluctuations can play an important role.  

Analogous to the 2D case, there has also been recognition of shortcomings the 
above classic continuum treatment for shape evolution of convex facetted 3D NCs at 
temperatures below the roughening transition.121,190  Similar to our discussion of 
reshaping of small convex effectively facetted 2D NCs, evolution of 3D NCs is limited by 
nucleation of new layers. However, there are also fundamental differences between the 

2D and 3D cases. Size scaling of the relaxation time, eq ~ Ln, is described by n > nc = 4 
(rather than n < nc = 4 as in 2D), where classic continuum behavior with n = nc is 
obtained only at sufficiently high temperature.121 The basic picture is that there exists a 

nucleation barrier which increases with NC size, so that eq actually increases 
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exponentially with size, and reshaping is effectively blocked for NC sizes above the 
nanometer regime.121,190 

Finally, one might consider continuum modeling of partially-wetting 3D supported 
NCs. In this case, the Winterbottom construction (or the Young-Dupre equation for 
isotropic surface energy) demonstrates that there is a well-defined “contact line” 
between the NC and the substrate for the equilibrium NC shape.  Starting with a non-
equilibrium shape for the supported NC, this contact line must evolve (as well as the 
entire NC shape) to achieve its correct equilibrium form. There have been extensive 
studies of such dynamics for liquid droplets,191,192 but not for supported crystalline NCs. 
One could anticipate a stochastic version of such models enabling description of, e.g., 
the diffusion of supported 3D NCs.  
 
4.2. Incorporating fluctuations into coarse-grained modeling for individual NCs  
 
The deterministic continuum treatments of Sec.4.1 completely neglect the effect of 
thermal fluctuations, which in general will become more significant for smaller length 
scales. In Sec.5.5.2, we shall see that they have a major effect on pinch-off in 2D 
systems. Perhaps more significantly, inclusion of fluctuations is essential for the 
description within a continuum formulation of the diffusion of supported NCs. Such a 
treatment has been developed in detail for diffusion of 2D epitaxial NCs, and more 
generally for fluctuations at step edges on extended surfaces.129,174,193 

Here, we focus on the development of a formulation to treat PD-mediated 
diffusion of 2D epitaxial NCs as developed by Khare et al.174,193 It is necessary to 

supplement (23) with a suitable zero-mean conserved noise term, , which is delta-
function correlated in time and positional variable, and with an amplitude determined by 

the fluctuation-dissipation relation. Thus, we analyze the Langevin equation Vn = -s JPD 

+ . As in Sec.4.1, we use polar coordinates, where r(, t) gives the distance of the step 

edge of the NC from the origin for polar angle , where 0    2, and introduce the 

equilibrium radius, req(). For simplicity, we ignore anisotropy in step edge mobility and 

stiffness so that req() = req is constant, and we set  r(,  t) = req[1+ g(,  t)]. Now, NC 
evolution is described by (26) after including fluctuations, i.e., 
 

/t g(, t) = - (kBT)-1 PD  (req)-4 (2/2 + 4/4) g(, t) + (, t)/req.   (35) 
 

It is instructive to introduce a Fourier decomposition for both g(, t) = n gn ein, where gn 

= g-n*, and (, t) = n n ein, where n = -n*. The n = 0 mode is absent by mass 

conservation for g, and due to a zero overall noise for . Further specification of the 
noise term is provided below. Fourier analysis of (35) yields 
 

/t gn(t) = -gn(t)/n + n(t)/req, where n = (kBT)(req)4/[PD 
~

 n2(n2-1)],   (36) 
 

and <n(t)-m(t)> = fn n,m (t-t). Integration of (36) with gn(t) = 0 reveals that 
 

<|g1|2> = f1 t/(req)2 for n = 1, and <|gn|2>  ½ fnn/(req)2 for n > 1 as t.   (37) 
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More complete analysis for this system utilizes the fluctuation-dissipation relation 
to determine the amplitudes, fn, of the Fourier amplitude of the noise in terms of key 
system parameters. This in turn requires further consideration thermodynamic 
framework underling the continuum evolution equations. For isotropic step energy, one 
can rewrite the free energy, F, introduced in (17), in a form appropriate for NCs as  
 

F =  P for perimeter length P = d [r2 + (dr/d)2]1/2.     (38) 
 

Again setting r(, t) =  req[1+ g(, t)] with g << 1, one obtains 
 

F =  ds  = F0 + F, where F  req  d [g + ½ (dg/d)2],    (39) 
 

where F0 = 2 req  is the free energy for a perfect circular cluster, and we have used 

that d g = 0 as a result of mass conservation. Decomposition of F into contributions 
from specific Fourier modes shows that181 
 

F =   req (2g0 + n n2 |gn|2).         (40) 
 

For small g << 1, conservation of the total mass, M = ½ d r(, t)2, implies that 
 

2g0 + n>0 |gn|2 = 0          (41) 
  
neglecting the |g0|2 term relative to g0. Thus, (40) can be rewritten as 
 

F = n Fn where Fn =  (n2 -1)req |gn|2.      (42) 
 
The fluctuation-dissipation relation requires that the free energy content of the nth 

Fourier mode, Fn, must equal ½ kBT for n > 1 in equilibrium as t, so that 
 

<|gn|2>  kBT/[2(n2 -1)req ] for n > 1 as t.       (43) 
 
Comparing (43) and (37) implies that the noise fluctuation amplitude, fn, is given by  
 

fn = PD n2/[(req)3].          (44) 
 
Although the above analysis of fn strictly applies only for n>1, we will also use (44) for n 
= 1. This produces results for cluster diffusivity which are consistent with independent 
derivations. 

As an aside, using (44) together with the above specification of <n(t)-m(t)>, one 

can assess further properties of the noise (,t). In particular, one finds that           

<(,t) (,t)>  (-) (t-t), where  denotes the second derivative of the periodic 
version of the Dirac delta function (the derivatives arising since noise is conservative). 
 

Finally, we utilize the above results to determine the NC diffusion coefficient, DNC, 

obtained from DNC = limt <(rCM)2>/(4t), where rCM is the displacement in the NC 

center of mass over a time period t, (rCM)2 = rCM  rCM, and <-> denotes an ensemble 
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average. In fact, for atomistic models of NC diffusion, back-correlations in the walk of 

the NC lead to enhanced values of <(rCM)2>/(4t) for short times155, but we find that the 
ratio is constant in the continuum Langevin formulation. To evaluate DNC, it is necessary 

to first rewrite <(rCM)2> in terms of suitable ensemble averages over g or related 

quantities. With regard to center of mass displacement, it is clear that only the n = 1 
modes will contribute, and an explicit calculation assuming that g << 1 yields 
 

rCM  = req(g-1 + g1)ex - i req(g-1 – g1)ey, so that (rCM)2 = 4 req |g1|2.   (45) 
 

As a consequence, since <|g1|2>  f1 t/(req)2 for all t from (4.12), it follows that 
 

DNC = <(rCM)2>/(4t) = req
 <|g1(t)|2>/t = f1 = PD/[(req)3].     (46) 

 
As indicated above, this result can be derived independently from a more heuristic 
approach DNC = kBTV/F where V is the drift velocity of the NC subject to an external 

force F, the challenging being to determine V in terms of F for PD-mediated diffusion. 

Thus, PD-mediated diffusion of an NC of size N atoms (so that N ~ R2 where R is the 

“radius”), one has that DNC ~ N-, with  = 3/2. The above analysis has been extended to 

consider TD- (AD-) mediated cluster diffusion showing that  = 1 ( = ½). 
Again, while the continuum formulation provides a precise description of 

evolution for sufficiently large sized clusters, it can fail on the nanoscale. Just as it fails 
for the nucleation-mediated evolution of convex elongated NCs back to their equilibrium 
shapes, it also fails for the prediction of cluster diffusion for smaller NC sizes and lower 

temperatures where lower effective exponents, eff < 3/2 are observed. See Sec.8.1. 
Finally, we briefly comment on the incorporation of fluctuations into evolution of 

3D NCs. For unsupported NCs where surface energy and diffusivity are isotropic, one 
can follow the above approach be decomposing the evolution into distinct spherical 
harmonic models and prescribing the properties of the noise for each such mode.  
 
4.3 Other continuum formulations for NC shape evolution 
 

4.3.1. Continuum multi-field formulations. In our discussion of conventional 
continuum formulations above in Sec.4.1 and Sec.4.2, we have noted the shortcomings 
of the conventional continuum theory for evolution of NCs for smaller sizes and lower 
temperatures. This motivated an attempt by Pierre-Louis194 to refine the conventional 
treatment to account for distinct behavior at lower temperatures within a continuum 
multi-field formulation for 2D epitaxial NCs. Here, for simplicity we first consider an 
extended step aligned with the x-axis with mean position y = 0. This approach includes 
an extra field, the density c(x, t) of diffusing atoms along the step edge, as well as 
considering the location of the step edge, y(x, t). See Figure 23. Then, the conventional 

overall step free energy, F = ds  = dx  [1 + (y/x)2], is replaced by 
 

 F = dx { [1 + (y/x)2]1/2 + ½ (c)2 }  F0 + dx { ½ 
~

(y/x)2 + ½ (c)2 },  (47) 
 



48 
 

where c = c – c0
eq and c0

eq denotes the equilibrium concentration of diffusing step edge 
atoms along a straight step,194 and a small slope expansion is performed of the first 

term. Next, a Fourier decomposition is introduced for y(x, t) = (2)-1/2 dq yq(t) eiqx, and 

similarly for c. Then, treating 
~

 as a constant, and performing a corresponding 
decomposition of the free energy yields 
 

F = dq Fq where Fq = ½ 
~

 q2 |yq|2 + ½  |cq|2.      (48) 
 
In the presence of thermal noise, equipartition of energy in thermodynamic equilibrium 
implies that194 
 

½ 
~

 q2 <|yq|2> = ½  <|cq|2> = ½ kBT.       (49) 
  
Also assuming that edge atoms are non-interacting and can be treated at a mean-field 

level implies that <|cq|2> = c0
eq, so that  = kBT/c0

eq determining this key parameter194. 
 

 
 
Figure 23. Schematic of multi-field treatment of step edges where y(x, t) denotes step 
displacement and c(x, t) denotes the edge atom concentration. Reprinted with permission from 
Ref. 194. Copyright 2001 American Physical Society. 

 
 Evolution equations are obtained by appropriate functional differentiation of the 
free energy, an approach which we have also described for the conventional continuum 
theory. One adopts Model A type non-conserved dynamics for y, and Model B type 

dynamics for the conserved total mass reflected by the combination  = y/ + c where 

 is the unit cell area. This yields194 
 

-1 /t y = -A F/y and /t  = /x [B /x (F/)],     (50) 
 
where A and B are kinetic coefficients, and appropriate noise terms can be added to 
these equations for analysis of fluctuation effects and NC diffusion. Evaluation of the 

functional derivatives and recasting the equation for  in terms of c yields194 
 

-1 /t y = (c - ceq) and /t c = /x [ /x c] - (c - ceq),    (51) 
 

where ceq = [1+   
~

/(kBT)]c0
eq,        (52) 
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and  = - 2y/x2 is the local curvature. Also, one has that  = -1A and  = B. Note 

that the dependence of ceq on y through  fully couples these equations. We emphasize 
that the quantity ceq in (52) naturally emerges as the local equilibrium adatom 
concentration at the curved step edge consistent with the Gibbs-Thomson equation. 

This result uses the above expression for  = kBT/c0
eq. Again, appropriate noise terms 

can be added to these evolution equations. Additional heuristic arguments indicate that 

 is proportional to the step edge diffusivity (which reflects the diffusion rate along close 
packed step edges with some correction reflecting kink rounding barriers and the kink 

density).194 It is also argued that the macroscopic attachment coefficient, , corresponds 
to the inverse of the characteristic time for an edge atom to reach a kink. Thus, 

according to Einstein’s relation,  ~ /(Lk)2, where Lk denotes the mean kink 
separation.194 
 As an initial application of the refined dynamics (51), we determine the 
modification to the standard continuum prediction (20) for the decay rates and decay 
modes for eigenmodes of an extended step edge where we ignore anisotropy in step 
edge energies and mobilities. We implement an eigenfunction expansion y(x, t) =                

(2)-1/2 dx yq eiqx and c(x, t) = (2)-1/2 dx cq eiqx. Recalling that ceq involves 2y/x2, 

one obtains a coupled linear pair of equations for yq and cq for each q of the form 
 

-1 d/dt yq =  cq – Kq yq and d/dt cq = - q2 cq - cq + Kq yq,   (53) 
 

where Kq =   
~

/(kBT)]c0
eq q2. The decay rate, q, for mode q comes from analysis of 

the eigenvalue of the 2x2 matrix version of these equations. However, it is convenient to 
implement a simpler “quasi-static” analysis regarding decay in the edge atom density, 

cq, to be much faster than that of the step edge displacement, yq.  Setting d/dt cq = 0 

yields a characteristic decay time, q = 1/|q|, from the yq-equation of 
 

q = [q2 + (/)](kBT) /[ 2 
~

 c0
eq q4].       (54) 

 

Since /  (Lk)2, there is a crossover from the behavior for traditional continuum 

theories q ~ q-4 for qLk << 1 (long wavelength regime) to q ~ q-2 for qLk >> 1 (short 
wavelength regime). 

For analysis of shape evolution for finite NCs with isotopic step energy and 
mobility, we adopt polar coordinates as in Sec.4.1.1 and Sec.4.2. The above analysis is 

adapted polar coordinates making the replacements dx  req d, y(x, t)  req[1+ g(, t)], 

considering small deviations from circular shapes so g << 1 where  =                             

-(req)-1 (g + d2g/d2).  We implement an eigenfunction expansion g(, t) = n gn ein and 

c(, t) = n cn ein. Then, substitution into (51) yields 
 

-1 req d/dt gn =  cn - Kn gn and d/dt cn = - n2/(req)2 cn - cn + Kn gn,  (55) 
 

where Kn =   
~

/(kBT)]c0
eq (n2-1)/req. A “quasi-static” analysis assuming rapid decay in 

the edge atom density, cn, yields a characteristic decay time, n = 1/|n|, from the gn-
equation of194 
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n = [n2 + (/)(req)2] [{(kBT)(req)2} /{ 2 
~

 c0
eq n2(n2-1)}].       (56) 

 
 As with the traditional continuum analysis, the equilibration time for asymptotic 

shape relaxation is determined that of the slowest decay mode, eq = 2 [cf. (29)], noting 
that n = 0 is a forbidden growth/decay mode, and n = 1 is a translation mode. It is clear 

that (56) predicts cross-over behavior as the parameter (/)(req)2 ~ (req/Lk)2 passes 
through unity, where again Lk denotes the mean kink separation. One has that 
 

eq  (kBT)(req)4/(12 2  c0
eq 

~
) for req >> Lk,  

 

and eq = (kBT)(req)2 /(12 2 c0
eq 

~
) for req << Lk.     (57) 

    
The former case recovers the result of traditional continuum analysis recognizing that 
the product of step edge mobility and equilibrium adatom concentration gives the step 
edge conductivity. The latter case indicates distinct scaling of relaxation time with 
characteristic size, req, in the case where NCs are smaller or temperature is lower and 
step edges are effectively facetted. This behavior will be confirmed in Sec.5.1 and 5.2. 

Finally, this result for 1 can also be used in the analysis of NC diffusion following the 
formulation in Sec.4.2 to indicate a crossover from the traditional continuum prediction, 

DNC ~ PD(req)-3 for req >> Lk, to DNC ~ PD(Lk)-2(req)-1 for req << Lk. 
 

4.3.2. Evolution of faceted NCs. Lagrangian interface tracking approaches 
have also been tailored to consider the evolution of faceted NCs. Here, the need to 
appropriately determine a discrete set of normal propagation speeds for each facet 
accounting for, e.g., diffusion between facets of 3D supported or unsupported 
NCs.45,46,195 Although 2D epitaxial NCs are not strictly facetted, as noted previously they 
can become effectively facetted at sufficiently low temperature. Thus, rather than 
implement the “smooth” continuum type models described in Sec.4.1, one might 
anticipate that it is more efficient and reasonably effective to track evolution in models 
where 2D NCs are treated as faceted. However, in such models with facetted 2D NCs, it 
is necessary to appropriately specify the normal propagation velocity, Vi, of each step 
edge facet i in a way which is consistent with the underlying mechanism of mass 
transport, e.g., PD-mediated shape evolution. The appropriate non-trivial procedure is 
described in Ref. 196. For a Wulff shape with M distinct facets i = 1,2,…,M, we denote 

their lengths by i for some specified area. Then, for a general polygonal NC of the 
same area where a facet of type i has a length Li, one defines a weighed curvature for 

that facet via i = i i/Li, where the convexity factor is +1, 0, or     -1, as shown in 

Figure 24. These i determine the average chemical potential (Li)-10<s<Li i(s) on the 

facet. As usual Vi  -d/ds Ji and Ji  -d/ds i(s). Since Vi is constant for each facet, this 
implies that the chemical potential varies quadratically along each facet. Imposing 

continuity of  around the NC perimeter ultimately gives a set of equations which can be 
solved to determine the Vi. It is possible that during evolution, some facets will shrink to 
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zero lengthy and be eliminated, or that new facets need to be created for reasons of 
stability. We refer the reader to Ref. 196 for a detailed description.  
 

 
 
Figure 24. Weighted curvature for evolution of 2D facetted NCs. Reprinted with permission 
from Ref. 196. Copyright 1995 Elsevier Science Ltd. 

 
One limitation of this modeling strategy is that evolution of non-equilibrium NC 

shapes, even starting from a collection of facets with preferred orientations, can involve 
evolution through shapes with significant portions of step edges of unfavorable 
orientations. This feature is not captured within the above modeling framework. 
However, we shall see in Sec.5.5.2 that this approach is quite successful in capturing 
overall behavior, e.g., for reshaping on nanorods as determined by more realistic 
modeling. A novel limiting case of this modeling strategy comes from allowing multiple 

facet orientations, 2n/M for integer n with large M thereby mimicking isotropic step 
energy. We shall also see in Sec.5.2.2 that results are quite close to that obtained from 
analysis of a traditional continuum isotropic model. Finally, we remark that there is 
motivation to extend this approach to 3D where NCs can be truly facetted. 
 

4.3.3. Multilayer step dynamics. The above Lagrangian formalisms have 
focused on 2D epitaxial NCs representing the NC periphery as an evolving sharp curve. 
This approach is also naturally referred to as step dynamics modeling. The approach 
can be naturally extended to multilayer step-dynamics modeling of supported 3D 
epitaxial NCs, provided that these NCs have no overhangs, where this semi-continuum 
approach treats lateral step positions between layers in a continuous step dynamics 
formulation, but retains a discrete description of vertical layer structure.197,198 See Figure 
25. The requirement for no overhangs should naturally apply in the equilibrium structure 
which from Figure 5b implies that the adhesion energy for the NC to the substrate 
should exceed the surface energy for the NC material. One could imagine deposition 
creating an artificially tall 3D NC which then would relax in height and spread. If the 
substrate and NC material are the same (so the adhesion energy is double the surface 
energy), then the NC will decay into a single layer on the substrate. This type of 
evolution has been considered in detail using this step dynamics approach, where often 
the goal is to systematically coarse-grain the semi-discrete formulation to obtain a fully 
continuum partial differential equation (PDE) description. Sometimes, however, 
atomistic-level information is required as input to the PDE, e.g., the decay times of 
disappearing top-level 2D layers on the 3D NC.198 It should also be noted that this multi-
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layer step dynamics approach has been implemented to describe the growth of 3D 
epitaxial mounds.199,200 
 

  
 
Figure 25. Schematic of coarse-graining from continuum to multilayer step-dynamics formulation. 
Reprinted with permission from Ref. 198. Copyright 2006 American Physical Society. 

 
4.3.4. Eulerian versus Lagrangian dynamics. Rather than Lagrangian sharp-

interface tracking approaches of Sec.4.1 and 4.2, an alternative is of Eulerian 
approaches for NC shape evolution, typically based on the phase-field method.201 Here, 
the atomically sharp NC periphery is smeared out and described by a continuous order-
parameter whose evolution satisfies a continuum partial differential equation encoding 
the relevant physics. This approach has been applied extensively to analyze sintering, 
where we note that the formulation is flexible and can account for different mass 
transport mechanisms and also grain orientation, and thus the presence and evolution 
of grain boundaries between sintered NCs.202-204 This formulation can also naturally 
treat topological changes, i.e., pinch-off of NCs into separate smaller NCs, although 
such work seems to have focused on liquid systems. A refinement of the standard 
phase-field method to incorporate greater atomistic detailed, particularly local crystal 
structure, is the phase-field crystal approach.205 However, this strategy does not seem 
to have been applied yet to NC shape evolution. 
 
4.4. Post-assembly coarsening for ensembles of supported NCs 
 
Here, we present the basic formulation of coarsening theory first for Ostwald Ripening 
(OR) and then for Smoluchowski Ripening (SR). In both cases, the theory is built 
around an analysis of the evolution of a single NC (NC growth or shrinkage for OR, and 
NC diffusion for SR). This information provides input for an ensemble-level description 
of evolution of the entire NC distribution. 
 

4.4.1. Ostwald Ripening (OR). OR considers the coarsening of ensembles of 
immobile supported NCs below. For simplicity, we also assume weak anisotropy in step 
or surface energies so that NCs are roughly circular for 2D NCs and are treated as 
hemispheres for 3D NCs, characterized by a radius R. It is straightforward to 
generalized the treatment to more general spherical caps for 3D NCs. Description of OR 

kinetics is based on analysis of the density,  (per surface unit cell), of the species 
transporting mass across the surface between NCs. The default expectation is that this 
species is adatoms, but it could be vacancies in the top surface layer.14 This analysis 
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exploits the Gibbs-Thomson relation10-14 which gives an expression for the equilibrium 

density, eq = eq(R), of this species at the edge of a NC of radius R in terms of its value 

for a very large NC (R = ) as  
 

eq(R)  eq() exp[+(d-1)
~
/(kBTR)], with eq()  exp[-Eform/(kBT)].   (58) 

 

Here, 
~

 is the step stiffness per unit length for 2D NCs, or the surface stiffness per unit 

area for 3D NCs, and  is the unit cell size (so  ~ a2 is unit cell area for 2D NCs, and 

 ~ a3 is the unit cell volume for 3D NCs, and where ‘a’ is the lattice constant). This 

result reflects the feature that a finite size NC has an excess chemical potential,  =  

+(d-1)
~
/R relative to a large NC.  
Eform is the formation energy for creating a terrace adspecies by extraction from a 

very large NC. This corresponds to the difference in energy of an atom in the bulk of the 
NC and an isolated terrace atom. For 2D NCs, Eform can also be regarded as the energy 
cost to extract an adatom from a kink site on the linear step bordering a large NC, which 
roughly corresponds to the cost of breaking lateral bonds at the kink site (noting that the 
atom is interacting with the substrate both before and after detachment). For a 3D NC, 
Eform corresponds to the energy of extracting an atom from a kink site on an extended 
stepped surface of the NC material (i.e., the bulk cohesive energy for that material) less 
the energy gain from adsorbing the atom on the substrate (i.e., the magnitude of the 
adsorption energy). 

Below, the terrace diffusion coefficient is denoted as D = D0 exp[-Ed/(kBT)], where 
Ed is the terrace diffusion barrier. Any additional barrier for a species to attach to NC 

edges is denoted by , and the effective activation barrier for OR-mediated coarsening 
is denoted as Eeff. The standard picture is that atoms can potentially attach anywhere 
along the periphery for 2D NCs, but just along the contact line between the NC and the 
substrate for 3D NCs. 

During OR, the adatom density is regarded as relaxing quickly to that in 
equilibrium with the instantaneous cluster distribution. Thus, it suffices to solve the 
boundary value problem (BVP) for the steady-state diffusion equation with appropriate 
boundary conditions (BCs)13,14 
 

0  /t = D 2 in 2D, with D /r| = K [ - eq(R)] at NC edges,   (59) 
 

where /r| denotes the normal gradient of  at cluster edges r = R, and K is a kinetic 
coefficient describing the ease of attachment to step edges. The traditional Chernov 

formulation of kinetic coefficients sets K = K = D/L, where L = a[exp[/(kBT)] – 1] 

denotes the attachment length in the case of an additional energy barrier, , for 

attachment. Commonly there is no additional attachment barrier ( = 0) for metallic NCs, 

so L = 0 and K = , in which case one would traditionally adopt a Dirichlet BC,  = eq. 

In general, one might anticipate that the relative magnitude of L and the mean NC 
separation, Lc, will be a key factor, noting that the boundary conditions are imposed at 
island edges separated by a distance of order Lc. 
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 We should note that the traditional Chernov theory applies to meso- or 
macroscale geometries where characteristic lengths far exceed those describing 
atomistic-level features of step edges such as the mean kink separation. Recent 
treatments for 2D epitaxial systems systematically coarse-graining semi-discrete 
treatments206 or atomistic treatments207,208 reveal corrections to Chernov theory. K 
should actually also depend on (and increase with) kink density since atoms are 

incorporated into the growing crystal at kink sites, and thus K <  even if  = 0. 207,208 
This feature is important for coarsening in some systems. See Sec.8.2. In addition to a 
more precise treatment of K for 2D epitaxial systems, one might also account for step 
permeability or transparency which leads to further modification of the above BC.206,209. 
However, such effects are not generally included in development of OR theory. 
 The most direct analysis of OR would attempt to solve (e.g., with numerical 
methods) the above BVP for a prescribed distribution of clusters. See Sec.8.2. 
However, for purposes of developing general theory in the spirit of Lifschitz-Slyosov-
Wagner (LSW), one considers a BVP involving a single NC embedded in an effective 
medium representing other NCs which is described by a suitable “outer” BC.3,73 If Lc 

denotes the mean NC separation, then this outer BC requires that  approaches a value 

eq(Rc) at a distance from the NC center corresponding to roughly ½ Lc (i.e., mid-way 
between the NC and its neighbors). Here, the critical radius, Rc, provides a measure of 
the average cluster size, Rav (i.e., Rc ~ Rav). Consequently, the total coverage of 

material, , on the surface incorporated in the NCs which is constant in time satisfies  
~ (Rc)d/(Lc)2 in d = 2D or 3D. Solving this BVP gives the rate of growth (or shrinkage) of 
an NC of radius R, determined from the total net flux of adatoms attaching to that 

cluster, J (in atoms per unit time). Setting K = D/L yields the form10,14,210 
 

J  2 D -2/d eq() {exp[+(d-1)
~
/(kBTRc)] - exp[+(d-1)

~
/(kBTR)]}  [L/R + ln(Lc/R)]-1 

 

 2 (d-1) D -2/d eq() 
~

 /(kBT) [L + R ln(-1/d (Lc)(d-2)/d)]-1 [R/Rc - 1]. (60) 
 
The appearance of the ln-term is expected for analysis of the Laplace equation in 2D, 
and mandates imposition of the outer BC at a finite distance. The second simplified 
expression also replaces R by Rc in the ln-term, or equivalently neglects a ln(Rc/R) term. 
Commonly reported simplified expressions for J performs a Taylor expansion on the 
exponentials which is often reasonable for small (but not too small) R relative to Rc. 
However, care must be taken in application to analysis of experimental NC decay 
behavior.13 Let N denote the number of atoms in the NC, so that J = dN/dt.  
 Finally, we utilize the result (60) for J to obtain a growth law, i.e., an expression 

for dR/dt, for an NC of radius R. Using that the area, A = R2 of the circular NC in 2D 

satisfies A =  N, and that the volume V = 2/3 R3 of the hemispherical NC in 3D 

satisfies V =  N, one has dR/dt = (2Rd-1)-1 J. In presenting simplified forms for the 
growth law, we note that there are two distinct extreme regimes for kinetics: (a) terrace 

diffusion (TD)-limited mass transport where   0, so that L  0,   eq at step edges, 
and Eeff = Ed + Eform; (b) attachment-detachment (AD)-limited mass transport with large 

, so that L >> Lc,   eq(Rc) tends to be spatially uniform across terraces, and Eeff = Ed 

+ Eform + . Thus, for d = 2 or 3 D NCs, (60) becomes 
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dR/dt ~ R- [R/Rc - 1], where  = d-1 (d) for AD (TD),      (61) 
 

so that R ~ (t0 - t)1/(+1) when R  0 at t = t0,      (62) 
 
for shrinking and disappearing NCs with small R. Thus, for 2D epitaxial NCs, the area of 

decaying NC satisfies A  R2 ~ (t0 - t) for AD (linear decay), and A ~ (t0 - t)2/3 for TD 
(non-linear decay).10,12,14,210  For 3D supported NCs, the volume of the decaying NC 

satisfies V  R3 ~ (t0 - t) for AD (linear decay), and V ~ (t0 - t)3/4 for TD (non-linear 
decay). We emphasize that actual behavior of individual decaying NCs in the TD regime 
is complicated being strongly impacted by the local environment of islands. See 
Sec.8.2. For the TD regime, the adatom density on the surface is more uniform being 
controlled by the mean island size versus NCs sizes in the vicinity of the decaying NC. 
This corresponds to a simpler mean-field type scenario. See Figure 26. 
 

 
 
Figure 26. Behavior of the adatom density, , for TD versus AD for an array of supported 2D 
NCs. Black dots denote equilibrium values at NC edges (higher for small NCs). Atoms detach 
from the smaller central NC and attach to the larger NCs.  

 
LSW theory incorporates the NC growth law into a formulation for analysis of the 

NC size distribution, F(R, t) (the density or population of NCs of a certain size), 
traditionally formulated as a function of NC radius, R. This distribution is normalized so 

that dR F(R, t) = Pav(t), where Pav is the mean NC density (which decreases in time). 

Also, one has that dR R F(R, t) = Rc(t) Pav(t) where Rc(t) increases with time and         

Pav (Rc)d ~  (fixed) for d = 2 or 3 D NCs. Evolution of F(R, t) is described by the 
continuity equation 
 

/t F(R, t) + /R J(R, t) = 0 with J = dR/dt F(R, t).     (63) 
 

The strategy is to look for a long-time scaling solution F(R, t)  (Pav/Rc) f(R/Rc), where 
the scaling function f(x) describes the asymptotically selected shape of the distribution 

with dx f(x) = dx x f(x) = 1. Self-consistency for the scaling solutions determined the 
temporal scaling Rc ~ t1/2 (t1/3) for AD (TD) for 2D epitaxial NCs, and Rc ~ t1/3 (t1/4) for AD 
(TD) for 3D supported NCs.12 
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 Various extensions or refinements of this OR theory are straightforward. For 2D 
systems, it is natural to consider the coarsening of ensembles of single-atom deep 
monolayer vacancy pits (as well as single-atom high adatom island NCs). In addition, it 
is possible that mass transport can be mediated by diffusion on monomer vacancies 
through the top surface layer versus atoms on top of the surfaces.  
 

4.4.2. Smoluchowski Ripening (SR). In SR, clusters diffuse and irreversibly 
aggregate or coalesce or coagulate upon meeting to form larger clusters. For supported 
NCs, it is generally the case that coagulation is diffusion-limited. The dependence of the 
cluster diffusion coefficient, DNC, on cluster size is the key factor controlling evolution. 

Typically, treatments assume that DNC ~ N- for size N atoms.14,211,212 For our analysis, 
rather than the linear size or “radius” R of the NC used in the analysis of OR, it will be 
more convenient to use the size, N, of the NC as the independent variable. Rather than 

the size in atoms, one could use the area A = N for 2D NCs or the volume V = N for 

3D NCs where  is the unit cell size (area in 2D and volume in 3D). It is traditional to 
regard the size variable as continuous, which is natural for A or V, and we will do the 
same for N. Thus, sums over discrete size N are replaced by integrals below. Thus, we 
write the cluster diffusion coefficient as 
 

DNC(N)  D0
NC exp[-Ediff/(kBT)] N-,        (64) 

 
where Ediff is the effective barrier for diffusion of large NCs. Our focus is on analysis of 

the NC size distribution, F
~

 (N, t) (again the population or density of NCs of a certain 
size) which is here more naturally formulated as a function of NC size in atoms, N. This 

distribution satisfies the normalization relations N>0 dN F
~

 (N, t) = Pav, the mean NC 

density, and N>0 dN N F
~

 (N, t) = Pav Nav = , where Nav denotes the mean cluster size. 
Nav increases in time compensating the decrease of Pav in time. Then, Smoluchowski’s 
coagulation equations for the evolution of this distribution has the form14,108,213,214 
 

d/dt F
~

(N, t) = ½ 0<N<N dN K(N-N, N) F
~

(N-N, t) F
~

(N, t) 
  

- 0<N< dN K(N, N) F
~

(N, t) F
~

 (N, t).     (65) 
 

where the “kernel” satisfies K(M, N) = [DC(M) + DC(N)]. The first term represents 

creation of a cluster of size N from smaller clusters of size N and N-N. The second 

represents removal of a cluster of size N by coalescence with another of size N.  
From this equation, it is also clear that the effective barrier for SR-mediated 

coarsening is given by Eeff(SR) = Ediff corresponding to the effective barrier for diffusion 

of large NCs. For 2D epitaxial NCs, one has that Ediff = Ee + Eeform + KESE where Ee is 
the barrier for diffusion along close-packed step edges, Eeform is the formation energy to 

create an edge atom by extraction from a kink site, and KESE  is any extra barrier for 
edge atoms to round kinks and corners (which is typically not zero).  
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Analogous to the LSW treatment of OR, one seeks a long-time scaling solution of 

the form F
~

(A, t)  (Pav/Nav) f
~

(y=N/Nav), where Nav = Nav(t) increases appropriately with 

time.215 The scaling function f
~

(y) describes the asymptotically selected shape of the 

distribution where y>0 dy f
~

(y) = y>0 dy y f
~

(y) = 1. Finally, substituting the scaling solution 

into (65) and using the relation Pav = /Nav immediately shows that14,215 Nav ~ t1/(+1) and 

Rav  (Nav)1/d ~ t1/(d+d). For 2D epitaxial NC systems  exceeds ½ and is usually 
between 1 and 3/2 (the asymptotic large size value).  

 
4.4.3. General issues for OR and SR including crossover. There has been 

extensive rigorous analysis on the subtle selection of the shape of the asymptotic size 
distribution in coarsening for both OR216,217 and SR.215,217,218 However, for practical 
analysis of experimental data, it is also important to characterize the transient initial 
behavior reflecting the “initial conditions” controlled by the NC nucleation and growth 
during deposition.219 In fact, it seems that there has been little consideration of the 
appropriate “complete” specification of initial conditions (not just the initial NC size 
distribution, but information on the spatial distribution, and correlations between NC size 
and the local environment).9,88 

To provide a unified description of coarsening which will allow assessment of the 
dominant pathway and possible crossover behavior, we adopt a more complete (but 
approximate220) description of temporal evolution than the above simple scaling laws. 
For either OR or SR, the time evolution of the mean NC “radius”, Rav(t), is written as  
 

Rav(t)  Rav(0)[1+ t/]n, where  = 0 exp[+Eeff/(kBT)],     (66) 
 

where n denotes the relevant temporal scaling exponent,  denotes the characteristic 
time and Eeff the effective activation barrier for coarsening. Thus, for example, for        
2D epitaxial NCs, one has that  
 

n = nOR = 1/3 (1/2) for TD (AD) OR, and n = nSR =1/(2 +2) for SR.   (67) 
 

For the macroscopic value for PD-mediated NC diffusion of  = 3/2, one has that nSR = 

1/5. However, values of  down to   1, and thus n up to nSR = ¼, are observed for 
typical N. This implies that invariably nOR > nSR. 

In terms of the mean NC density, Pav, the fixed total amount of deposited material 

satisfies  ~ Pav (Rav)d. Then, we define a scaled coarsening or ripening rate for a 

specific  as14 
 
KR ~ -(Pav)-1 d/dt Pav ~ (Rav)-1 d/dt Rav, so that      (68) 
 
KR ~ exp[-Eeff/(kBT)] (Rav)-m, where m = n-1 - 1.       (69) 
 
Thus, for our above example of 2D epitaxial NCs, one has that mOR < mSR. The 
conclusion from (69) that the dominant coarsening pathway does not just depend on 
relative values of the effective barriers Eeff. Rather, since different pathways have 
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different scaling exponents n (and thus m), the dominant pathway also depends on the 
characteristic size of the NCs. This can lead to crossover behavior. For example, SR 
often dominates for typical NC sizes on metal(100) surfaces since Eeff(SR) < Eeff(OR). 
However, one expects a crossover to OR for larger sizes (later in coarsening) since mOR 
< mSR meaning that KR exhibits a slower decay with increasing NC size for OR than SR.   

Finally, we mention that while the above treatment of both OR and SR is at the 
continuum level, in principle atomistic-level or hybrid treatments are also possible.  
Treatment of the overall coarsening processes via KMC simulation of stochastic models 
is expected to be computationally inefficient. This has motivated consideration of hybrid 
treatments.221 Such a treatment has been implemented for coarsening of adatom NCs 
in metal(100) homoepitaxial systems where NCs are reasonably described as square. 
Conventional simulations determine both the size-dependence of the NC diffusion rate, 
DNC(N), and the rate for detachment of atoms from island. In the simulations the square 
undergo a random walk with motion consistent with DNC(N), and atoms are detached 
from NCs at the appropriate size-dependent rate, Such detached atoms undergo a 
diffusive random walk across the surface until reaching and attaching to the same or a 
different NC.   
 
4.5. Solution-phase self-assembly and coarsening of 3D unsupported NCs 

Our focus here is on evolution of the NC size distribution after the initial nucleation of 
NCs. First, we present a traditional formulation for coarsening via Ostwald Ripening 
within a traditional LSW formulation. The treatment is similar to that in Sec.4.4.1 for OR 
of supported NCs, but differs in some basic respects: (i) the diffusion problem is now 
solved in 3D rather than 2D, and attachment-detachment occurs anywhere on the 3D 
NC surface (rather than at a 2D perimeter or contact line); (ii) the “background” 
concentration is no longer constrained by the average NC size, but can be greater 
corresponding to a super-saturation of precursor atoms in the solution; (iii) the details of 
the solutions differ from Sec.4.4.1 due to the 3D nature of diffusion and attachment-
detachment. Analogous to Sec.4.4.1, we will neglect anisotropy in surface energies, so 
shape-equilibrated clusters are spherical with radii denoted by R. 

The relevant Gibbs-Thomson relation for the equilibrium density, eq = eq(R), of 
the precursor at the edge of a NC of radius R has the form222 
 

eq(R)  0 exp[+2
~
/(kBTR)],        (70) 

 

where 0 is the limiting value for a large NC (related to the solubility of the NC material) 

which has units of inverse volume. Also, 
~

 is the surface stiffness per unit area, and  ~ 
a3 is the unit cell volume for 3D NCs, and where ‘a’ is the lattice constant. Note that a 

finite size NC has an excess chemical potential,  = +2
~
/R relative to a large NC. 

Analogous to the treatment for supported NCs, we solve the steady-state diffusion 

equation, 0  /t = D 2, but now in 3D, and adopt a BC of the form (59) at NC 

surfaces, i.e., D /r| = K [ - eq(R)], where again K is a kinetic coefficient describing 
the ease of attachment. Here, D is the solution-phase diffusion coefficient, and it is 
convenient to write K = k D, so k has units of inverse length. 
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 To assess the growth or decay of a specific NC with radius R, we solve a BVP for 
the steady-state diffusion equation with the BC (59) at the cluster surface, and specify 

that  approaches b corresponding to the bulk precursor concentration far from the NC 
(noting that logarithmic behavior seen in 2D is absent here in 3D). For the bulk 

concentration, it will be convenient to write b  0 exp[+2
~
/(kBTR*], where R* 

corresponds to the radius of an NC which would be in equilibrium with this bulk 
concentration. Straightforward solution of this BVP for the net flux, J (in atoms per unit 
time) of precursor species attaching to the NC yields 
 

J = 4 D b {exp[+2
~
/(kBTR*)] - exp[+2

~
/(kBTR)]} kR2 [1+kR]-1,   (71) 

 
Since J = dN/dt, and using that the volume of the spherical NC of N atoms satisfies V = 

N = 4/3 R3, one obtains the growth law, dR/dt = (2R2)-1 J. To obtain conventional 
simplified expressions, one performs a Taylor expansion on the exponential terms. In 
presenting these simplified forms for the growth law, we note that again there are two 
distinct extreme regimes for kinetics: (a) diffusion-limited (DL) mass transport where 
large k >> 1/R, so that at step edges; (b) attachment- or reaction-limited (RL) mass 

transport with small k << 1/R, where  tends to be spatially uniform. Then, (71) 
becomes15,222 
 

dR/dt  ARL(DL) R- [R/R* - 1], where  = 1 (2) for RL (DL) regime.    (72) 
  

For solution-phase systems, it is common to perform a simple analysis exploiting 
the growth law (72) to determine at least some basic features of the evolution of the NC 

size distribution. This analysis considers narrow distributions of width R and mean 
island size of <R>. First, for the DL regime, one determines the difference between the 

rate of growth for radii, R = <R>  ½ R using (72). This analysis reveals that 
 

d/dt R = d/dt (R+ - R-) = ADL R <R>-3 (2 - <R>/R*).     (73) 
 

Thus, one has that d/dt R < 0 for high super-saturation where R* < ½ R which 

corresponds to narrowing of the NC size distribution. In contrast, d/dt R > 0 for lower 

super-saturation where R* > ½ R which corresponds to broadening of the NC size 
distribution. A similar analysis for the RL regime reveals that 
 

d/dt R = ARL R <R>-2 > 0,        (74) 
 
so that the NC size distribution always broadens. 

As for supported NCs, the growth law (72) can be incorporated into a continuity 

equation, /t F(R, t) + /R J(R,t) = 0 with J = dR/dt F(R, t), for evolution the NC size 
distribution, thereby obtaining a more complete picture of scaling of the mean NC size 
and of the entire distribution.223 Comprehensive analysis incorporates the feature that 
the solutions depend on the “initial” form of the flux which is determined from analysis of 
the nucleation process. On an intermediate time-scale after an abrupt drop in super-
saturation following a nucleation pulse, the NC size distribution adopts a novel scaling 
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form differing from standard Gauss or log-normal forms. This behavior also from the 
true asymptotic form for OR which is achieved on a much longer time scale.223 
Additional studies have considered the influence of fluctuation effects on the NC size 
distribution.224,225 

Rather than the above formulations for continuous NC size, one can consider 
analogous formulations with discrete NC sizes. Within this class, the classic Becker-
Doering equations (which incorporate both attachment and detachment from clusters 
with the appropriate rates) are traditionally used to analyze the nucleation process.226 
When mass conservation is incorporated into these equations, eventually the nucleation 
stage is exhausted, and ultimately replaced by a ripening regime. There is a large 
difference in time-scale for these two regime, making analysis of the crossover difficult. 
Nonetheless, recent theoretical analysis has probed this crossover and further showed 
the special “double-exponential front” of the NC size distribution emerging from the 
nucleation regime plays a key role in selection of the asymptotic LSW type distribution 
following prolonged coarsening.220 Again, there is still extensive interest in this selection 
problem and in the sensitivity to the “initial conditions” from the nucleation stage.216,217 

 

  
 
Figure 27. Schematic of the evolution of the mean NC size during various nucleation and 
growth, and well as coarsening regimes. Reprinted with permission from Ref. 44. Copyright 
2014 American Chemical Society. 

 
Analogous to our discussion for supported NCs, coarsening for unsupported NCs 

can occur via Smoluchowski ripening or aggregative growth in the terminology of this 
field, rather than (or in addition to) Ostwald ripening.44 In fact, a general scenario 
includes the possibility of one or both of these mechanisms. The scenario in Figure 27 
shows aggregative growth preceding OR which mimics our discussion in Sec. 4.4.3 of 
crossover for supported NCs. Aggregative growth can correspond to either diffusion-
limited colloid aggregation (DLCA) or reaction-limited colloid aggregation (RLCA).44 In 
fact, systems can be tuned to crossover between DLCA and RLCA (as is the case for 
Au colloids by adding different amounts of pyridine to tune the aggregation rates).227 For 
DLCA, simulation simplified to neglect relaxation upon aggregation has explored the 
fractal nature of the aggregates,228,229 and this analysis was later extended to include 
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relaxation via bond-breaking.230 Analysis for RLCA has also explored fractal 
structure.231 These processes are naturally analyzed by application of the 
Smoluchowski coagulation equation (analogous to the treatment of SR for supported 
NCs in Sec.4.4.2) which can be applied to either DLCA or RLCA although the kernel in 
the equations will have quite different form.232 There has been extensive interest in 
analysis of the scaling form of the solution to these equations, and its dependence on 
the form of the kerne.l233,234  
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5. SHAPE EVOLUTION OF SINGLE-COMPONENT 2D EPITAXIAL NCs 
 
Shape evolution of 2D epitaxial NCs is described where there exists extensive 
experimental STM data and also detailed modeling.14 Specifically, we consider evolution 
of non-equilibrium shapes mediated by periphery (edge) diffusion which is believed to 
be the dominant mas transport pathway for the systems considered here. First, we 
consider initially convex NC’s evolving to their equilibrium Wulff shapes. In this case, 
nanoscale evolution can be mediated by the nucleation of new outer layers, and 
behavior can deviate dramatically from predictions of macroscale theories.176 Another 
scenario is particularly relevant for SR, i.e., cluster diffusion and coalescence, where 
often clusters formed by coalescence events initially have non-equilibrium dumbbell-
type shapes with concave portions of step edges. Here, evolution at least in the initial 
stages is not nucleation-mediated, and thus is quite distinct from the above case.114,153 
Finally, we consider the evolution of more exotic NC shapes, e.g., “worms” and 
elongated nanorods.177 
 
5.1. Reshaping for convex 2D epitaxial NCs: fcc(111) homoepitaxial systems 
 

For initially convex NCs, we describe relevant experimental data as well as detailed 
system-specific modeling exploring reshaping. Examples include reshaping of 
elongated and “elliptical” NCs and triangular NCs to hexagons or distorted hexagons in 
fcc(111) metal homoepitaxial systems. In Sec.5.2 we consider analogous reshaping of 
rectangular nanoclusters to squares in fcc(100) metal homoepitaxial systems. We will 
consider behavior for both adatom island NCs and vacancy pit NCs. 

We discuss several examples where there exist experimental data and 
theoretical analysis considering both size-scaling of relaxation and temporal evolution. 
We start by highlighting a key early theoretical study by Jensen et al.176 for a generic 
lattice-gas (LG) model revealing that behavior on the nanoscale deviates from size-
scaling behavior of classic continuum formulations. Figure 28 shows results of KMC 
simulations for the evolution of an elongated nanorod of N atoms back towards a 
hexagonal equilibrium shape with rounded corners. The LG model includes NN 

attractions of strength  = 0.1 eV on a triangular lattice, and atom hopping rates 
described by a standard IVA or bond-counting prescription (with activation barrier just 
determined by the initial coordination). The relaxation time, teq, is taken as the first time 
that the aspect ratio of y- to x-dimensions fluctuates below unity. However, presumably 
similar scaling would be obtained by exponential fitting asymptotic decay of the aspect 

ratio to unity. The key result is that the size-scaling exponent, , in the relation teq ~ N 

agrees with traditional continuum theory prediction of  = 2 only at high T, but appears 

to adopt a lower value,   1, at low T. It is also common to describe scaling in terms of 

the linear size, L, of the NC, where N  L2 where teq  L* where * = 2. Then * = 4 

corresponds to continuum theory, but * = 2 is observed above for low T. 
This deviation is associated with feature that the NC step edges are effectively 

facetted at low T, i.e., their length is below the typical separation of kinks on an 
equilibrated straight close-packed step edge. Consequently, reshaping to equilibrium 
requires the nucleation of new outer layers on step edges.176 This study suggested that 

the rate of decay of a deviation of linear size L from equilibrium scales for an NC with 
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linear size L like the product of the associated kink (or corner) density imbalance on 

different steps, ~L/L2, times the rate to nucleate new step edges, De(neq)2. Here, De is 
the edge diffusion coefficient, and neq is the equilibrium edge atom density. This 

formulation immediately yields  = 1 or * = 2, and also determines the effective 
activation barrier for reshaping as Eeff = Ee + 2Eeform, where Ee is the edge diffusion 
barrier for close-packed step edges, and Eeform is the formation energy for edge atoms 
(extracted from kinks).176 

Analyses presented below of metal(100) systems provide an alternative 
derivation of the above scaling result based on atomistic-level model incorporating 
appropriate results from random walk theory.153,235 The above result is also generalized 
to account for the presence of an additional kink ES barrier for corner rounding. 
Furthermore, we will provide a detailed comparison of the predictions of atomistic and 
continuum modeling. 
 

 
 
Figure 28. Simulation of NC shape evolution on a triangular lattice for a model with NN 

attractions of strength  = 0.1 eV [so /(kBT) = 2.3 at 500 K and /(kBT) = 14 at 83 K] and 

IVA hop rates. Left: Simulated configurations for N = 6250 atoms. Right: Size scaling of 

relaxation times where curves for low T should bend to achieve a slope of 2 for large enough N. 
Reprinted with permission from Ref. 176. Copyright 1999 American Physical Society. 

 
There is limited experimental STM data available tracking evolution of convex 

adatom NCs on fcc(111) surfaces. However, one example shown in Figure 29 tracks 
the reshaping of an “elliptical” Ag adatom NC or island on Ag(111), a surface for which 
there has been extensive analysis of NC formation and post-formation evolution.13 
These images actually correspond to the late stages of corner-to-corner coalescence 
(considered in Sec.5.3). A second example is shown in Figure 30 for Au(111) surfaces 
which we should emphasize are of central interest for various applications including 
self-assembled monolayers, functional 3D NCs for various applications, and 
catalysis.236-238 Surprisingly, there appears to be a lack of previous studies of the 
evolution of homoepitaxial Au(111) NCs. The STM analysis shows the slow evolution of 
an elongated NC back towards a more hexagonal shape. For the Au system, we caution 



64 
 

that the finer details of the equilibrium shape, and no doubt of shape evolution, are 
complicated being impacted by the presence of a herringbone reconstruction of the 
Au(111) surface.239 However, this does not appear to impact the basic features of 
evolution shown in Figure 30. For either of these systems, there has not been 
quantitative analysis of evolution. At least for the Au system, there is not sufficient data 
to assess asymptotic approach to equilibrium. 
 

 
 
Figure 29. Reshaping of an “elliptical” Ag NC on Ag(111) at room temperature. Reprinted with 
permission from Ref. 13. Copyright 2005 Wiley-VCH. 

 

 
 
Figure 30. Reshaping of an elongated Au NC on Au(111) at 300K with 200 min between 
images. 

 
It is however instructive to compare evolution in the above experimental 

examples with the predictions of reshaping for similar NC geometries of continuum 
modeling including an anisotropic step energy compatible with a hexagonal equilibrium 
shape. To this end, we select equal energies for A- and B-type steps, which is 
reasonable at least for Ag. The step edge mobility is selected to be isotropic. The 
prescription of anisotropic step energies is taken from Ref. 134. We show behavior for a 
simple stretched hexagonal geometric shape with close-packed step edges in Figure 
31. Reshaping evolved through quasi-elliptical shapes, reminiscent of Figure 29, before 
reaching the equilibrium hexagonal shape. Note that topologically distinct behavior is 
observed for extreme elongations. See Sec.5.5.2. 
 



65 
 

 
 
Figure 31. Continuum modeling of shape evolution for an elongated island on an fcc(111) 

surface where A- and B-type steps have the same energy. Parameters: L2/L1 = 3; k/(kBT) = 4.7. 

 
It is natural to consider the evolution of NCs with other simple geometric far-from-

equilibrium shapes back to equilibrium. Motivation comes from the observation that 
solution-phase synthesis can produce various simple non-equilibrium geometric shapes 
for 3D fcc metal NCs (cubes, tetrahedra, etc.)3,4 for which it is also natural to explore 
post-synthesis shape equilibration.  In this spirit, we note that NC growth kinetics during 
deposition on fcc(111) surfaces offers the possibility to create near-triangular NCs. See 
Figure 32 for the Ag/Ag(111)164 and Pt/Pt(111)8 systems, although there does not exist 
experimental data tracking the evolution from triangular to hexagonal (or distorted 
hexagonal) equilibrium shapes. Despite this fact, it is instructive to examine both 
atomistic-level and continuum modeling to elucidate this evolution. 
 

 
 
Figure 32. (a) Evolution from triangular to hexagonal Ag NCs on Ag(111). Reprinted with 
permission from Ref. 164. Copyright 2008 American Physical Society. (b) Evolution from 
triangular to distorted hexagonal Pt NCs on Pt(111). Reprinted with permission from Ref. 8. 
Copyright 2004 Springer Verlag. 
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For systems with roughly equal A- and B-step energies, subtle purely kinetic 
effects control growth shape deviation from hexagonal. A difference in edge diffusion 
barriers alone would lead to faster growth and disappearance of the steps with higher 
edge diffusivity.8 However, other factors such as “corner-rounding anisotropy”67,240 and 
non-uniform interlayer transport164 often dominate the selection of growth shapes. For 
Ag/Ag(111) where equilibrium shapes are near-hexagonal, it is possible to achieve 
near-triangular shapes by appropriate tuning of deposition conditions, where the 
triangular shape derives from non-uniform downward transport of atoms deposited on 
top of the islands.164 A lower ES barrier for B steps means that these are fed atoms at a 
greater rate than A-steps, and thus mostly grow out. However, to achieve these 
triangular Ag NC shapes, it is necessary to choose not only the appropriate temperature 
window, but also to deposit higher submonolayer coverages to increase the proportion 
of deposition on top of islands. See Figure 32(a). 

Next, we consider atomistic simulations mimicking Ag NC evolution on Ag(111) 
where equilibrium shapes are effectively hexagonal with rounded corners. Again, the LG 

model includes just NN attractions with strength  = 0.2 eV on a triangular lattice, but in 
this case atom hopping is determined by the generalized BEP type prescription in 

Sec.3.4 for surface diffusion on 3D NCs. This yields a kink ES barrier of  = 0.1 eV, 
somewhat above the values obtained from EAM energetics. Time evolution is reported 

as a function of he t, where he =  exp[-Ee/(kBT)] is the hop rate along close-packed step 

edges. Actual times can be determined using reasonable choice of  = 1012.5/s and Ee = 
0.3 eV for Ag(111). Simulated evolution at 300 K starting with a perfect triangle is shown 
in Figure 33. As shown in Figure 34, we quantify the decay kinetics by considering the 
“pedal radii” rA and rB measuring the distance from the center of the NC to alternating 
step edges, tracking evolution of the ratio to unity. As expected from Sec.4.1, kinetics of 
the asymptotic decay of rB/rA – 1 is described by a single exponential (but not kinetics of 

the entire decay process). Corresponding decay times, , are extracted for a range of 

NC sizes from N = 528 to N = 5050 atoms, and the associated size scaling  ~ N  L* 

thereby determined. This analysis indicates that  = 1.41 (* = 2.82), a value between 

the classic continuum value of  = 2 (* = 4) and the pure nucleation-mediated value of 

 = 1 (* = 2).  In this system, the kink separation of Lk ~ 24a at 300 K is comparable to 
the initial triangle edge lengths of 32a-100a, and to the shorter edge lengths of the 

developing hexagon. Thus, such intermediate values of  or * are expected.  
 

 
 
Figure 33. Simulation of reshaping of a triangular NC for fcc(111) homoepitaxy for a model with 

NN attractions  = 0.2 eV and hexagonal equilibrium NC shape at 300 K for size N = 2485 (side 
length > L = 70 a = 20.2 nm). 
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Figure 34. Relaxation to an equilibrium hexagonal shape for the model in Figure 33. 

 
The scenario where NC growth most readily generates extreme (perfect) 

triangular shapes corresponds to systems with unequal A- and B-step energies like 
Pt/Pt(111).8 Here, non-equilibrium shape selection directly reflects system 
thermodynamics as well as kinetics. Considering the Potential Energy Surface (PES) for 
an atom traversing the NC perimeter, the key point is that the PES is higher for the 
preferred steps (the B-steps for Pt) with lower step energy (atoms are bound more 
weakly to those steps). Thus, in equilibrium, the edge adatom density on the preferred 
steps is lower. However, there is a balance between the atom flux from B to A steps and 
from A to B steps, since the effective barriers for corner rounding compensate exactly 
for the edge atom density imbalance (as ensured by detailed balance). However, under 
growth conditions, the edge atom densities are supersaturated and become more equal 
(i.e., their ratio is closer to unity) which induces a strong net flux to the less preferred 
steps (the A-steps for Pt) which thus quickly grow out. See Figure 35. Thus, near-
perfect triangular Pt NCs on Pt(111) can be formed by deposition in a suitable 
deposition window (around 400 K).8 See Figure 32(b). 

Next, atomistic modeling is presented appropriate to the Pt/Pt(111) system where 
equilibrium shapes are distorted hexagons due to unequal step energies of A- and B-
steps for Pt. The standard LG model on a triangular lattice with just NN interactions of 
course does not incorporate this feature, so modification of the modeling strategy is 
required. One possibility is to use a so-called Awning approximation, which prescribes 
the energy of NC configurations as a sum of step edge contributions each of which 
depends on the orientation of segments of its step edges.8 However, we prefer a more 
conventional LG modeling approach where one introduces many body-interactions in 
addition to NN pair interactions. For fcc(111) adlayers, one can prescribe two distinct 

types of triangular trio interactions,  and , for up-pointing versus down-pointing trios 
of atoms. DFT analysis confirms that such interactions have significant strength, and 
also differ from each other. For Pt(111), we choose the value of the NN interaction 
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strength of  = 0.48 eV. The values of the trio interactions are selected to recover the A-

step energy, A =  + ( + 2)/3, and B-step energy, A =  + ( + 2)/3 (where these 
formulae follow from assessing broken bonds at step edges), and thus their ratio which 
determines the equilibrium shape. This requires repulsive trios (consistent with DFT 

analysis) which have negative values in the notation used here, and we set  = -0.15 

eV and  = 0. Time evolution is again reported as a function of he t where actual times 
can be obtained by selecting a standard attempt frequency and edge diffusion barrier of 

Ee   0.9 eV for Pt(111). Simulated evolution from an initial perfect triangle with N = 
1830 atoms and side length 60 atoms is shown on Figure 36. The distorted hexagonal 
equilibrium shape is reflected in the long-time image. 
 

 
 
Figure 35. Top: adatom densities on steps and fluxes between steps for equilibrium and growth 
scenarios. Bottom: Schematic of PES for edge atoms for Pt/Pt(111).  

 

  
 
Figure 36. Simulations of relaxation of Pt triangles on Pt(111) with trio interactions to break 6-

fold symmetry of the equilibrium NC shape. ϕ = 0.48 𝑒𝑉; 𝐸∆ = −0.15 𝑒𝑉; 𝐸𝛻 = 0.00 𝑒𝑉;  T =
600 K. 
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Next, for completeness, we compare shape evolution in the above atomistic 

modeling with the predictions of continuum modeling including an anisotropic step 
energy appropriate for an fcc(111) surface but producing a distorted hexagonal 
equilibrium shape (cf. Sec.4.1). Specifically, the formulation for the anisotropic step 
energy is taken from Ref. 134 with the ratio of step energies on the A- and B-type step 
edges is chosen as 2. An isotropic step edge mobility is incorporated. Evolution stating 
with a perfect triangular shape with close-packed step edges is shown in Figure 37. 
 

 
 
Figure 37. Continuum modeling for evolution of a triangular NC on an fcc(111) surface to a 

distorted hexagonal equilibrium shape. Parameters are: k(A)/(kBT) = 3; k(B)/(kBT) = 6.  

 
 We mentioned above that experimental data is not available tracking shape 
evolution of non-equilibrium NC triangles (or strongly distorted hexagons) back to 
equilibrium shapes for Ag/Ag(111) or Pt/Pt(111). However, STM data is available for 
Au/Au(111) at 300 K for at least the first stage of evolution of a strongly distorted 
hexagonal growth shape back towards the equilibrium shape (which seems to be close 
to a hexagon). This is shown in Figure 38 where we note that the total time spanned by 
this sequence of images is 20 hr. Given the complexities associated with the 
herringbone reconstruction on the Au(111) surface (which however does not seem to 
impact the basic features of evolution), we do not attempt detailed modeling for this 
system. 
 

 
 
Figure 38. Evolution of an Au NC on Au(111) at 300 K with 200 min between images. Average 
lengths of the short (Lshort) and long (Llong) step edges were determined: initial Llong = 19.5 nm, 
Lshort =10.7 nm; final Llong = 15.8 nm, Lshort = 12.0 nm. 

 
In contrast to adatom nanoclusters, systematic STM data is available for the 

shape relaxation of single-layer deep convex vacancy NCs or nanopits on 
Ag(111).241,242 This in part reflects the feature that coarsening of nanopit arrays on 
Ag(111) is mediated by Smoluchowski ripening, so nanopit sizes tend to be preserved 
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for long times. In contrast, coarsening of adatom NCs is mediated by Ostwald Ripening, 
so sizes tend to change providing a less ideal situation for analysis of shape evolution. 

In Figure 39, the evolution of initially “elliptical” nanopits on Ag(111) at 300 K 
back to their equilibrium near hexagonal shapes (where we note that islands and pits 
have the same equilibrium shape, at least for systems with NN interactions).13,241 It is 
clear comparing part (a) and (b) that there is a strong dependence of the relaxation time 
on NC size. To quantify this behavior, evolution of the orthogonal major and minor axes 
of the “ellipse” were tracked for the nanopit shown in Figure 39(a) yielding the results 
shown in Figure 40. 241 These were fit appropriately based upon exponential decay to 
their limiting values. The decay times for the two cases were similar, and the average, 

c, was taken as the decay time for that particular nanopit size. The results of 
comprehensive analysis for size dependence (including many sizes beyond those 
shown in Figure 39) of the decay time are shown in Figure 41 where the linear size, dcl, 
corresponds to the (equal) long-time values of the major and minor axes described 

above. The lines on the plot correspond to the dependence cl ~ (dcl)* with * = 3 and 

* = 4 (the continuum value). Plausibly, behavior is better described by * = 3, and a 

least-squared fit to data points actually gives * = 3.2. Since for this system, the kink 
separation should be roughly Lk ~ 24a ~ 7 nm at 300 K which is well below the linear 

size of the nanopits, so one might have anticipated an exponent closer to * = 4. 
Perhaps the shape relaxation kinetics of nanopits (which is distinct from that of atom 
NCs) is more susceptible to deviations from macroscopic behavior? As an aside, Ref. 

241 proposed relation between the reshaping exponent  and the exponent describing 

the size-dependence of the NC diffusion, , of the form  =  - 1, where the latter issues 
will be discussed in Sec.8.1. 
 

  
 
Figure 39. Reshaping of elliptical nanopits on Ag(111) at 300 K: (a) Smaller pit. Reprinted with 
permission from Ref. 241. Copyright 1998 Elsevier. (b) Larger pit. Reprinted with permission 
from Ref. 242. Copyright 1998 Materials Research Society. 
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Fig.40: Exponential shape relaxation to equilibrium for the long and short dimensions of the 
elliptical nanopit on Ag(111) in Figure 39(a) at 300 K. Reprinted with permission from Ref. 241. 
Copyright 1998 Elsevier. 

 

 
 
Figure 41: Size-scaling of the relaxation time for nanopits on Ag(111) at 300 K. The lines 

correspond to exponent * = 3 and 4. A least-squares fit gives * = 3.2. Reprinted with 
permission from Ref. 241. Copyright 1998 Elsevier. 
 

Rather than just consider the size scaling of relaxation, it is appropriate to 

discuss theoretical estimation of the actual value of c. One simple strategy is to exploit 

the result (29), c = eq = 1 = (kBT)(req)4/(12PD ), from continuum theory corresponding 
to the characteristic time for slowest decay mode. At 300 K, we choose req = 17 nm = 60 

a,  = 0.2 eV, and PD =  exp[-Ee/(kBT)] ne with Ee = 0.3 eV and where ne = exp[-/(kBT)] 

with  = 0.24 eV denotes the equilibrium density of edge atoms. Then, one obtains c = 

eq  50 sec, of the same order as experimental estimates in Figure 40. It is also 
plausible that the simplified linearized analysis leading to (29) where n = 1 deviation 
from a circular shape is treated as a purely translational mode has some limitations. 
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5.2. Reshaping for convex 2D epitaxial NCs: fcc(100) homoepitaxial systems 
 

Some experimental data exists for the evolution of convex NCs on fcc(100) 
homoepitaxial systems.114 Occasional side-by-side coalescence of pairs of mobile near-
square adatom NCs results in rectangular clusters for equal-sized NC pairs, or 
structures which “quickly” evolve to rectangular NCs for unequal-sized NC pairs as 
shown in Figure 42(a) for Ag/Ag(100). Deposition of near-monolayer coverages on flat 
surfaces produces isolated nanopits which sometimes quickly reshape to near-
rectangular nanopit structures as illustrated in Figure 42(b) for Ag(100).114 In either 
case, the rectangular NCs naturally evolve back to their near-square shapes, as also 
indicated in Figure 42. Comparison of behavior in these two cases suggests that 
perhaps nanopit reshaping is somewhat faster than that for atom NCs. To explore this 
hypothesis, the modeling framework incorporating ab-initio kinetics for Ag/Ag(100) 
described in Sec.3.5.1 can be utilized to perform a benchmark analysis for rectangular 
nanopits and nanoislands of the same size.27 However, the default version of such 
modeling where energetic parameters are selected to recover ab-initio edge diffusion 
kinetics around convex nanoislands predicts much faster decay for nanopits compared 
to nanoislands. We track this failure to an artificially low barrier in the model for an atom 
to slide out of the corner of a rectangular pit along the step edge. This shortcoming is 
corrected27 by adding additional unconventional interactions into the model 
determination of Eact, as discussed in detail in Sec.7.1.3. Results from modeling after 
incorporating this correction are shown in Figure 43.  
 

 
 
Figure 42. Left: Ag NC on Ag(100) (35 x 35 nm2 images). Right: nanopit on Ag(100) (45 x 45 
nm2 images).  Evolution at 295 K. Reprinted with permission from Ref. 114. Copyright 1998 
American Physical Society. 

 

 
 
Figure 43. Reshaping of 34x17 atom/vacancy NCs: ab-initio modeling for Ag(100). Reprinted 
with permission from Ref. 27. Copyright 2016 American Chemical Society. 
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In Figure 44(a), we show experimental STM data for the reshaping of a smaller 

rectangular Ag nanocluster on Ag(100) formed by side-to-side coalescence of similar-
sized square adatom NCs. In this case, the shorter relaxation time for smaller NC sizes 
facilitates KMC simulation with ab-initio kinetics (as discussed in Sec.3.5.1) to compare 
with experimental observations. The results considering just evolution of the central 
rectangular NC, shown in Figure 44(b), are reasonably consistent with experimental 
observations. The lower right frame shows significant variations between different 
simulation trials particularly in the later stages of evolution. 
 

 
 
Figure 44. Reshaping of a rectangular Ag NC on Ag(100). (a) Experiment (28 x 28 nm2 
images)14 . Initial size: 14 nm x 5.4 nm; final size: 8.7 nm x 8.7 nm. (b) Simulation with ab-initio 
kinetics27 for initial NC matching experiment. 

 
For a more fundamental understanding and analysis of reshaping of convex NCs, 

it is instructive to utilize the simpler tailored model153 of Sec.3.3.2 where atoms of a 

square lattice of adsorption site interact with NN interactions .153 Periphery diffusion 
includes NN hops with barrier Ee and rate he for isolated edge atoms on close-packed 
step edges, and 2NN hops to describe corner or kink rounding of isolated edge atoms 

with generally higher barrier of Ee + . Barriers for other processes such as escape from 
kinks to step edges are controlled by detailed-balance as described in Sec.3.3.2. In 
Figure 45 (left), we compare results of atomistic simulations with continuum theory for 

the evolution of a rectangular NC in this model with  = 0. 153 Clearly, there is a large 
discrepancy between predictions for evolution as expected from the discussion of 
nucleation-mediated step evolution above for metal(111) surfaces. Figure 45 (right) 

shows size scaling with * = 2.7 deviating from continuum model predictions with * = 4 

for the case  = 0. This behavior is reasonably consistent with the analysis in Sec.5.1 for 
metal(111) systems. Presumably, simulations with smaller NCs or lower T should 

produce behavior closer to * = 2. In fact, introduction of a significant extra corner 

rounding barrier  > 0 into the model results in further modification to this size scaling 
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with an even lower * relative to our results for  = 0 (and again simulations for smaller 

NCs or lower T are expected to produce even lower * likely below 2).  
 

 
 
Figure 45. Left: comparison of atomistic and continuum modeling with  = 0.235 eV,  = 0, 300 

K. Right: anomalous scaling in atomistic model for  = 0 and  = 0.16 eV. Reprinted with 
permission from Ref. 153. Copyright 2002 American Physical Society. 
 

 
 To elucidate this anomalous size-scaling, further assessment of behavior in the 
atomistic model exploiting random walk concepts, is instructive.153,235 Consider evolution 
from a perfect rectangular NC which is effectively facetted since L << Lc. Initially, a pair 
of atoms must be transferred from the short edge to the long edge nucleating a new 
layer on the longer step edge. However, there is no energetic advantage to transferring 
a third, fourth, etc. atom from the now incomplete short edge to continue growth of the 
new layer on the long edge. From this perspective, the thermodynamic driving force for 
reshaping to a near-square shape is not immediately apparent. However, the resolution 
to this dilemma is that when the last atom on the incomplete short edge is transferred to 
grow the new layer on the long edge, the energy of the system is in fact lowered.235 In 
the more detailed analysis presented below, it is instructive to first determine the 

characteristic time, layer, to remove a complete layer from the short edge. Then, the 

characteristic time for the overall shape equilibration process will scale like eq ~ L layer. 
It is instructive to start by considering the case of large additional corner rounding 

barrier  > 0, corresponding to the regime with the associated characteristic corner 

rounding length, L = exp[/(kBT)] - 1  a exp[/(kBT)] >> L (the characteristic linear NC 
size), and where lengths are in units of lattice constant. Then, we will write  
 

layer ~ nuc/ Ptrans_all for “nucleation time” nuc and “transfer probability” Ptrans_all. (75) 
 

Specifically, nuc is the characteristic time to nucleate a dimer on the long edge. Ptrans_all 
is the probability that once that dimer is nucleated, the entire rest of the atoms on the 
incomplete short edge are transferred to the long edge, rather than all atoms returning 
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to the short edge to recomplete it. Next, we write nuc ~ neq(tot) hc where hc =             

exp[-/(kBT)] hk  hk/L is the rate for the corner atom on the short edge to round the 

corner and reach the long edge. Also, neq(tot) ~ L exp[-/(kBT)] is the total equilibrium 
population of isolated atoms on the long edge. The rationale here is to consider that the 
first corner atoms has reached the long edge (corresponding to the neq(tot) factor), and 
that when the second atom reaches that edge as characterized by rate hc, it will almost 
certainly meet the first atom and nucleate a dimer since there is a larger extra barrier for 
either atom to return to a short edge. The last non-trivial issue is to determine the 
transfer probability, Ptrans_all. Once the dimer is formed on a long edge, the system 
undergoes a random walk in configuration space labeled by the number n of atoms 
transferred to the long edge, transferring atoms backwards and forth between the short 
and long edges. Imagine staring in state n = 2 where completely transferring all atoms 
to the long edge (n ~ L) or back to the short edge (n = 0) can be regarded as adsorbing 
or trapping states in this 1D random walk problem. Then standard analysis shows that 
Ptrans_all ~ 1/L. Combining the above results yields153 
 

layer ~  L exp[-/(kBT)] hk and eq ~ exp[-/(kBT)] hk L L,  for L << L << Lc,  (76) 
 

corresponding to an anomalously low size scaling exponent * = 1.  

 Next we consider the case of small (or zero) kink rounding barriers where L << L 
and Lc. A somewhat simplistic analysis would argue that there must be a continuous 
crossover from the behavior in this regime to that describe above as L increases 

through L and behavior becomes edge-diffusion limited rather than corner-rounding-
limited. From this perspective, one expects that153,176,235 
 

layer ~  L exp[-/(kBT)] hk and eq ~ exp[-/(kBT)] hk  L2  for L << L and  Lc.  (77) 
 

Consequently, in this regime * = 2 consistent with results from the analysis for 
metal(111) surfaces. A more detailed and rigorous analysis of behavior in both regimes 
follows from a more comprehensive analysis of evolution in configuration space based 
on the appropriate master equations. Finally, we remark that for the case where L >> Lc, 

continuum theory applies to give * = 4.153 
 
5.3. Coalescence of pairs of 2D epitaxial NCs: fcc(111) homoepitaxial systems 
 
  For coalescence or sintering of side-by-side pairs of hexagonal NC in these 
fcc(111) systems, the first stage is not limited of nucleation of new outer layers, only the 
last stage once the coalesced pair has evolved to a convex shape as described in 
Sec.5.1.1. Experimental data and analysis is somewhat limited (in contrast to the 
fcc(100) homoepitaxial systems described in Sec.5.4) and the best examples consider 
sintering of nanopits (rather than adatom islands) noting again that SR rather than OR 
dominates coarsening in these systems, at least for Ag and Cu.13,1. In Figure 46, we 
show STM images for the sintering of nanopits on an Ag(111) surface at 300 K. 241 For 
this system, analysis of experimental data for the initial stage of neck growth, as 
illustrated in Figure 47, is available.242 Most data is for unequal pit sizes and a 

characteristic time, eq for the initial neck growth is defined to correspond to the time 
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when the neck width equals the “diameter”, d1, of the smaller of the two nanopits. 

Analysis of the scaling of eq ~ (d1)* indicates an exponent of * = 2.6 241 significantly 

below the continuum theory prediction of * = 4. This exponent is somewhat above the 

exponent * = 2.84 reported in Sec.5.1.1 from simulations of nucleation-mediated 
reshaping of Ag nanoislands on Ag(111). In Sec.5.2.2, we shall develop a detailed 
formulation of anomalous exponents for sintering of nanoparticles.   
 

 
 
Figure 46. Sintering of nanopits on Ag(100) at 300 K. Reprinted with permission from Ref. 241. 
Copyright 1998 Elsevier. 

 

 
 
Figure 47. Analysis of the characteristic time for neck formation for sintering of nanopits on 
Ag(111). Reprinted with permission from Ref. 13. Copyright 2005 Wiley-VCH. 

 
Next, we remark that analogous behavior has been observed for sintering of 

nanopits on Cu(111) surfaces.243 See Figure 48. In this case, the diameter of the 

smaller of the nanopits is roughly d1  8 nm, and the characteristic neck growth time 

defined as above is roughly eq ~12-14 s. This is somewhat below the corresponding 
value for nanopits on Ag(111) from Figure 47(c) even though the temperature in the Cu 
experiments is somewhat higher. This is reasonable based upon the higher interaction 
and edge diffusion barriers expected for Cu relative to Ag.  
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Figure 48. Sintering of nanopits on Cu(111) at 328 K. Image size: 30x30 nm2. Reprinted with 
permission from Ref. 243. Copyright 2000 Elsevier. 

 
 With regard to experimental studies, we note that there does not appear to be 
published data for sintering of Ag or Cu adatom islands in these fcc(111) homoepitaxial 
systems (partly since OR rather than SR dominates coarsening for these systems). 
However, data is available as shown in Figure 49 illustrating at least the latter part of the 
sintering process for Au islands on Au(111) where again we note the significance of the 
Au(111) surface for various applications.  
 

 
 
Figure 49. Partial coalescence of Au NCs on Au(111) at 300 K. 200 min between images. 

 
 Finally, it is instructive to show the predictions of continuum theory for sintering of 
equal sized hexagonal NCs for a model based on Ag(111) surface where NCs have 
hexagonal equilibrated shapes. The theory applies equally for adatom islands or NCs 
and nanopits. The two natural scenarios are side-to-side and corner-to-corner “collision” 
as shown in Figure 50 where a sequence of sintering shapes for subsequent times is 
illustrated. The former case applies to the nanopit examples shown above for both 
Ag(111) and Cu(111).  
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Figure 50. Continuum modeling of sintering on an fcc(111) surface with equal step energies for 

A- and B-type steps for k/(kBT) = 4.7: edge-to-edge and corner-to-corner cases. 

 
5.4. Coalescence of pairs of 2D epitaxial NCs: fcc(100) homoepitaxial systems 
 

In this case, most examples of sintering apply for adatom islands which “collide” 
corner-to-corner resulting in an initial “dumbbell” type shape. Most comprehensive 
analysis is available for Ag/Ag(100) which is the only system where there exists 
systematic data for a range of NC sizes.27 Figure 51 shows two examples of STM data 
where the individual NCs in the pair have roughly equal sizes, ~5x5 nm2 in one case 
and ~12x12 nm2 in the other. The dramatically slower time-scale for sintering for larger 
NC sizes is evident. In addition, Figure 51 shows the result of our modeling with ab-initio 
kinetics for periphery diffusion as described in Sec.3.5.1 where we select the initial NC 
sizes and configuration to match experiment. It is clear that the model recovers not just 
the time scale for a single NC size, but also the size scaling. Assigning L as the side-
length of the individual NCs before sintering, and considering scaling of the relaxation 

time eq ~ L*, one roughly estimates * ~ 2.6 just for the two different sizes shown in 
Figure 51. Analyzing a more extensive data set for Ag/Ag(100) for a range of NC sizes 

suggests that *  3. 114,178 Below, we develop a theoretical formulation for anomalous 
size scaling in this sintering process, where this is most conveniently presented for a 
simplified tailored model.  

Next, we present an example of analogous corner-to-corner sintering of 
nanoislands for Cu/Cu(100) at 300 K.244 See Figure 52. Accounting for the size of the 
islands, one finds that the sintering time of 15 min is substantially faster than the time 
for the same sized Ag/Ag(100) islands. Given that interaction energies and edge 
diffusion barriers are higher on the (100) surface of Cu relative to Ag,27 this trend would 
not be predicted by atomistic modeling (wherein Cu/Cu(100) sintering is substantially 
slower). The reason for this discrepancy is not entirely clear. It is possible that sintering 
for Cu/Cu(100) is accelerated by the presence of trace impurities, e.g., S from the bulk. 
However, preliminary DFT analysis has failed to date to find a pathway whereby the 
presence of S at step edges enhanced edge diffusion or corner rounding. 
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Figure 51. Corner-to-corner sintering of Ag NCs on Ag(100) at 295 K. Top: 5.2x5.2 + 4.5x4.5 
nm2 NCs. Bottom: 13.0x13.0 + 11.5x11.5 nm2 NCs. Reprinted with permission from Ref. 27. 
Copyright 2016 American Chemical Society. 

 

 
 
Figure 52. Corner-to-corner sintering of 14.3 x 11.7+ 9.1 x 9.1 nm2 Cu NCs on Cu(100) at 295 K 
with 3.5 min. between successive images. Image size: 50 x 50 nm2 with NCs. Sintering is 
complete in ~15 min. 244 The caption in Ref. 244 incorrectly states the combined NC size is 400 
atoms. Reprinted with permission from Ref. 244. Copyright 1998 World Scientific. 

 
As for fcc(111) surfaces, it is of interest to consider sintering of nanopits as well 

as nanoislands. However, for fcc(100) surface, examples for nanopits are limited, in part 
since coarsening of nanopits is dominated by OR in contrast to SR for nanoislands. One 
example for corner-to-corner sintering of nanopits on Ag(100) is shown in Figure 53.114 
This very limited data suggests that sintering of nanopits is no slower than nanoislands 
of the same size, and is possibly faster. To further assess this comparison, benchmark 
simulations can be performed utilized an atomistic model with ab-initio kinetics staring 



80 
 

with the same sized nanopits and nanoislands in a corner-to-corner configuration.27 
Results shown in Figure 54 are consistent with somewhat faster nanopit sintering. We 
emphasize that these results follow from a refinement of the ab-initio modeling to 
include additional unconventional interactions which ensure that periphery diffusion 
processes on concave step edges are described accurately.27 See Sec.7.1.3. 
 

 
 
Figure 53. Corner-to-corner sintering of nanopits on Ag(100) at 295 K. Image size: 54x54 nm2. 
Reprinted with permission from Ref. 114. Copyright 1998 American Physical Society. 

 

 
 
Figure 54. Benchmark comparison of corner-to-corner sintering for islands and pits for the same 
(smaller) size on Ag(100) at 295 K. Reprinted with permission from Ref.  27. Copyright 2016 
American Chemical Society. 

 
 Finally, we present a fundamental analysis for corner-to-corner sintering on 
fcc(100) surfaces utilizing a tailored atomistic model developed in Sec.3.5.1 and applied 
in Sec.5.1.2 for reshaping of convex NCs. In addition, we compare predictions of 
atomistic modeling and continuum theory. First, it should be noted that there are two 
stages for the sintering process.153 In the first initial stage of neck growth, atoms are 
moved from the outer corners of the NC pair and moved to the neck region, but outer 
edges of the NC pair are not completely removed. See Figure 55. For the configurations 
shown, it is clear that the number of broken bonds ate the NC periphery equals the total 
perimeter length on the NC pair which in turn equals the perimeter length of the smallest 
inscribing rectangle. Thus, during this first stage since outer edges are not completely 
removes, the total energy of the NC pair is constant. Thus, evolution is entropy (not 
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energy) driven.153 Simulation results indicate that the size scaling of neck growth in this 

initial entropic regime is consistent with continuum theory, i.e., * = 4. 153  
  

 
 
Figure 55. Initial “entropic” stage of sintering and neck growth. Reprinted with permission 
from Ref. 153. Copyright 2002 American Physical Society. 

 
However, more relevant for comparison with experiment is analysis of the 

subsequent energy-driven regime where outer edges are completely removed and the 
energy of the systems decreases.153 Analogous to our analysis in Sec.5.1.2 for 

reshaping of rectangular NCs, we will introduce characteristic time, layer, to remove a 
complete layer from the outer edge, and then determine the characteristic time for the 

overall shape equilibration process from eq ~ L layer. Removal of outer step edges 
involves transfer of atoms from a kink site along a straight outer step edge around a 
corner and along another straight step edge to a kink closer to the neck region. We let 

0 denote the characteristic time for transfer of a single such atom, which is a key 

component controlling layer. Since the transfer of atoms between the two kinks 
corresponds to a random walk in the configuration space of the number of transferred 
atoms, the characteristic time to transfer ~ L atoms completely removing an outer edge 

must scale like layer ~ L2 0 which follows from Einstein’s relation for random walks. 

If h0 = 1/0 denotes the characteristic rate to transfer a single atom, then we write 
h0 = Ptrans_one hk, where hk gives the rate of the initial escape from the kink to the step 
edge, and Ptrans_one gives the probability that once the atom escapes the kink site it is 
successfully transferred around the corner to the other kink closer to the neck region 
(rather than returning to the original kink). This process corresponds to a 1D random 
walk between traps separated by ~L sites where the rate for one of the hops between 

the traps is reduced by a factor of exp[-/(kBT)] ~ 1/L  relative to the other hops. This 
step with the reduced hop rate corresponds to rounding the corner between the kinks. 

Analysis of this random walk problem reveals that Ptrans_one ~ 1/(L+L). Consequently, 

one has that 0 ~ (L + L)k where k = 1/hk is the typical time to escape a kink. Thus to 
summarize, one has153,178 
 

eq ~ L layer where layer ~ L2 0 and 0 ~ (L + L)k, so eq ~ L3(L+L)k.  (78) 
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This result explains the crossover from size scaling with the continuum * = 4 for small 

kink rounding barrier, to * = 3 with large barrier. 
 As a final complementary analysis, we compare the predictions of our tailored 
atomistic modeling with continuum theory predictions incorporating appropriate 

anisotropic step energies. For the case with  = 0, there is essentially perfect agreement 
even on the nanoscale. See Figure 56.This is consistent with the above analysis 

revealing classic scaling with * = 2 in this case. However, introducing finite  > 0, such 
analysis reveals strong deviations between atomistic and continuum models, as also 
expected from the above analysis. 
 

 
 
Figure 56: Comparison of atomistic and continuum modeling of corner-to-corner sintering of Ag 

NCs on Ag(100) at 295 K for  = 0. Reprinted with permission from Ref. 153. Copyright 2002 
American Physical Society. 

 
5.5. Analysis of evolution for “extreme shapes” of 2D epitaxial NCs 
 

5.5.1 Irregular NCs. Behavior observed for the evolution of irregular shaped NCs 
provides a clear signature that evolution is PD-mediated (and thus governed by an 
evolution equation which is fourth-order in space) rather than curvature driven (where 
Grayson’s theorem applies to preclude pinch-off in 2D).177 First, we consider the 
evolution of large “worm-like” vacancy nanoclusters on Cu(100), where we note that 
analogous behavior has been observed for Ag(100).177 These morphologies are created 
by deposition of near-monolayer coverages of Cu on Cu(100), or Ag on Ag(100). Figure 
57 shows STM data for the evolution of a vacancy nanoworm on Cu(100) which is 
compared against the predictions of isotropic continuum theory. The most dramatic 
feature is pinch-off in experiment after 2800 s, which is qualitatively described by the 
isotropic model exhibiting pinch-off at 3500 s. Likely, this discrepancy is partly due to 
fluctuation effects not included in continuum modeling (see below). Naturally, nanoworm 
shape in the continuum model is not accurately described, particularly near the ends of 
the worm where the shape is more rounded than in experiment. However, these 
deficiencies are corrected in modeling which incorporates anisotropy in step energy.177 
See Figure 58. 
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Figure 57. Pinch-off of a large worm-like nanopit on Cu(100) at 295K. Comparison between 
experiment and isotropic continuum theory. Image height: 75 nm. Reprinted with permission 
from Ref. 177. Copyright 2001 American Physical Society. 
 

 
 

Figure 58. Pinch-off of a large worm-like nanopit on Cu(100) at 295K. Comparison of anisotropic 
with isotropic continuum theory. Reprinted with permission from Ref. 177. Copyright 2001 
American Physical Society. 

 
A more extreme realization of pinch-off occurs during the post-synthesis 

evolution of dendritic or fractal islands. Figure 59 provides an example of such evolution 
for Ag/Ag(111) NCs formed by low-temperature deposition. In the image on the right, 
the small roughly circular NC droplets are formed by pinch-off of the arms of the 
dendrites.14 One generic modeling study utilizing continuum theory with isotropic step 
energy considered the evolution of fractal clusters via edge diffusion revealing multiple 
pinch-off events.183 In Sec.6.5, it is shown that analogous behavior occurs for supported 
fractal NCs where the arms formed as aggregates of individual small compact 3D NCs. 
 

 
 
Figure 59. Annealing of Ag/Ag(111) dendritic islands leading to pinch-off. Reprinted with 
permission from Ref. 14. Copyright 2009 American Chemical Society. 
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5.5.2. Elongated nanorods. Lastly, pinch-off is analyzed in more controlled but 

still “extreme” NC geometries, specifically highly elongated 2D nanorods. The 
motivation for this analysis is partly for comparison with analogous 3D behavior noting 
that pinch-off has been recently observed and modeled for 3D elongated nanorods. See 
Sec.6.5. We caution, however, that there are fundamental differences between the 2D 
and 3D cases.      

For analysis of the evolution of elongated 2D “nanorod” NCs based on 
deterministic continuum theory, the basic phenomenon is that these relax back to 
equilibrium shapes if their aspect ratio, A, is not too large, but pinch-off above a critical 
aspect ratio, Ac. Thus, a central issue is the determination of Ac. Naturally, the answer 
will depend on anisotropy in the step edge stiffness (and thus on orientation of the 
nanorod), and potentially on the prescription of step edge kinetics. Benchmark studies 
including isotropic step energy and stiffness and isotropic mobility are illustrated in 
Figure 60. The top frame shows that pinch-off does not occur even for large aspect ratio 

of A  20. In fact, one finds that Ac  65 is significantly larger (see bottom frame). These 
results are independent of temperature as evolution is purely geometric. For the 
extreme case of evolution of an effectively semi-infinite nanorod, see Ref. 183. 
 

 
 
Figure 60. Reshaping of rectangles in isotropic model: Top: no pinch-off for A = 20. Bottom: 

Pinch-off at the critical Ac  65.  The thick line is at pinch off for Ac  65. 

 
Next incorporating step edge anisotropy corresponding to an Ising type model 

with NN interactions on a square lattice describing a fcc(100) surfaces, we consider 
behavior for rectangular NC oriented with sides corresponding to both close-packed 

step edges and open kinked step edges (45 rotated from first case). Pinch-off 
propensity depends strongly on step edge orientation being much easier for kinked step 
edges (Ac = 35) than close-packed step edges (Ac = 203) at 300 K. A comparison of 
behavior for A = 35 is shown in Figure 61. More comprehensive analysis of dependence 

of Ac on /(kBT) also considering models for both fcc(100) and fcc(111) surfaces with 
NN interactions. See Table 5. For open kinked step orientations, where pinch-off is 

easier, Ac increases monotonically with decreasing /(kBT) to reach  ~65 for /(kBT) = 0 
corresponding to the isotropic case. For close-packed step orientations, where pinch-off 

is difficult, Ac decreases monotonically with decreasing /(kBT) to reach ~65 for /(kBT) = 
0.  
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Figure 61. Anisotropic continuum model nanorod evolution for a fcc(100) surface symmetry. 

/kT = 9.09 [so k/kT = 4.545] 
 

Table 5. Critical pinch-off aspect ratio from continuum modeling for nanorods. 
 

k/(kBT) {100} facet {100} facet {111} facet {111} facet 

 close-packed kinked step close-packed kinked step 

0 (isotropic) 65 65 65 65 

2.56 97 48 86 56 

2.88 108 45 95 51 

4.70 203 35 168 45 

 
For these deterministic continuum models, it is also useful to extract additional 

results on evolution which will important for analysis of stochastic models below. 
Specifically, we consider continuum modeling for fcc(100) surfaces in the case of 

diagonally oriented nanorods are oriented (i.e., nanorods oriented at 45 from close 
packed direction) with maximally kinked open step edges. Again, for this orientation, 
pinch-off is most facile. Our focus here is on behavior for A < Ac where pinch-off does 
not occur, but where the middle of the nanorod initially becomes narrower before finally 

broadening during evolution to the equilibrium shape. For /(kBT) = 5.12 [so k/(kBT) = 

2.56] (e.g., for = 0.20 eV and T = 450 K), we determine the ratio of the initial width, 
winit, to the minimum width, wmin, for A < Ac. We find that wmin/winit = 0.942, 0.810, 0.449, 
0.141, 0.050, 0 for A = 5, 10, 25, 40, 45, 48, respectively. The significance of these 
results is that in the context of stochastic modeling, the state corresponding to the 
minimum width is where the NC is most vulnerable to fluctuation-induced pinch-off. 

Finally, before describing stochastic modeling, it is instructive to compare results 
reported above from conventional continuum modeling of shape evolution for nanorods 
with that from the “simplified” modeling described in Sec.4.3.2 where the step edge of 
NCs is treated as faceted with a discrete number of allowed orientations.196 Figure 62(a) 
shows evolution allowing a large number (16) of facet orientations which mimics closely 
evolution with isotropic surface energy shown in Figure 60. Figure 62(b) shows 
evolution allowing four facet orientations which mimics evolution of nanorods on a 
fcc(100) surface aligned with close-packed step directions as shown in Figure 61 (left).  
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Figure 62. Periphery-diffusion mediated evolution in a model for purely facetted 2D NCs. (a) 16 
facet orientations; (b) 4 facet orientations. Reprinted with permission from Ref. 196. Copyright 
1995 Elsevier. 
 

Next, we consider stochastic atomistic modeling for pinch-off of elongated 
nanorods. We consider rectangular NCs on an fcc(100) surface with a diagonal 
orientation and maximally kinked step edges. Figure 63 shows a sequence of 

configurations revealing pinch-off for A = 21 (with = 0.20 eV and T = 450 K where 
continuum theory predicts that Ac = 48). From more extensive KMC simulation analysis, 
it is natural extract the probability of pinch-off, P(A), as a function of aspect ratio, A 
(where we keep the width of the rectangular NC fixed). Repeating simulations for 
different choices of initial width, winit, generates a family of curves shown below in Figure 

64.  As wint  , behavior in the stochastic model should approach that of the 
deterministic continuum treatment where P(A) = H(A - Ac), where H() is the Heaviside 
step function and again Ac = 48 for our parameter choice. The simulation results are not 
inconsistent with this limiting behavior (where we emphasize that statistics are quite 
limited for larger nanorod widths). With more extensive statistics, one expects that the 
P(A) versus A curves would be smooth and progressively steepen as they approach the 

step function for wint  . 

 
 
Figure 63. Stochastic modeling of fluctuation mediated pinch-off of an elongated 2D epitaxial 
NCs on a {100} surface with kinked step edges (i.e., a diagonal orientation). 

 
Further elucidation of the above observations follows from development of a 

heuristic theory for stochastic pinch-off. One might naturally apply the criterion that 



87 
 

pinch-off occurs in the stochastic model (with probability ~1/2) when wmin has decreased 
to 2wfluct, where wfluct is the amplitude of fluctuations at a single step edge. The 
underlying picture is that the presence of fluctuations means that steps on the opposite 

sides of the nanorod are likely to touch when wmin  2wfluct, and that such touching will 
lead effectively irreversibly to pinch-off. Using this criterion to interpret the above 

simulations results yields wfluct = 4.25, 5.3, 6.25,… for winit = 82, 102, 132,… (in units 

of lattice constant), respectively. Extrapolating these results winit = 172, 192, and 

242, indicates that wfluct = 7.25, 7.7, and 8.75, so that wmin = 14.5, 15.4, and 17.5, and 
thus wmin/winit = 0.60, 0.57, and 0.52, respectively. Then, based on results reported 
above from continuum modeling, one would predict that P(A) = ½ for A = 19, 20, and 

22.5, for winit = 172, 192, and 242, respectively. These values are somewhat above 
those obtained from the simulation results reported in Figure 64, although the general 
trend is captured.    

 

 
 
Figure 64. Pinch-off probability, P(A), as a function of aspect ratio for elongated 2D epitaxial 
NCs on a {100} facet. Limiting deterministic behavior follows from the appropriate anisotropic 
continuum model. 

 
Finally, we emphasize again that there are fundamental differences between 

pinch-off phenomenon for 2D elongated NCs and the “analogous” pinch-off of nanorod 
in 3D (discussed in Sec.6.3). The key point is that for an infinitely long nanorod, the 
evolution of opposite sides is independent in 2D (unless wandering induced by 
fluctuations lead to collision of opposite sides). However, opposite sides are connected 
in 3D by surface diffusion. 
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6. SHAPE EVOLUTION OF SINGLE-COMPONENT 3D fcc NCs       
 
6.1. Atomistic modeling for initial convex shapes of unsupported 3D NCs 
 
Just as for shape relaxation of 2D NCs, one might anticipate that predictions of 
continuum theory for surface-diffusion mediated reshaping of 3D NCs break down on 
the nanoscale, particularly for size scaling. This seems particularly likely as 3D crystals 
are truly facetted below the roughening temperature, which is the regime of interest. 
Indeed, strong deviations from continuum predictions are observed although detailed 
behavior is quite different than in the 2D case. As with our analysis of 2D reshaping, we 
start by highlighting a key early theoretical study by Combe, Jensen, and Pimpinelli121 

for a generic lattice-gas (LG) model for fcc NCs including NN attractions of strength  = 
0.1 eV and surface atom hopping rates described by a standard IVA or bond-counting 
prescription (with activation barrier just determined by the initial coordination). Figure 65 
shows results of KMC simulations for the evolution of an elongated nanorod of N atoms 

back towards the equilibrium octahedral Wulff shape. The scaling exponent, , for the 

size-dependence of the relaxation time, teq ~ N, agrees with continuum theory 

predictions  = 4/3 only at high T. The exponent adopts increasingly higher values as T 

is lowered.121 This contrasts the 2D case where  decreases for lower T, and also 
adopts a well-defined limiting value for low T.   
 

 
 
 
Figure 65. Reshaping of a 3D NC. Left: scaling of the relaxation time, teq, with NC size N atoms 
for various T. Right: typical NC configurations for N = 1728 at 700 K (top) and 300 K (bottom). 
Reprinted with permission from Ref. 121. Copyright 2000 American Physical Society. 

 
However, as for the 2D case, deviations from continuum predictions are 

associated with the difficulty in nucleating new layers on outer surface facets noting that 
this is a necessary component of shape relaxation to equilibrium.121,190 Indeed, 
consistent with this picture, Figure 65 shows a clear difference between the typical 
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facetted NC morphology at low T (where continuum theory fails) and the rounded rough 
morphology at high T (where continuum theory applies). In fact, it is suggested that the 
progressive increase in exponent shown in Figure 65 reflects the possibility of an actual 
exponential dependence of teq on NC size and on T.121,190 In this picture, the relaxation 

time, teq, corresponds to the characteristic time, tnuc ~ exp[G*/(kBT)], to form a critical 

nucleus leading to formation of a new layer. Here, G* denotes the corresponding free 
energy barrier. Simulations were performed using an umbrella sampling technique to 

assess the excess free energy, G(q), as a function of the number of atoms, q, 
transferred to a 2D cluster of atoms or “germ” formed on the initially bare facet. Based 

on classical nucleation theory, one expects the form G(q)    2(q)1/2 - q, where  

denotes the step energy and  is the chemical potential difference for an atom going 

from a “tip” of the cluster to the facet. The simulation estimates for G(q) versus q 

shown in Figure 66 are consistent with this form and clearly show an increase in G* 
with increasing NC size.121 The latter is consistent with an exponential dependence of 
teq on NC size. 

 

 
 
Figure 66. Excess free energy, G, at 400 K for q atoms transferred to a bare facet during NC 
reshaping as a function of NC size N from 1728 to 13632 atoms. The initial aspect ratio is 
indicated in parenthesis. Reprinted with permission from Ref. 121. Copyright 2000 American 
Physical Society. 

 
As noted in Sec.2.1, solution phase nanosynthesis can create NCs for fcc metals 

including Ag, Au, Pt, etc., with almost perfect simple geometric shapes including cubes, 
tetrahedra, etc.3,4 These shapes optimize desired properties for catalysis, etc., so it is 
important to assess the stability of these special NC shapes against evolution towards 
their equilibrium Wulff shapes. See Figure 67. Any model which incorporates a 
reasonable description of NC thermodynamics, and which selects surface diffusion 
rates consistent with detailed-balance will evolve to the appropriate equilibrium shape. 
However, the detailed form of this non-equilibrium shape evolution will reflect the 
prescription of kinetics. Thus, we describe simulations of Ag NC reshaping applying a 
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stochastic lattice-gas modeling with realistic kinetics as well as thermodynamics 
developed in Sec.3.4.160 First, we describe in some detail the canonical problem of 
evolution from Ag nanocubes, and then describe more briefly evolution from Ag 
tetrahedra (again noting that Ag NCs can be synthesized with both these shapes). 

 

 
 
Figure 67. Evolution of nanocubes to Wulff clusters. Reprinted with permission from Ref. 4. 
Copyright 2013 Materials Research Society. 

 
Complete nanocubes of fcc metals with {100} facets have unstable low-

coordinated corner and edge atoms. Thus, for an initial configuration in the simulations 
which better mimics synthesized structures, it is appropriate to remove all atoms that 
have less than six NN. Results of KMC simulations160 for evolution at 1100 K starting 
with such a truncated Ag nanocube with N = 1584 atoms are shown in Figure 68 (top). 
To illustrate the utility of “atom tracking” KMC simulations in Figure 68 (bottom), we 
show the same simulated configurations, but now with atoms which were initially at the 
corners and edges of the nanocube are colored red. Consequently, one can track the 
change in their locations in the NC during subsequent evolution. 
 

 
Figure 68. Simulated reshaping of an Ag nanocube with N = 1584, T = 1100 K (top) 160. Atom-
tracking of the location of corner and edge atoms (bottom). Reprinted with permission from Ref. 
160. Copyright 2018 American Physical Society. 
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To quantify the T-dependence and size (N)-dependence of relaxation, we 

monitor evolution of the “width” ℎ100 (ℎ111) between the outermost {100} facets ({111} 
facets) on opposite sides (corners) rescaled by the interlayer spacing to monitor the 
number of {100} and {111} layers 160. See Figure 69. This definition identifies every 
plane with at least one atom as a layer. Results for larger N = 1584 show distinct stages 
in the formation of new {100} facets and dissociation of {111} facets. In addition to the 
final equilibrium plateau, there is a weak plateau for ℎ100 increasing by two layers (due 
to the nucleation of one new layer on each {100} facet), and ℎ111 decreasing by two 
layers (due to complete dissociation and removal of a {111} facet from each corner). 
These features are less clear for NCs of smaller size. 

 

 
 
Figure 69. Analysis of the temperature dependence of reshaping of Ag nanocubes for N = 586 
(left) and N = 1584 (right). Linear dimensions, h111 (top), h100 (middle), and total NC energy, E 
(bottom). Reprinted with permission from Ref. 160. Copyright 2018 American Physical Society. 

 

It is instructive to introduce characteristic times, relax = 100 (111) reflecting 
significant changes in ℎ100 (ℎ111), and from these assess effective Arrhenius energies, 

Eeff. Clearly relax = 111 characterizes dissociation of a {111} corner facet and transfer of 
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its atoms to a {100} facet, and associated Arrhenius analysis yields Eeff  0.7 eV. See 
Figure 70. To provide an atomistic-level interpretation of this barrier, we consider the 
multi-step process of transferring an atom from the corner atom on the {111} facet to the 
{100} facet. One can show that the highest barrier is for the last step to reach the final 

adsorption site on the {100} facet which is E = +2 above the initial site energy. Since 
the atom must surmount a barrier of energy cTD100 above the final state energy, one 

concludes that Eeff = c100TD + E = 0.875 eV.160 This result is somewhat above the 
simulation result presumably because our simplified analysis neglects entropic factors 
which are significant for higher T, e.g., the NC is likely thermally excited from the 
truncated nanocube so analysis based on an ideal ground state geometry is 
oversimplified. 

Complementary insight into evolution comes from consideration of relax = 100 
which characterizes the nucleation of new {100} layers by atoms which are freed from 

{111} corner facets and which diffuse onto {100} facets. Arrhenius analysis yields Eeff  
1.1 eV. See Figure 70. One might associate this barrier with that for the formation of a 
relatively stable square tetramer of atoms on a {100} facet. This process can be divided 
into two stages. In the first stage, 3 of the 12 atoms on the initial complete {111} corner 
facet are transferred to a single {100} facet to form a trimer. This involves breaking a 
total of 8 lateral bonds on the {111} facet, but forming 2 lateral bonds in the trimer. Also 
accounting for the increased coordination of 4 to supporting atoms on the {100} facet 
relative to the coordination of 3 to supporting atoms in a {111} facet, the total energy 

change for this process is E123 = +3. The second stage involves transfer of a fourth 
atom from the {111} facet to the {100} facet to stabilize the trimer to which we assign a 
barrier of E4. This process is controlled by last step to reach a {100} adsorption site 

yielding a barrier E4 = 0.75 eV, giving an effective nucleation barrier of Eeff = E4 + E123 
= 1.42 eV. However, if the trimer is at the {100} facet edge so that the atom from the 
{111} facet can hop directly into a site with two lateral bonds forming the square 
tetramer, then E4 is reduced to 0.525 eV, and Eeff = 1.20 eV close to simulation 
results.160 
 

 
 
Figure 70. Arrhenius behavior for characteristic times for Ag nanocube reshaping 160. 
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An alternative measure of evolution comes from tracking the total NC energy E. 

See Figure 69 which shows that E first increases through a peak value, Emax, before 

decreasing to its equilibrium value. Thus, it is natural to define a reshaping time relax = 
𝜏𝐸Max corresponding to the peak energy. Note that both peak E and equilibrium E are 

larger for higher T due to entropic effects. Arrhenius analysis for 𝜏𝐸Max yields Eeff  0.72 

eV effectively coinciding that for 111 160. Thus, Emax corresponds to the early-stage 
disruption of {111} facets, E being lowered only after nucleation and growth of new 
{100} layers.  

Knowledge of Arrhenius behavior allows prediction of relaxation time scales for 

lower T. The nucleation process with the higher Eeff  1.1 eV will be rate controlling so 

that, e.g., relax  100  10-3.6, 10-0.8, and 103.8 sec. at 500K, 400K, and 300K, 

respectively, choosing  = 1012.5 s-1. We caution that these estimates are lower bounds 
as Eeff should increase somewhat for lower T where entropic effects are less significant 
and our estimates of Eeff based on analysis of atomistic processes are more reliable. 

 We can also roughly assess size scaling of relax based on just two NC sizes N = 

586, 1584. Analysis of relax ~ N corresponding to the late stages of the process (where 

h111 has evolved 90% from its initial to final value) yields  decreasing from   1.7 at 

800 K to   1.3 at 1000 K where the latter is close to the classic continuum value of  = 
4/3. 160 Thus, behavior is analogous to that described in Figure 65 above consistent with 
the presence of a nucleation-mediated process with finite effective barrier.  

 Next, we consider the evolution of truncated Ag nano-tetrahedra, where 
analogous to the case of nanocubes, low coordinated atoms at the corners and along 
the edge are removed in the initial configuration. Results of KMC simulations for 
evolution at 1000 K starting with N = 1028 atoms are shown in Figure 71 (top). In Figure 
71 (bottom) we show the same simulated configurations, but now with atoms which 
were initially at the corners of the tetrahedron are colored red. Tracking their locations 
during subsequent evolution reveals that most of these atoms participate in the 
nucleation and growth of a new {111} layer on one side of the tetrahedron. 
 

 
 
Figure 71. Simulated reshaping of an Ag tetrahedron with N = 1028, T = 1000 K (top). Atom-
tracking of the location of corner atoms (bottom). 
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 As for nanocube evolution, more detailed analysis follows from tracking evolution 
of characteristic dimensions of the NC and/or tracking the total NC energy, E. See 
Figure 72. After an initial plateau, a rapid drop is evident in E which corresponds to an 
increase of number of bonds in the cluster associated with building up a large 2D cluster 
on one of the large {111} facet by transfer of  atoms from the small {111} facets at the 
truncated corners of the tetrahedron. Extracting the timescale tdrop associated with the 
rapid drop in E (from the time midway between the initial and lower plateaus), one can 

perform an Arrhenius analysis to extract an effective energy barrier Eeff  0.8 eV. One 
can also track, e.g., the average number of {111} layers, nbuild, above center of mass 
parallel to the initial four large {111} facets. This number of layers naturally increases 
with time as new layers are nucleated. Furthermore, we can see that the timescale of 
rapid drop in E corresponds to the plateau in nbuild, which is a signature of nucleation on 
these large {111} facets.  
 

 
 
Figure 72. (a) Total energy evolution for reshaping of an Ag tetrahedron with various N and T. 
(b) Arrhenius behavior of the relaxation time. (c) Evolution of linear dimension, nbuild. 
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6.2. Experiment and modeling of coalescence of pairs of unsupported 3D NCs 
 
In-situ liquid cell TEM imaging is providing detailed insights into solution-phase growth 
and coarsening of metallic NCs.31,33 Rather than Pt NC growth exclusively by monomer-
addition, coalescence processes have also been shown important and characterized in 
some detail, where often these involve oriented-attachment or other processes leading 
to the preservation of a single-crystal structure of the NCs. Also novel features such as 
a pause in NC growth immediately after coalescence were observed in the early 
studies. Resolution in the initial TEM studies was limited in part due to the thick silicon 
nitride or oxide cell windows. One strategy to resolve this limitation involved the 
development of graphene liquid cell TEM where a droplet of the growth solution is 
contained between two graphene sheets.33 This system has the advantage that the 
interaction of the NP is weaker than with the glass window, and thus perturbs less 
growth and coalescence processes. For the modeling presented in this review, a key 
issue is the formation of single-crystal NC structures after coalescence. Even if NCs 
coalescence with some low-index plane aligned in the sense that their normal vectors 
are parallel, they can still be azimuthally misaligned. However, high-resolution TEM 
confirm the existence of oriented-attachment mechanisms which result in perfect 
alignment and resulting post-coalescence perfect single-crystal structures.33 This is 
shown in Figure 73 for Pt NPs where contact occurs at {111} planes in part due to 
minimal ligand obstruction. Note however that the same study does reveal other 
coalescence events producing twinned NCs. Figure 74 shows a more detailed analysis 
quantifying key dimensions during shape evolution for a Pt NC coalescence event.33 
 

 
 
Figure 73. HRTEM showing oriented-attachment of a pair of Pt NCs33 Reprinted with permission 
from Ref. 33. Copyright 2012 American Association for the Advancement of Science. 

 
Next, we describe a detailed study of neck growth during coalescence of 

decahedral Au NCs incorporating both in-situ TEM analysis in combination with 
stochastic lattice-gas modeling and KMC simulation.32 The individual NC size is around 
12 nm and the pair of NCs intersect at {100} lattice planes. TEM images of sintering 

shown in Figure 75 allow tracking of the growth of the neck width, r, which for moderate 

times satisfies r ~ t0.32-0.37, and which for shorter times is subject to strong variations 

between different examples of sintering. This behavior is far from the classic continuum 
prediction128 of r ~ t1/7, but this is perhaps not surprising since the continuum result 

reflects the singular initial geometry of two touching spheres, and the experiment is far 
from this situation. Atomistic simulation results supplementing the above TEM analysis 

utilized a generic lattice-gas model for an fcc lattice with NN interactions of strength  = 
0.1 eV, and a bond-counting or IVA prescription of surface hop rates.32 Results also 
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shown in Figure 75 are reasonably consistent with experiment (after arbitrarily adjusting 
T to match the experimental time scale). 
 

 
 

Figure 74. HRTEM quantification of the variation of key dimensions during oriented-attachment 
of a pair of Pt NCs. Scale bar = 2 nm. Reprinted with permission from Ref. 33. Copyright 2012 
American Association for the Advancement of Science. 

 

 
 

Figure 75. Sintering of orientationally aligned Au NCs intersecting at a {100} plane (left) and 
experimental and simulation results for evolution of the neck width (right). Reprinted with 
permission from Ref. 32. Copyright 2012 American Chemical Society. 

 
The generic lattice-gas model used in the above study was also applied in a 

more extensive exploration of sintering behavior where individual (large) NCs ranged in 
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size from 28000 to 68000 atoms, and where planes of intersection were either {001} or 
{111}.122 Figure 76 shows simulated evolution for coalescence of a pair of NCs at 400 K, 
each with radius R = 14 (in units of the fcc lattice constant) intersection at a {100} plane. 
Initially atoms are readily incorporated at high coordination sites in the neck region, but 
attachment at the neck is more difficult by stage c). By stage d), {110} facets form in the 
neck region and it is proposed that slow diffusion on these facets facilitates nucleation 
of new layers capturing material from the outermost {100} and {111} facets. In stage e), 
the dumbbell has been replaced by a facetted rod with alternating {100} and {110} side 
facets. The final stage further eliminates the outermost facets and nucleates new layers 
in the central region. The growth of the neck radius and reduction in overall energy (i.e., 
the increase in the total number of NN bonds) during this process are shown in Figure 
77. Note that the total energy is almost constant during stage d) where new layers are 
nucleating on the central {110} facets, but these new layers do not have highly 
coordinated atoms relative to the {100} and {111} facets. 
 

 
 

Figure 76. Simulated evolution of coalescence at 400 K of a pair on NCs with radii 14 lattice 
constants intersecting at the {100} plane. Reprinted with permission from Ref. 122. Copyright 
2009 American Physical Society. 
 

 
Figure 77. Total energy and neck radius during the evolution of Figure 76. Reprinted with 
permission from Ref. 122. Copyright 2009 American Physical Society. 
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 For contrast, Figure 78, shows simulated morphologies for coalescence of two 
NCs again with R = 14 at 400K, but now intersecting at a {111} plane. Note the structure 
in the neck region is quite distinct from above with three {100} and three {111} facets 
developing in the neck region, and with atoms diffusion from the outer regions initially 
being captured at the intersection of these facets. As coalescence proceeds, new layers 
spread across the {111} facets capturing outer atoms at step edges. 
 

 
 
Figure 78. Simulated evolution of coalescence at 400 K of a pair on NCs with radii 14 lattice 
constants intersecting at the {111} plane122. 

 
Quantitative analysis of the above simulation data for the size dependence and 

Arrhenius behavior of relaxation yields the following observations.122 Here, the 
equilibration time, teq, was defined as the time to reduce ratio of length to neck width for 
the coalesced pair of NCs to a value of 1.2. For NC intersection at a {100} plane, one 

finds that the size scaling exponent  in teq ~ N increases smoothly from  = 1.33 (the 

classic continuum value) to  = 1.55 at 450 K to  = 2.3 at 400 K. This is consistent with 
a picture where shape evolution is limited by nucleation on the {110} layers in the neck 

region. For NC intersection at a {111} plane,  depends weakly on size consistent with a 
picture where this reshaping process in not nucleation-limited.  

Regarding the T-dependence of teq, Arrhenius analysis for {111} intersection 
(where reshaping is not nucleation-mediated) reveals a constant effective energy of Eeff 
= 0.6 eV for the entire temperature range considered. This value corresponds to the 
barrier for an atom to hop out of a kink site at a step edge on either the {100} or {111} 
facet (for the simple IVA specification of rates which does not realistically capture 
diffusion on metal surfaces). Behavior for {100} intersection is more complicated. For 
higher T, one again obtains Eeff = 0.6 eV. However, higher values of Eeff are realized for 
lower T where reshaping is nucleation-mediated.122 

For larger NCs and for reshaping behavior which is largely controlled by system 
thermodynamics, the use of generic IVA type prescriptions of surface diffusion rates is 
sufficient. However, in general a more realistic description of these rates is required. 
Thus, it is instructive to consider in detail the sintering of two Ag Wulff nanoclusters 
utilizing the more realistic prescription of surface diffusion kinetics described in Sec.3.4. 
Specifically, we consider the case where the two nanoclusters are initially joined by 
oriented attachment with aligned {100} facets.160 Figure 79 shows the evolution at T = 
600 K for clusters with edge lengths a100 = a111 = 4 and NW(4,4) = 586, so N = 2NW = 
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1172 (cf. Sec.3.4) Initial evolution involves rapid transfer of atoms from the ends of the 
NC pair to the concave neck region where they are readily captured. See Figure 79(i). 
Once the neck is filled in, a convex elongated structure is obtained, the sides of which 
ideally correspond to alternating {100} and {110} facets. See Figure 79(ii). Late-stage 
equilibration transferring atoms from the ends of this elongated convex shape, 
nucleating new {100} layers, and eliminating {110} side facets. Figure 79 also shows 
atom tracking KMC indicating the evolution of atoms initially at the outer ends of the NC 
pair. 
 

 
 
Figure 79. Coalescence of Ag Wulff clusters with total N = 1172, T = 600 K (top). Atom-tracking 
of the location of end atoms (bottom). Reprinted with permission from Ref. 160. Copyright 2018 
American Physical Society. 

 
We analyze neck growth as quantified by tracking the average number of atoms 

A in each of the two {100} planes at the center of the NC pair orthogonal to their long 
axis. Thus, A measures the neck area, and A1/2 reflects the neck radius, r. We estimate 

the limiting value, A, of A as t ,  from the Wulff-like equilibrium cluster. Figure 80 

shows the evolution of A/A for N = 1172 and various T 160. The first stage leading to 

formation of a convex-shaped NC is facile, and ends when A/A reaches around 0.6. A 
distinct sharp transition from this first stage to the late stage of nucleation-mediated 
evolution after convex shapes are achieved is not evident for higher T or smaller sizes, 
but is apparent at 650 K and below corresponding to the elbow in the curves of Figure 
80. 

As expected, in the initial neck filling regime, there is no indication of classic 

continuum scaling A1/2 ~ t with  = 1/7 for short t. However, one can extract an effective 

exponent, fill, for neck filling from the slope of the log-log plot in Figure 80 at the 
inflection point (which is just below the elbow for lower T). For N = 1172, we obtain 

values from fill  0.43 at 600 K to fill  0.24 at 900 K. An effective exponent, nuc  
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0.06, for the later nucleation-mediated evolution regime is extracted at 600 K, although 
we discount the significance of this value. From the trajectory of a single simulation at 
600 K (green data), it is evident that the increase in A involves distinct steps 
corresponding to nucleation of new layers. 

 

 
 
Figure 80. Neck area evolution during coalescence of Ag Wulff clusters. Reprinted with 
permission from Ref. 160. Copyright 2018 American Physical Society. 

 
To further quantify the T-dependence of the evolution, we introduce characteristic 

times, fill determined when A/A = 0.45 (reflecting the neck-filling stage), and nuc 

determined when A/A = 0.85 (reflecting the final nucleation stage). Arrhenius analysis 

for fill yields Eeff  0.75 eV. In a simplistic analysis, a corner atom of the {100} facet 
transfers to the {111} facet. The barrier for the first step is relatively low. However, to 
reach the final adsorption site on the {111} facet, the atom must surmount a barrier of 

energy cTD111 +ES above the final state energy which itself is E = +3 above the initial 

site energy. Thus, the effective barrier for atom transfer is Eeff = c111TD +ES +E = 0.875 
eV which is comparable to the simulation result noting our neglect of entropic effects.160 

Arrhenius analysis for nuc yields Eeff ranging from 0.85 eV for N = 402 to 1.10 eV for N = 
1172 (with slightly higher values at lower T). The value for N = 1172 is similar to the 
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barrier nucleation of {100} facets for nanocube equilibration, and the analysis and 
discussion presented in that case also applies here. In addition, we have analyzed size 

scaling fill ~ N for the neck filling regime and find that  increases above the classic 

continuum value of  = 4/3 for lower T, similar to behavior observed for nanocube 
reshaping.160 See Figure 81. 
 

 
 

Figure 81. Arrhenius behavior of the characteristic time for neck filling during coalescence of Ag 
Wulff clusters160. 
 

There are other atomistic lattice-gas model studies of sintering phenomena for 
more complex arrangements of NCs, e.g., involving bi-model sizes of NCs where small 
NCs between larger ones can facilitate neck formation.123 See Figure 82. However, the 
model used in this analysis did not satisfy detailed-balance and also allowed 
detachment as well as surface diffusion. There is an effective balance in attachment-
detachment processes as the simulation was performed in a finite container with an 
equilibrated concentration of “gas phase” detached atoms, and this maintains a roughly 
constant total NC size. As this model is different in nature from other described in the 
review (which focus on surface diffusion mediated evolution consistent with detailed-
balance), we do not provide further detailed discussion. 
 

 
 
Figure 82. Simulated evolution of sintering aided by a small NC in the neck region. Reprinted 
with permission from Ref. 123. Copyright 2013 Royal Society of Chemistry. 
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6.3. Evolution of unsupported 3D nanrods                     
 
As described in Sec.2.4, solution-phase synthesis can produce nanorods (either 
rectangular bars or rods with octagonal cross-sections of alternating {100} and {110} 
facets) of various fcc metals.3 By analogy with Rayleigh-Plateau instabilities in liquid jets 
(and nanojets), one might anticipate instabilities could develop in the nanorods for 
shape evolution mediated by surface diffusion. Indeed, this was confirmed in classic 
continuum modeling for infinitely long cylindrical rods for which linear stability analysis 

for weak perturbations in the radius, r(x) = r0 +  sin(2x/), along the axis x of the rod 

revealed an intrinsic instability of wavelength 0  8.89 r0. 128 This analysis applies for 
isotropic surface energy and surface mobility. It is appropriate to emphasize that such 
an instability does not occur in 2D where opposite sides of an infinite rod are 
dynamically disconnected. In contrast, they are coupled in the 3D case by azimuthal 
diffusion. Figure 83 shows the results of numerical simulations of a somewhat more 
complex scenario where a nanorod is grown in the first 76 time units by adding 
spherical clusters periodically to its ends, but the abovementioned instability has led to 
pinch-off before growth has terminated and subsequent pinch-off occurs into smaller 
clusters subsequently.189 Despite the more complex scenario, the distribution of 

distances, , between neighboring cylindrical fragments after pinch-off satisfies,  = 9.0 
r0, consistent with classic cylinder pinch-off. 
 

 
 
Figure 83. Isotropic continuum analysis of pinch-off of an initially growing roughly cylindrical 
nanorod where growth ceases at time 76. Reprinted with permission from Ref. 189. Copyright 
2002 American Physical Society. 
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 With regard to atomistic-level modeling of nanorod evolution, one extensive study 
utilized the same atomistic lattice-gas model as discussed at the end of Sec.6.2 (in the 
context of sintering of different sized NCs).124 Again, this model did not satisfy detailed-
balance and also allowed detachment as well as surface diffusion, but there is an 
attachment-detachment equilibrium which maintains constant nanorod size. In Figure 
84, we just show one illustrative example of morphological evolution for a nanorod with 
its axis along the {100}-type orientation which captures multiple pinch-off events.124 
Various insights followed from this and other simulations. Initial neck formation 
proceeds via two mechanisms. Necks can form in the middle of a sufficiently long 
nanowire driven by the instability mechanisms described above for the continuum 
model, but they can also form as a result of the special nature of evolution at the ends 
of the nanowire. The latter corresponds to rounding and fattening at the ends which 
induces formation of a narrower region near the ends, which in turn can lead to 
subsequent pinch-off near the ends. It was also noted that pinch-off can lead to multi-
bulb structures, particularly dumbbells, some of which are quite long-lived. 
 

 
 
Figure 84 Simulated pinch-off of a 3D nanorod with its axis along a {100}-type orientation. 
Reprinted with permission from Ref. 124. Copyright 2017 American Institute of Physics. 

 
Simulations for nanorods with a {111} orientation shows more regular periodic 

bulging in the center of the nanowire.124 See Figure 85. Breakup into round “isomeric” 
and dumbbell fragments where the dumbbells are long-lived and eventually round-up. A 
portion of the nanorod which eventually breaks up into an isomeric fragment is shown in 

the inset and has a typical length of   7.1 r0. The significant role of fluctuations in the 
pinch-off process is confirmed by running additional simulations with the same initial 
configuration as in Figure 85 (but a different random number seed) where a different 
arrangement of fragments results. Additional simulations for nanorods with a {110} 
orientation showed a strong resistance to pinch-off. 
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Figure 85. Simulated pinch-off of a 3D nanorod with its axis along a {111}-type orientation. 
Reprinted with permission from Ref. 124. Copyright 2017 American Institute of Physics. 

 
Finally, this simulation model has been used to provide a more detailed 

characterization of end-effects in the pinch-off process. As noted above, evolution of the 
nanowire ends can drive breakup by progressively generating sequences of 
nanoparticles which are more likely to have a rounded isomeric form than those 
fragments originating from the interior region. Images of evolution allow characterization 
of the morphology just before pinch-off as shown in Figure 86 (for which the nanorod 
has the same {100} orientation as in Figure 84). This image also indicates the significant 
shrinkage in length from the initial geometry which corresponds to an octagonal 
nanorod with alternating {100} and {110} side facets (shown a semi-transparent 
background). Analysis of sequence of such images allows assessment of mass flow 
during the initial stages of neck formation at the end of the nanorod.  
 

 
 
Figure 86. Evolution near the end of a 3D nanorod with its axis along a {100}-type orientation. 
Reprinted with permission from Ref. 124. Copyright 2017 American Institute of Physics. 

 
As noted in Sec.2.1, Ag nanorods can be synthesized with either an octagonal 

cross-section having alternating {100} and {110} side facets, and {100} end facets, or as 
nanobars with square cross-section and {100} side facets3. The continuum theory 
described above for isotropic surface energy and mobility indicates an instability with 

wavelength   4.45  rod diameter, so Rc  4.5 gives rough estimate of the critical 
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value of rod length to rod “diameter” for pinch-off.  Thus, there is motivation to employ a 
model described in Sec.3.4 with realistic surface diffusion kinetics satisfying detailed-
balance to explore pinch-off phenomena for these Ag nanorod systems. Simulations 

illustrated Figure 87 suggest that Rc  7-8 for the selected width of 9 layers for nanorods 

with octagonal cross-section.160 The difference in Rc from the continuum value reflects 

nanoscale effects including finite nanorod length and also faceting associated with non-
isotropic step energy. Furthermore, fluctuation effects are significant on the nanoscale 
as quantified in Figure 88 which gives the pinch-off probability, P, as a function of 
nanorod aspect ratio. However, we note that fluctuation effects are much weaker than 
for a 2D nanorod of the same width (i.e., P versus aspect ratio is much closer to a step 
function for the 3D case versus the 2D case). Finally, for comparison, Figure 89 shows 
simulation results for the pinch-off for a nanobar with square cross-section. 
 

 
 
Figure 87. Simulated pinch-off of an Ag nanorod with octagonal cross-section at 700 K160. 
Reprinted with permission from Ref. 160. Copyright 2018 American Physical Society. 

 

 
 
Figure 88. Simulated pinch-off probability of Ag nanorods at 700 K as a function of initial aspect 
ratio. 
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Figure 89. Simulated pinch-off of an Ag nanobar at 700 K. 

 
6.4. Shape evolution of supported 3D NCs: Wetting and de-wetting 
 
First, we describe a detailed atomistic modeling study245 of surface-diffusion-mediated 
shape evolution of strain-free supported 3D NCs for different strengths of adhesion to 
the substrate. The model incorporates an fcc crystal structure where the support is a 
{111} facet of an extended substrate. The NC atoms interact with a NN attraction of 

strength 0 = 0.1 eV, and NC atoms interact with substrate atoms with a NN attraction of 

strength 1 (where the latter also describes the strength of adhesion of the NC to the 
substrate). It is assumed that the NC material is epitaxially matched to the substrate, so 
there is no strain energy contribution to the overall system energy. Hopping of surface 
atoms is described within a bond-counting or IVA prescription. It is instructive to show 
how the equilibrium shape of NCs in this model depends on both the strength of 
adhesion and on T. Results are shown in Figure 90 for high T (top) and low T 
(bottom).245 Also, the difference between shapes for low adhesion (left) and high 
adhesion (right) is consistent with the Winterbottom construction. 

The first application of the above model is to what might be described as partial 
dewetting of supported NCs. We have noted in Sec.2.2.2 that the presence of 2D and 
3D ES barriers can limit upward transport of adatoms diffusing across the substrate and 
aggregating with growing 3D NCs. Thus, as-synthesized NCs could be flatter than their 
equilibrium shapes. In this case, post-deposition evolution will result in an increase in 
height and decrease in width of the NC to approach the equilibrium shape.246 Simulation 
reshaping configurations are shown in Figure 91 for 500 K for weaker adhesion with 

1/0 = 0.5. 245 More detailed analysis of the T-dependence of reshaping also shown in 
Figure 91 indicate a process mediated by nucleation of new top layers at lower T = 300 
K (as evidenced by a step-wise decrease in the total system energy), but not at higher 
T. Consistent with this picture of nucleation-mediated evolution, a more comprehensive 
analysis of size scaling of the equilibration time for different temperatures (and also 
considering different adhesion strengths indicates that the size scaling exponent 
increases with decreasing temperature (analogous to behavior described in Sec.6.1 for 



107 
 

unsupported NCs). Actually a single exponent does not describe well size-scaling for 
the lowest T consistent with an exponential dependence on size. See Figure 92. 
 

 
 
Figure 90. Equilibrium configurations of supported NCs: 1/0 = 0.8 (left), 0.5 (right). Top 700 K. 
Bottom: 300 K. Size N = 8232 atoms. Reprinted with permission from Ref. 245. Copyright 2007 
Elsevier. 

 
 

 
 
Figure 91. Simulation of partial de-wetting. 0=0.1 (NN bonding), 1 = 0.05 eV (adhesion). T = 
500 K and N = 3888. (a,b) configuration evolution; (c) total energy evolution. Reprinted with 
permission from Ref. 245. Copyright 2007 Elsevier. 
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Figure 92. Scaling of the equilibration time for partial de-wetting. Reprinted with 
permission from Ref. 245. Copyright 2007 Elsevier. 

 

Next, we consider partial wetting of supported NCs with moderate adhesion, 1/0 

 0.5, say, or complete wetting which applies, e.g., when 1/0 = 1 (corresponding to 3D 
clusters formed on a homoepitaxial support). We have also noted in Sec.2.2.2 that 
glancing angle-deposition105 in the presence of a 3D ES barrier can produce nanorods 
protruding upward from the surface. As these are generally more vertically elongated 
than equilibrium shapes, they should shrink in height. Partial wetting of such nanorods 
simulated with the model of La Magna is shown in Figure 93. For low temperature, 
evolution is mediated by nucleation of new layers on the vertical side facets of this 
protruding nanorod. The signature of this behavior is again a step-like decrease in the 
total system energy as also shown in Figure 93. Additional analysis of size-scaling of 

the equilibration time shows the expected increase in exponent from  = 1.55 (1.60) for 

700K, to 1.65 (1.80) for 500 K to 2.75 (2.90) for 300 K for 1/0 = 0.5 (0.8). 
 

 
 
Figure 93. Simulation of partial wetting. 0=0.1 (NN bonding), 1 = 0.05 eV (adhesion). T = 300 
K and N = 8232. (a,b) configuration evolution; (c) total energy evolution. Reprinted with 
permission from Ref. 245. Copyright 2007 Elsevier. 
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There are other scenarios where partial or complete wetting is manifested. 

Growth of multilayer thin films in the presence of an ES barrier produces “mounds” 
whereas the equilibrium film structure is flat. Consequently, these mounds will decay in 
height.8,9 Li et al.247 analyze this behavior for Cu on Cu(100) homoepitaxy, where they 
emphasize that behavior depends on the details of interlayer diffusion kinetics which are 
not captured by IVA type modeling. Another scenario leading to wetting is deposition of 
3D clusters on a substrate, e.g., of the same material, where we assume that the initial 
configuration of the supported cluster has an unsupported 3D Wulff shape epitaxially 
adhered to the substrate through a single facet of the Wulff cluster. As an aside we note 
that such deposited clusters will not in general be epitaxially aligned with the substrate. 
For Cu220 NCs deposited on Cu(100), in general a grain boundary is initially formed at 
the interface between the NC and the substrate. However, this grain boundary was 
proposed to sweep upwards through the NC resulting in an NC epitaxially aligned with 
the substrate.248 

Motivated in part be the last example, we analyze the associated complete 
wetting of such a supported Ag NC on Ag(100) using realistic surface diffusion kinetics 
as described in Sec.3.4. This is important to reliably describe transport between layers 
and facets. Figure 94 shows simulated evolution at 700 K of the Ag NC expitaxially 
adhered to the substrate through a {100} facet for size N = 2406 atoms. Evolution is 
quite distinct from the classic Kuczynski continuum picture184 where a simple neck 
develops at the NC-substrate interface. Instead a pyramidal base forms and grows 
upward from the substrate. Ultimately, the portion of the 3D NC remaining on top of this 
pyramidal base is incorporated into the base which finally decays and spreads to form a 
single layer on the substrate (consistent with the thermodynamic equilibrium state). 
 

 
 
Fig. 94. Simulation for an Ag/Ag(100) homoepitaxial system of complete wetting of supported 
Wulff shape cluster. 
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Above, we mentioned that the detailed features of nanoscale partial or complete 

wetting of supported 3D NCs cannot be captured by the classic Kuczynski macroscale 
continuum treatment of a sphere merging with a planar substrate.184 It is however 
appropriate to note that multi-layer step dynamics formulations provide an alternative 
treatment which is intermediate between fully atomistic modeling and continuum 
treatments197,198. Here, as described in Sec.4.3.3, this formalism can be used to track 
the positions of step edges (described as continuous curves) separating layers in a 
single 3D mound where layers with decreasing height are progressively larger, so there 
is no overhang as with the last example of a supported 3D Wulff cluster. Indeed, such 
step dynamics modeling has been extensively applied to analyze the decay of 3D 
mounds, i.e., wetting, often focusing on evolution near the top of an initially conical 
mound. The effect of the substrate is not significant for such evolution. Key observations 
include the growth of a large flat top facet (which generally supported a single shrinking 
2D island), and the self-selection of the form of slope versus radius near this top 
facet.197 Coarse-graining the step dynamics model to obtain a continuum partial 
differential equation, the boundary conditions for this equation depend on nanoscale 
details of evolution on the top facet.198  
 
6.5. Sintering and breakup of supported 3D NCs 
 
There is extensive discussion in the classic thin film literature through the 1970’s of the 
possible mobility and coalescence of supported metallic 3D NCs on alkali halide and 
oxide supports.20 One prominent example is Au/KCl(100).20 Immense interest in this 
topic derives from its relationship to catalyst degradation. A subsequent review by 
Jensen249 focused on cluster deposition where often clusters of O(102) metal atoms are 
deposited on graphite (HOPG). The mobility of deposited clusters is self-evident as it 
leads to the formation of fractal aggregates of the deposited NCs. Mobility of Au250 on 
graphite was particularly high but not on NaCl (compatible with 1970’s studies). Partial 
coalescence of Au NC was deduced on graphite as the arms in the fractal aggregates 
exceeded the size of the individual NCs.  The review also discussed cluster-cluster 
coalescence, but referred to classic continuum studies and also MD studies249 which 
are not so relevant for our considerations. 

Here we focus on HRTEM studies providing insight into the details of NC 
sintering on carbon supports. One early study in 1991 tracked the coalescence of Au 
NCs on silica.250 For 2-3 nm NCs well-bonded to the substrate, coalescence occurred 
on the order of seconds. Lattice fringes of both particles were seen to align before they 
made contact. It was also suggested that formation of an Au monolayer on the substrate 
in the small gap between the NCs was a precursor to sintering. A more recent study 
explored the sintering of a pair of 15 nm Ag NCs on particulate carbon support (Ketjen, 
Tokyo).251 See Figure 95. The sintered product typically contain twins, although particle 
rotation of a few degrees was also observed during sintering. Diffusion and sintering 
processes for smaller 6 nm and 2 nm Ag NC’s was also observed.  
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Figure 95. HRTEM of sintering of 15 nm Ag NCs at 200 C on a particulate carbon support. 
Reprinted with permission from Ref. 251. Copyright 2014 Elsevier. 

 
The modeling highlighted in this review focuses on reshaping and sintering of 

single-crystal NCs.  However, in general pairs of supported NCs will not be 
crystallographically aligned upon coalescence resulting in twinning and grain 
boundaries. However, the above suggested that reorientation (analogous to oriented-
attachment in the solution-phase) is one mechanism to achieve a single-crystal 
structure. High-resolution imaging of such reorientation is shown in Figure 96 for the 
case of two 3-7 nm Au NCs supported on graphene.252 An alternative mechanism 
applies when the initial coalescence event produces a grain boundary. Then, this grain 
boundary can migrate through the coalesced structure resulting in a single-crystal 
structure [cf. the above description of Cu NC deposition on Cu(100).248 See Figure 97. 
This study of Au NCs on graphene also provided detailed imaging of mass transport 
during coalescence of crystallographically aligned Au NCs. See Figure 98.  
 

 
 
Figure 96. HRTEM study showing orientational alignment of Au NCs. Reprinted with 
permission from Ref. 252. Copyright 2013 Royal Society of Chemistry. 
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Figure 97. HRTEM study showing grain boundary elimination form a coalesced pair of Au NCs. 
Reprinted with permission from Ref. 252. Copyright 2013 Royal Society of Chemistry. 

 

 
 

Figure 98. HRTEM study showing sintering of an aligned pair of Au NCs. Reprinted with 
permission from Ref. 252. Copyright 2013 Royal Society of Chemistry. 

 
 Multiple modeling studies of sintering or coalescence of unsupported NCs were 
in fact motivated by the above type of observations for supported NCs. Thus, it is 
natural to directly compare behavior in the supported and unsupported cases. To this 
end, we apply the model of Sec.3.4 with realistic surface diffusion kinetics to compare 
the sintering of two epitaxially supported Ag NCs on Ag(100) with corresponding 
behavior for the same unsupported NCs. Figure 99 shows simulations configurations of 

supported NCs during sintering at 600 K for relatively weak adhesion with s/ = 1/0 = 
0.05. Note that the final NC configuration is significantly modified from that of the 
corresponding unsupported NC. Behavior is quantified in Figure 100 and compared 
against that for the unsupported case (showing little difference between the two).  
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Figure 99: Sintering of homoepitaxially supported Ag NCs on Ag(100) at 600 K with 

weak adhesion with s/ = 1/0 = 0.05. 
 

 
 
Figure 100: Supported sintering time sequence of different temperature. Only 40 samples of 
simulation for each line. Thin, dashed line is unsupported cases in previous section. 

 
Finally, we describe observations of pinch-off or breakup phenomena which have 

in part motivated the modeling studies in Sec.6.4 for unsupported NCs. A Raleigh-
Plateau type breakup instability is expected to be a general phenomenon for elongated 
3D NCs where it is mediated by surface diffusion. Particularly high-resolution imaging of 
a single pinch-off event for an ultrathin 1.7 nm diameter Au nanowire (NW) deposited on 
a carbon-covered Cu support253 is shown in Figure 101. We note however that the 
process is impacted by the electron beam. Breakup of NW involves asymmetric 
modification of apexes followed by formation of multi-atom chains (MACs) of 3-4 atoms 
and subsequently single-atom chains. Clearly, behavior is not described by the classic 
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continuum type modeling, and plausibly quantum size effects254,255 are important. See 
Ref. 256 for another study of breakup of Au NW on carbon coated Cu support where 
larger scale images are provided. 
 

 
 
Figure 101. HREM of the pinchoff of an Au nanowire showing 3-4 atom chains, and then a 1 
atom chain. Scale bar = 1.7 nm. Reprinted with permission from Ref. 253. Copyright 2014 
American Chemical Society. 

  
Next, we describe an analysis of the evolution of ultrathin silver nanowires grown 

in helium nanodroplets and then deposited onto an amorphous carbon TEM grid 
yielding irregular (bent) Ag NW morphologies257 shown in Figure 102. The mean NW 
length is 500 nm, and the mean width is 5 nm. Images on left were exposed to e-beam 
which results in the rapid formation of a carbonaceous capping layer inhibiting the 
fragmented NW from reaching a collection of spherical NCs. However, imaging of a 
region of the substrate not exposed to the e-beam (image on the right) shows that such 
evolution is achieved. Quite similar morphological evolution was observed for Au NW 
with diameters 3 nm up to above 10 nm embedded in block copolymer cylindrical 
micelle where a detailed characterization of dependence on NP size and separation on 
NW diameter was also provided.258 

To demonstrate the generality of pinch-off behavior, our final example illustrates 
the breakup of a fractal aggregate obtained by depositing Ag150 NCs on graphite at 
room temperature.189 Figure 103 (a) corresponds to 6 ML of Ag with an arm thickness of 
25 nm where pinch-off is limited to near the aggregate center. However, Figure 103 (b) 
corresponds to just 2 ML of Ag with thinner arms of width 15 nm where pinch-off occurs 
throughout the aggregate. This example constitutes an analogue for 3D fractal clusters 
of the experiment shown in Figure 59 for 2D fractal clusters of Ag. 
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Figure 102. Pinch-off or an irregular Ag nanowire on an amorphous carbon support. The e-
beam induced formation of a carbonaceous capping layer inhibits evolution in the middle frame, 
but not in the right frame. Reprinted with permission from Ref. 257. Copyright 2015 Royal 
Society of Chemistry. 

 

 
 
Figure 103. Pinchoff of fractal aggregate of Ag150 clusters on graphite: (a) 6 ML Ag with limited 
pinch-off; (b) 2 ML Ag with extensive pinch-off. Reprinted with permission from Ref. 189. 
Copyright 2002 American Physical Society. 
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7. COMPOSITIONAL EVOLUTION OF 2D AND 3D NCs 
 
7.1. Intermixing and voiding: Basic concepts and theory 
 

The basic concepts in a theoretical formulation of intermixing and related 
phenomena apply for both multi-component 3D crystalline bulk materials and NCs and 
2D epitaxial layers. Since the former has been discussed extensively in contrast to the 
latter, we start with consideration of this case. 

 
7.1.1. Mechanisms for intermixing and voiding. For intermixing in 3D bulk 

multi-component crystalline materials, two distinct paradigms have long been 
considered. Initially, the accepted mechanism was a concerted multi-atom exchange 
process involving either direct place exchange of two adjacent atoms (which would 
create very large localized distortions and thus have a high energy barrier), or ring 
diffusion where multiple atoms move simultaneously. However, subsequently the 
vacancy-mediated intermixing/diffusion picture of Kirkendall was begrudgingly 
recognized as a viable alternative.259 In Kirkendall’s picture, exchange of vacancy and 
adjacent atom positions can lead to intermixing (analogous to plastic letter shuffle 
games). Traditional studies considered a classic macroscopic “diffusion couple” 
geometry with a planar interface between two bulk materials, A and B, say. Then, the 
concerted mechanism imposes a constraint that the diffusion flux, JB, of B into A must 
be equal and opposite to the flux, JA, of A into B. This constraint is absent in the 

Kirkendall picture where a flux imbalance |JA|  |JB| can be accommodated within the 
overall mass conservation constraint. Introducing a vacancy diffusion flux, JV, mass 
conservation implies that JA + JB + JV = 0. Thus, if A is more mobile than B in the sense 
that |JA| > |JB|, it follows that the vacancy flux JV is non-zero and in the direction of JB 
(and opposite to JA). If |JV| is sufficiently large, then there is the possibility for nucleation 
of voids (vacancy clusters) on the A-side of the diffusion couple. This phenomenon is 
termed Kirkendall voiding.54,55,259 
 A nanoscale version of a diffusion couple is provided by NCs with a core-shell 
structure. For systems where the thermodynamically preferred state is an intermixed or 
alloyed NC, it is natural to assess the stability (i.e., the lifetime as a function of 
temperature) of the metastable core-shell structure, and the concentration profile 
evolution during intermixing. Furthermore, one might anticipate a nanoscale version of 
the above-mentioned voiding phenomena for this geometry. In fact, faster outward 
diffusion of the core material might lead to an optimum scenario for void formation given 
the confinement of the vacancy gas and the lack of defects in the crystalline core such 
as dislocations at which vacancies could be annihilated.260 Voiding has been observed 
on nanoscale reaction-diffusion systems where an oxide or sulfide shell is formed 
around a single-component metallic NCs and also bimetallic core-shell NCs, and 
outward transport of fast moving cations is roughly counterbalanced by an inward 
transport of vacancies.260-263 Voiding and associated formation of hollow and caged NCs 
have also been identified in various bimetallic systems (Au-Ag, Ni-Pt, Cu-Pt, etc.) as a 
result of post-synthesis evolution from core-shell structures.264-267   
 For our presentation below, it is appropriate to note that entirely analogous 
phenomena can be expected to occur for 2D epitaxial bimetallic core-ring NCs which 
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are readily synthesized by sequential deposition of the two components. In these cases, 
we just consider 2D vacancy-mediated diffusion within the epitaxial layer as being 
responsible for intermixing. 
 With respect to the studies of void formation or hollowing in 3D NCs, it should 
however be noted that an alternative has been proposed to the commonly adopted 
Kirkendall picture of vacancy-mediated bulk diffusion at least for room temperature (RT) 
systems.268 This proposal was motivated by the recognition that vacancy formation 
energies can be high for 3D crystalline materials, so that the vacancy population can be 
extremely low, and consequently at any specific time it is almost certain that a NC 
contains no vacancies. This feature alone does not imply that intermixing is insignificant. 
If (short-lived) vacancies are created at a sufficiently high rate at the periphery, 
intermixing could still be efficient particularly accounting for the random walk nature of 
their trajectories within the NC. By detailed-balance, the barrier for vacancy formation 
will be given by the sum of that for bulk vacancy diffusion and the vacancy formation 
energy. Thus, the formation rate reflects the vacancy hop rate, the vacancy population, 
and the NC surface area (see below for more details). If the barrier for vacancy diffusion 
is high, then the vacancy creation rate will be low bring into question the viability of this 
picture. For a 3D Pt core, the vacancy formation energy is 1.15 eV, so the population of 
vacancies at RT is 1 per 3x1019 atoms, i.e., only one 10 nm Pt NC in 8x1014 NCs 
contains a vacancy at a given time. Since the barrier for vacancy diffusion in Pt is also 
high at ~1.5 eV, it was deemed that the Kirkendall mechanism was not viable.268 
 The alternative picture is based on the idea that shape fluctuations at the surface 
of the 3D core-shell NC lead to the formation of “pinholes” in the shell which survive for 
sufficiently long that the core can be etched away.268 In principle, this problem can be 
analyzed in detail utilizing the Langevin formulation of Sec.4.2. However, a simpler 
analysis was performed considering the probability that shape fluctuations for given 
spherical harmonic modes exceed a required threshold to expose the core (where this 
probability increases with mode number reflecting the associated shorter distance for 
mass transport), and the characteristic time for relaxation of such modes (which 
decreases with mode number as shown in Sec.4.1.2). The picture was shown to be 
viable for Pt or PtO shell NCs. It was also shown that once a pinhole forms, it quickly 
closes consistent with the lack of experimental observation of such pinholes. 
 

7.1.2. Theoretical formulation for vacancy-mediated intermixing. The 
general formulation applies for both 2D epitaxial and 3D crystalline NC systems. We 
start with discussion of vacancy diffusion in a single-component material (traditionally 
for a 3D bulk crystalline material). The key concept is that the effectiveness of vacancy 
diffusion depends on two components: the population of vacancies (which is controlled 
by thermodynamics and specifically the vacancy formation energy, Eform) and the rate 
(or barrier, Edv) at which an atom adjacent to the vacancy hops to the vacancy position. 
The effective barrier for transport associated with vacancy diffusion is reasonably 
associated with the sum Eeffv = Edv + Eform.269 Edv is straightforwardly determined for 
either 2D epitaxial layers of 3D bulk systems just from the difference in energies (e.g., 
determined from DFT) for the initial configuration and the transition configuration if the 
latter is clear from symmetry considerations, or from a full Nudged Elastic Band (NEB) 
calculation.  
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The formation energy, Eform, corresponds to the energy change upon creating a 
vacancy in a semi-infinite cluster by shifting an atom from the interior to a kink site on 
the periphery. For a 2D epitaxial NC, this kink site should be at a straight extended step 
edge. For a 3D NC the kink should be at an extended straight step on a flat extended 
facet. See Figure 104. Note that a 2D epitaxial layer or 3D crystal can be grown 
indefinitely by repeatedly adding atoms to such sites. It is also clear that the formation 
energy corresponds to the lateral interaction energy per atom in interior of a 2D epitaxial 
layer, and the total interaction energy per atom in the interior of a 3D crystal. For DFT-
level determination of Eform, the following formulation is utilized. We consider a cell with 
M sites and let Ebulk denote the energy where all sites are occupied by atoms, and Evac 
denote the energy where M-1 sites are occupied and there is one vacancy. For plane-
wave DFT analysis, the computational cell has periodic boundary conditions. The 
aforementioned energies involve just lateral interactions in the 2D case, and all 
interactions in 3D. Then, one has that269 

 
Eform = Evac - (M-1)Ebulk/M.          (79) 
 
For a listing of Eform and Edv for various pure metals, see Ref. 270. It should also be 
noted that corrections to account for “intrinsic surface error” are often required in DFT 
analysis of Eform.269 
 

 
 
Figure 104. Vacancy formation moving an interior atom to a kink site : (a) 2D epitaxial layer; 
(b) 3D crystal. 

 
Our main focus is on two-component systems, and specifically on the diffusion of 

B impurities in A. The description below applies to both 2D epitaxial NCs and 3D 
crystalline NCs. Here, the picture is that typically the B impurity is surrounded by A 
atoms. However, when a vacancy in the A-crystal diffuses to a site adjacent to the B 
impurity, then the B atom can hop to that vacancy site, and then an A atom can then 
hop to the vacancy position and subsequently the vacancy can diffuse through the A-
crystal away from the B impurity. Thus, it is clear that beyond the formation energy and 
hopping barrier relevant for diffusion of vacancies through the pure A-crystal, additional 
energies should be considered (although this is not commonly the case).25,271 The first 
of these is the hopping barrier, Edv(B-V in A), for B to hop to the adjacent vacancy site, 
V. This barrier naturally is distinct from the barrier, Edv = Edv(A-V in A) for vacancy 
hopping in pure A. The second is the formation energy, Eform(B-V in A), to create a 
vacancy adjacent to the B-impurity in A. This energy is naturally distinct from Eform = 
Eform(A-V in A) for vacancy formation in pure A.  
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It is appropriate to comment in detail on the interpretation and also the evaluation 
of Eform(B-V in A).25 Considering diffusion of a B impurity in an otherwise pure A NC, the 
formation energy corresponds to the energy change upon creating a vacancy by shifting 
an A atom from the site adjacent to B to a kink site. See Figure 105(a) providing an 
example for 2D epitaxial NCs. This is analogous to the discussion above for pure A 
illustrated in Figure 104. However, of more interest is the diffusion of a B impurity in the 
core of an A-core + B-shell NC. Here, the formation energy corresponds to the energy 
change upon creating a vacancy by shifting an A atom from the site adjacent to B to a 
kink site at the interface between the A-core and B-shell, and also moving a B-atom at 
this interface to a kink site on the outer periphery of the B-shell. See Figure 105(b). It is 
straightforward to show that Eform(B-V in A) is the same for both of these scenarios. For 
DFT-level determination of Eform(B-V in A), the following formulation is utilized. We 
consider a cell with M sites. Let Ebulk(B in A) denote the energy where M-1 sites are 
occupied by A and one site by B,  Evac(B-V in A) denote the energy with M-2 sites 
occupied by A, one site occupied by B, and a site adjacent to B vacant, and Ebulk(A) 
denote the energy where all M sites are occupied by A. For plane-wave DFT analysis, 
the computational cell has periodic boundary conditions. The aforementioned energies 
involve just lateral interactions in the 2D case, and all interactions in 3D.Then, one has 
that 271 
 
Eform(B-V in A) = Evac(B-V in A) + Ebulk(A)/M - Ebulk(B in A).    (80) 
 

 
 
Figure 105. Formation of a vacancy next to a B impurity in an A region of a NC. 

 
Finally, we consider the effective diffusion barrier for impurity diffusion,            

Ed(A in B). Since this requires the presence of a vacancy as well as hopping into a 
vacancy, Ed(A in B) is given by the sum of an appropriate Edv and Eform. However, 
different regimes require different choices. First, consider the case where impurity 
hopping is slow compared to all other relevant rates, i.e., Edv(B-V in A) is large. Then, 
one anticipates that the distribution of vacancies in the NC is equilibrated with respect to 
the quasi-static impurity. Impurity hopping is not limited by transport of vacancies to the 
impurity, but by hopping of the impurity itself to an adjacent vacancy, and by the 
population of such adjacent vacancies. The probability of an adjacent vacancy is 
controlled by Eform(B-V in A) rather than by Eform(A-V in A) and thus Ed(A in B) =       
Edv(B-V in A) + Eform(B-V in A) (cf. Ref. 25). Second, consider the case where impurity 
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hopping is fast compared to other relevant rates. Then, once the vacancy is adjacent to 
the impurity, the impurity and the vacancy switch positions many times before the 
vacancy diffuses away from the impurity. Thus, there is a probability of ½ that the 
impurity is in a different position when the vacancy departs. In this case impurity 
diffusion is not limited by impurity hopping, but by transport of vacancies through A to 
the impurity. If Eform(B-V in A) < Eform(A-V in A), then it is also clear that impurity diffusion 
is limited by the formation of vacancies in A and that Ed(A in B) = Edv(A-V in A) + 
Eform(A-V in A) (cf. Ref. 271). 

 
7.1.3. Ab-initio kinetics for vacancy-mediated intermixing. In Sec.3.5.1, we 

have described modeling with ab-initio kinetics of formation and reshaping of Ag, Au, 
and Ag+Au 2D epitaxial NCs on Ag(100). The focus was on an accurate description of 
periphery diffusion for various local configurations and compositions of the typically 

convex step edge in the neighborhood of the diffusion edge atom. Unconventional  
interactions most relevant or prominent for such periphery diffusion processes are 

indicated in Figure 17 (right). These all ’s have the feature that all the atoms at 
adsorption sites (i.e., atoms in the NC) are “on one side” of the single atom at the 
bridge-site transition state or TS (which is diffusing at the periphery of the NC). In 
contrast, for vacancy mediated diffusion, the hopping atom at the TS has atoms at 
adsorption sites on “both sides”. Thus, it is necessary to determine the corresponding 

additional unconventional trio interactions, t4 and t5, shown in Figure 106. In addition, 
these interactions are relevant for evolution at concave step edges, e.g., the corner of 
pits where “atom sliding” out of the pit corner needs to be accurately described.27 See 
Sec.5.2.  
 

 
 
Figure 106. Additional unconventional interactions, t4 and t5, for relevant for vacancy-mediated 
diffusion. 

 
For the Au (= G) + Ag (= S) on Ag(100) system, there are 12 such interactions 

(SSS, GGG, SGS, GSG, SSG, GGS for each of t4 and t5). These interactions are 
selected to precisely describe transition state energies for vacancy-mediated diffusion in 
various local environments, for extraction from straight steps for c(2x2) alloy structures 
(which is also relevant for intermixing), and also for atom sliding from pit corners. See 

Figure 107 which shows the configurations whose energies are used to determine t4 

and t5 where the central atom at the bridge site TS is S. The results are listed in Table 
6. Interchanging S and G in these configurations gives another 6 configurations whose 
energies used to get the 6 trios with G at the TS. This diversity of configurations is 

needed to obtain sufficient independent equations to determine all of these ’s.  
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Figure 107. Configurations whose energies determine the six t4(XSY) and t5(XSY), with X,Y = 
S or G. 
 

Table 6. t4 and t5 interactions for Ag(S) + Au(G) on Ag(100). The middle letter corresponds to 
the central atom at the TS. Values in eV. All interactions are repulsive. 
 

 SSS GSG SSG GGG SGS GGS 

t4 0.050 0.067 0.054 0.070 0.070 0.079 

t5 0.009 0.021 0.010 0.027 0.036 0.035 
 

 Finally, as an illustration of the ab-initio level determination of barriers for 
vacancy-mediated diffusion, consider Figure 108 showing hopping of an Au atom to an 
adjacent vacancy in the interior of an Au-Ag alloy island on Ag(100). The initial state 

energy, Einit, is determined from the sum of 3 1p, 4 2p, 4 lt, and 3 lt interactions. The 
transition state energy is determined from the sum of the terrace diffusion barrier for Au 

on Ag(100), Ed(Au), and 4 1p, 2 2p, 4 b1t, 4 b2t, and 2 tt interactions, as well as 2 4t 

and 2 5t interactions determined as described above. The KMC simulation code which 
is applied below to describe the transition from bimetallic core-ring NCs to intermixed 
NCs automatically determines barriers for all such hops from pre-calculated and 

tabulated values of - and -interactions.  
 

 
 

Figure 108. An example of the interactions in the initial state and at the TS for needed to 
determine the barrier for vacancy-mediated diffusion of Au within a specific Ag-Au alloy 
configuration on Ag(100).  
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One can anticipate an analogue for 3D crystalline NCs of the above formulation 
for 2D epitaxial NCs. However, this is predicted on being able to describe the TS as 
being located at a simple high-symmetry local-environment-independent position 
(analogous to the bridge site in the above 2D example). Such a formulation has yet to 
be implemented. 
 
7.2. Evolution of 2D epitaxial core-ring NCs 
 

Here, we apply the formulation in Sec.7.1.3 for the ab-initio treatment of 
intermixing kinetics in 2D epitaxial layers to consider the post-synthesis (i.e., post-
deposition) evolution of core-ring NCs for two systems. Synthesis of these core-ring 
NCs is achieved simply by sequential deposition. Since these multicomponent systems 
have intermixed or alloy equilibrium structure, post-synthesis evolution naturally leads to 
destruction of the core-ring structure given sufficiently long times and/or sufficiently high 
temperatures. 

Ag+Au on Ag(100): Our DFT analysis for the ab-initio thermodynamics of this 
system in Sec.3.5.1 indicates a weak preference for c(2x2) alloy ordering of Ag+Au NCs 
on Ag(100).25 Thus, the equilibrium structure of these NCs is intermixed. 

Our formulation for ab-initio kinetics described in Sec.7.1.3 recovers exactly the 
DFT value for Edv(AgV in Au) = 0.578 eV as the associated configuration (upper middle 

frame in Figure 107) is used in our determination of t4(AuAgAu) and t5(AuAgAu). We 
also recover exactly the DFT value of Edv(AuV in Au) = 0.750 eV as the associated 
configuration corresponding to vacancy diffusion in an Au alayer is used in our 

determination of t4(AuAuAu) and t5(AuAuAu). We also obtain Eform(Ag-V in Au) = 

0.460 eV and Eform(Au-V in Au) = 0.474 eV from the -interactions provided in Ref. 25 

which incorporates the same thermodynamics (i.e., the same ’s) as in the model 

utilized here, but not the same kinetics (i.e., we have added t4 and t5). Consequently, 
based upon the discussion in Sec.7.1.2, one has that 
 
Ed(Ag in Au) = Edv(Au-V in Au) + Eform(Au-V in Au) = 1.22 eV.    (81) 
 
Similarly, our formulation for ab-initio kinetics recovers exactly the DFT values of 
Edv(Au-V in Ag) = 0.562 eV and Edv(Ag-V in Ag) = 0.470 eV. We also obtain         
Eform(Au-V in Ag) = 0.441 eV and Eform(Ag-V in Ag) = 0.428 eV from Ref. 25. 
Consequently, again based upon the discussion in Sec.7.1.2, one has that 
 
Ed(Au in Ag) = Edv(Au-V in Ag) + Eform(Au-V in Ag) = 1.00 eV.    (82) 
 
These analyses are relevant for interpretation of our simulation results below. 
 First, we present the results of simulations for the post-synthesis evolution of Ag 
core + Au ring NCs which were formed by first deposition 0.1 monolayers (ML) of Ag on 
Ag(100) at 325 K, and then depositing 0.3 ML of Au at 335 K. A typical initial core-ring 
configuration is shown on the left in Figure 109.  Subsequent evolution at two different 
temperatures, 400 K and 500 K, is shown in the frames on the right. In both cases, 
intermixing is evident. However, there is a strong asymmetry in that Au atoms diffuse 
much more readily into the Ag core that Ag atoms diffuse into the Au ring. This 
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asymmetry is immediately explained by the above results showing that Ed(Ag in Au) >   
Ed(Au in Ag). Second, we present results for the post-synthesis evolution of Ag core + 
Au ring NCs formed by first deposition 0.1 ML of Au on Ag(100) at 360 K, and then 
depositing 0.3 ML of Ag at 300 K. A typical initial core-ring configuration is shown on the 
left in Figure 110.  The same asymmetry in diffusion is seen as for the Ag core + Au ring 
NCs again explained by our DFT results for impurity diffusion barriers. 
 

 
 
Figure 109: Post-synthesis evolution of Ag core + Au ring NCs on Ag(100) formed by sequential 
deposition of 0.1ML Ag @ 325 K then 0.3 ML Au @ 335 K. 

 

 
 
Figure 110: Post-synthesis evolution of Au core + Ag ring NCs on Ag(100) formed by sequential 
deposition of 0.1ML Au @ 360 K then 0.3 ML Ag @ 300 K. 
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Ni+Al on NiAl(110): Our second example for core-ring epitaxial NCs involves a 
more complex binary alloy substrate, NiAl(110). However, since we consider NCs 
composed of Ni and Al, the equilibrium structure of adlayers or NCs is clear at least for 
a 1:1 Ni:Al stoichiometry since these must propagate the perfect alloy ordering of the 
substrate. Thus, the equilibrium structure of 2D epitaxial NCs with 1:1 Ni:Al composition 
has alternating columns of Ni and Al (for our orientation of surface images). See Figure 
18. For a 3:1 Ni:Al stoichiometry, perfectly ordered Ni3Al structure is believed to 
correspond to the equilibrium ordering.24 

  Before discussing post-synthesis evolution, we first show a comparison of STM 
imaging and ab-initio KMC simulation of NC structure just after synthesis of core-ring 
NCs by sequential deposition at room temperature.73 See Figure 111. For deposition of 
Al then Ni, a classic core-ring structure is realized in both experiment and simulation 
with little restructuring of the Al core during subsequent deposition of Ni and 
aggregation around the Ni core periphery to form a ring. This is understood since 
analysis of our ab-initio model reveals a high barrier of ~1.55 eV to extract Al from the 
periphery of the core even aided by nearby Ni atoms which can reduce the TS energy. 
For deposition of Ni then Al, STM imaging reveals a complex structure. This observation 
is explained by simulation which reveals that the Ni core is not robust, and that 
aggregation of Al at the periphery of this core facilitates extraction of Ni atoms at the 
core. As a results, voids form initially near the periphery of the core. This behavior which 
corresponds to a 2D nanoscale version of Kirkendall voiding is explained by model 
analysis revealing an Al-assisted Ni-extraction barrier of only ~0.55 eV. Finally, we note 
that sequential deposition at higher T leads to substantial intermixing.24 
 

 
 

Figure 111. Sequential deposition at 300 K on NiAl(110) of: Al then Ni (a = STM; c = KMC); Ni 
then Al (b = STM; d = KMC). Barrier for extraction of: Al assisted by Ni (e); Ni assisted by Al (f). 
Reprinted with permission from Ref. 73. Copyright 2011 National Academy of Science. 
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 Next, we analyze the post-synthesis evolution of the above core-ring NCs using 
our model from Sec.3.5.1 for ab-initio kinetics. We focus on Ni core – Al ring NCs which 
are more susceptible to substantial restructuring on time-scales accessible to simulation 
although this requires elevated temperatures. Figure 112 shows the evolution at both 
1000 K and 1500 K of a Ni core – Al ring NC with 1:1 Ni:Al composition formed by room 
temperature deposition as described above. Outward diffusion of Ni into the surrounding 
Al shell leads to significant expansion of the small voids in the Ni core which were 
formed during synthesis. Partial development of perfect NiAl(110) order (with alternating 
rows of Ni and Al) is evident at 1000 K on the time scale of the simulation, and such 
perfect order is fully achieved at 1500 K on a much shorter time scale. It should be 
noted that during these simulations, there is significant diffusion of the NC, and the field 
of view in Figure 112 is adjusted to maintain the NC in the center. Next, in Figure 113, 
we track the evolution just at 1000 K of a Ni core – Al ring NC with 3:1 Ni:Al composition 
again formed by room temperature deposition. Similar to the case with 1:1 Ni:Al 
composition, there is a significant expansion of the void in the initial Ni core as Ni 
diffuses outward into the Al ring. However, there is limited development of perfect 
Ni3Al/NiAl(110) structure with alternating columns of pure Ni and 1:1 Ni:Al (and where Ni 
and Al alternate in the latter)24 over the time-scale of the simulation. 
 

 
 
Figure 112: KMC analysis of annealing of a 1:1 Ni:Al Ni core – Al ring NC at 1000 K and 1500 K. 

 

 
 
Figure 113: KMC analysis of annealing of 3:1 Ni:Al Ni core – Al ring NC at 1000 K. 
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Finally, ab-initio modeling was also used to analyze the evolution of Al core – Ni 
ring NCs. However, even at 1500 K, little evolution of the robust Al core was observed 
over the time scales accessible to simulation (which are short at ~10-3 s). 
 
7.3. Evolution of unsupported 3D core-shell and sandwich or multi-shell NCs 

 
Here we consider a few cases of the evolution of multi-component 3D NC which is 
mediated by intermixing describing both TEM imaging and associated theory. 
 Stability of shaped Pd core – Pt shell NCs. A fundamental question for the 
catalytic functionality of shaped core-shell NCs is stability against reshaping (cf. 
Sec.6.1) and intermixing (this Sec.7) at elevated temperatures. Pd nanocubes with well-
defined {100} facets and also Pd octahedra with well-defined {111} facets have been 
used as a template for the initial formation of Pd core – Pt shell nanocubes with 
conformal shells of controlled thickness in the range 1-6 layers.272 The thermal stability 
of such NCs with 4 layer shells was recently assessed through TEM analysis and 
theoretical modeling.273 It was found that the nanocubes were less robust against 
reshaping, but more robust against intermixing. The behavior for nanocubes is shown in 

Figure 114 indicating a loss of cubic shape after heating to 500 C and a loss of core-

shell structure at 800 C. For octahedra, the core-shell structure is lost after heating to 

600 C, and the shape is degraded after heating to 900 C.  
 

 
 
Figure 114. Pd core – Pt shell NC: (a) 400 C 20 min; (b) 500 C 60 min. (c) 700 C 10 min. (d) 

Quick heating to 800 C. Reprinted with permission from Ref. 273. Copyright 2017 American 
Chemical Society. 
 

 First, we discuss reshaping which involves the diffusion of atoms across the 
surface of the NCs. Diffusion of an isolated Pt adatom on {111} facets occurs via 
hopping (DFT matching the barrier of 0.26 eV extracted from the analysis of STM 
studies on extended surfaces8). Diffusion of Pt in {100} facets occurs via exchange 
(DFT matching the barrier of 0.47 eV obtained from FIM studies150). However, these do 
not correspond to the effective barriers for reshaping. Thus, Ref. 273 presented an 
instructive analysis of the barrier to move an atom on the edge of a perfectly shaped NC 
to a facet which is the initial step during reshaping of the NCs. For the structural model 
used for the Pt cube, the edge atom was 5-coordinated and the barrier was 0.60 eV (the 
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process is exothermic by E = -0.15 eV). For the octahedron, the edge atom was 7-

coordinated and the barrier was 1.99 eV (the process was endothermic by E = +1.64 
eV). This difference is consistent with the more facile reshaping of nanocubes. 
However, a different model for cubes with more heavily truncated edges as used in 
Sec.6.1 would make it harder to reshape cubes. Also prescription of the effective barrier 
for reshaping requires consideration of nucleation of new facts as also discussed in 
Sec.6.1. 
 Next, we discuss intermixing. Ref. 273 also presented a DFT analysis to provide 
insight into this behavior. Concerted ring-diffusion processes at the interface were ruled 
out given high barriers >5 eV. Thus, vacancy-mediated intermixing was proposed as the 
dominant mechanism. Figure 115 shows the results of an instructive DFT analysis of 
the energetics associated with an isolated vacancy in the surface layer of a 4 layer Pt 
shell diffusing to the Pt-Pd interface and thereby initiating intermixing. This process is 
more favorable for octahedral rather than cubes consistent with more facile intermixing 
for the former. Note that this is a kinetic picture where the initial “high energy” 
configuration with an isolated vacancy in the top layer is anticipated to be produced 
during shell growth. This corresponds to a high supersaturation of such vacancies. 
Equilibration would produce much lower densities, where effectively the vacancy would 
diffuse to a corner site in a surface facet on the NC lowering the energy of the initial 
state. This would correspond to higher effective barriers for the intermixing process. 
 

 
 
Figure 115. Energetics associated with an isolated surface-layer vacancy in the 4 layer Pt shell 
diffusing to the Pt-Pd interface and subsequent Pt-Pd intermixing. Reprinted with permission 
from Ref. 273. Copyright 2017 American Chemical Society. 

 
Pd core – Pt shell NC evolution to Pt nanocages. Shaped Pd core – Pt shell NCs 

synthesized as described above with of 1-6 layers, when in a solution environment 
conducive to etching or removal of Pd from exposed Pd surfaces, transformed to create 
Pt nanocages.272 The extremely high dispersion of Pt and also the facet selectivity is 
again appealing for catalysis applications272. See Figure 116(a,b). The focus of the 
analysis was on the mechanism for hollowing of the Pd core – Pt shell NCs. DFT 
analysis assessing the diffusion of Pd through a 4 layer Pt shell was performed 
(although not accounting for the Pd-Pt interface). Analysis of barriers for concerted 3-
atom and 4-atom ring diffusion suggest a barrier of ~2 eV. The barrier for hopping of a 
Pd impurity to an adjacent vacancy in Pt was determined as Edv(Pd-V in Pt) = 0.88 eV 
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versus Edv(Pt-V in Pt) = 1.05 eV (which is lower than values in Ref. 269, 271). The value 
of Eform(Pd-V in Pt) is not available, but since Eform(Pt-V in Pt) = 1.2 eV,269 it follows that 
a lower estimate for the barrier for vacancy-mediated diffusion of Pd in Pt of Ed(Pd in Pt) 
= 2.25 eV. Thus, these processes should not be active at the experimental temperature 

of 100 C. 
 

 
 
Figure 116. (a,b) Pd core - Pt shell nanocubes; (c) Pt nanocages; (d) mechanism for hollowing. 
Reprinted with permission from Ref. 272. Copyright 2015 American Association for the 
Advancement of Science. 

 

Consequently, a different picture was developed for the hollowing process. DFT 
analysis using a 3x3 lateral unit cell for a Pt atom on a {100} Pd facet (in vacuum) finds 
a surface hopping barrier of Ed = 0.99 eV which should be contrasted with a significantly 
lower barrier of Eex = 0.74 eV for the exchange of Pt with a surface Pd atom.272 The 
latter process is exothermic by 0.38 eV. Thus, the exchange process is not only 
thermodynamically preferred, but also facile at experimental temperatures and thus 
should occur during synthesis of the Pd core – Pt shell NCs to form an intermixed Pt-Pd 
shell as shown in Figure 116(c). One expects some population of contiguous strings of 
Pd atoms which traverse the Pt shell. Then, etching of the top-most surface Pd, and 
subsequent diffusion through the opened channel to the surface and etching of the 
remaining Pd open a channel traversing the Pt shell. Over time, these channels may 
grow in size and reconstruct to allow direct corrosion of Pd from the core.  

The Pd etching or corrosion of the pore is somewhat slow given the narrow 
nature of at least the initial channels formed. However, a control experiment where Pt 
and Pd are co-titrated during Pt (and Pd) deposition results in much faster etching. This 



129 
 

is consistent with the above pitcher since co-titration should produce a higher Pd 
content in the shell and thus form wider channels during etching.  

As an aside, calculation of surface exchange barriers has been considered for 
various systems based upon early observations of exchange diffusion dominating 
surface hopping in homoepitaxial systems such as Pt/Pt(100).150. However, it has 
become clear that values obtain are sensitive to lateral unit cell size (small cells artificial 
constraining atom movement), and convergence to precise values can require cell sizes 
well above 3x3274. Indeed, DFT PBE analysis of the barrier for Pt exchange on a 
Pd(100) surface using a 4x4 unit cell yields a lower barrier of Eex = 0.60 eV (whereas Ed 

and E change little from values for the 3x3 unit cell).27  
Finally, we note that octagonal Pt nanocages have also been synthesized 

starting with Pd core – Pt shell NC’s with an octahedral Pd core. In this way, the surface 
of the nanocages was changed from {100} to {111} facets.  
 The facile and thermodynamically preferred exchange of Pt with the Pd(100) 
surface prompts consideration of the generality of this phenomenon which may be 
relevant for understanding the evolution of other transition metal bimetallic core-shell 
NC systems. A systematic DFT-based analysis has been performed for a large number 
of pairs of metals for both {100} and {111} facets.275 Metals included Cu, Ag, Au, Ni, Pd, 
Pt, Rh, and Ir. See also Ref. 27. The general trend is that substitution of adatoms of 
more noble metals with lower bulk cohesive energies (to the right in the periodic table) 
into a substrate of less noble metals with higher bulk cohesive energies (to the left in the 
periodic table) is unfavorable (i.e., endothermic). Substitution of less noble atoms into 
more noble substrates is generally favored (i.e., exothermic). These trends are realized 
for the Pt-Pd pair with cohesive energies Ec(Pt) = 5.84 eV and Ec(Pd) = 3.89 eV. 

Pt nanocube evolution to PtSn intermetallic NCs. Intermetallic NCs including 
PtSn have particular advantages for catalysis applications with more precise control of 
surface structure facilitating a better understanding of structure-property 
relationships.276 Recent studies have explored the transformation of Pt nanocubes to 
PtSn NCs, including a characterization of the kinetics and in one case also the 
energetics.271,277  One of these studies utilized in situ synchrotron XRD to track 

transformation kinetics of 6 nm Pt NC seeds under temperature ramping from 110 C to 

280 C (at 15 C/min) and maintaining 280 C for 30 min.277 The complete 
transformation was observed with a corresponding doubling in size as confirmed by 
HRTEM. See Figure 117. Kinetics was fit with a traditional constant-T macroscale 
Arvami model suggesting that transformation is controlled by diffusion of Sn into Pt. 
 

 
 

Figure 117. HRTEM images of 6 nm Pt seeds and the subsequent PtSn NCs. Reprinted with 
permission from Ref. 277. Copyright 2018 American Chemical Society. 
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We focus on another study which provided a detailed characterization of the 
transformation kinetics of both 5 nm and 14 nm Pt nanocubes for a range of 
temperatures, thereby enabling an Arrhenius analysis contingent of development of 
appropriate models for the transformation kinetics.271 A schematic of the transformation 
process based on this study is shown in Figure 118 (top). There are two distinct stages. 
In the first “surface stage”, a portion of the surface of the Pt nanocube remains exposed 
to the solution, and facilitates reduction of Sn and likely also intermixing and diffusion of 
Sn into the Pt NC. This surface stage ends when a PtSn shell (initially of variable 
thickness) has first formed around the entire Pt NC surface. It appears that Sn reduction 
is facile, so that an observable Sb shell does not form in the first stage of transformation 
(but it was observed in later stages). We focus on kinetics in this first stage which is 

modeled assuming that the fractional conversion,  = PtSn/(Pt + PtSn), satisfies d/dt  

= A exp[-Eeff/(kBT)] (surf - )m, and surf denotes the -value at the end of this stage. 

Fitting data for 5 nm Pt nanocubes shows surf = 0.30, 0.57, 0.79 for 230, 240, 250 C 
with m = 1.75 and Eeff = 2.54 eV. See Figure 118 (bottom left). A similar analysis for 14 

nm Pt nanocubes yields m = 1.63 with Eeff = 2.33 eV and somewhat lower surf.  
 

 
 

Figure 118. Conversion of Pt nanocubes into PtSn NCs. Reprinted with permission from Ref. 
271. Copyright 2018 American Chemical Society. 

 
To elucidate this behavior, we have performed DFT analysis of the energetics 

relevant to intermixing of Sn into Pt. We find that Edv(Sn-V in Pt) = 0.68 (0.77) eV from 
PBE (PBEsol), compared with Edv(Pt-V in Pt) = 1.23 (1.43) eV from PBE (PBEsol). We 
also find that Eform(Sn-V in Pt) = 0.44 (0.62) eV from PBE (PBEsol), compared with 
Eform(Pt-V in Pt) = 0.65 (0.84) eV from PBE (PBEsol) although corrections due in 
“intrinsic surface error” suggest a value of Eform(Pt-V in Pt) = 1.2 eV. Thus, based on the 
discussion in Sec.7.1.2, we conclude that 
 
Ed(Sn in Pt) = Edv(Pt-V in Pt) + Eform(Pt-V in Pt) = 2.4 (2.6) eV from PBE (PBEsol).   (83) 
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This result appears consistent with the experimental Eeff = 2.5 eV indicating that the 
latter reflects vacancy-mediated diffusion of Sn through Pt. 

Additional DFT analysis revealed that the diffusion barrier for Sn on Pt(100) is Ed 
= 0.76 eV, and that exchange of a Sn adatom with a Pt atom in at a Pt(100) surface is 

endothermic by E = 0.46 eV.271 This is consistent with the observations of Ref. 275 
noting that Sn has a cohesive energy of Ec(Sn) = 3.14 eV which is much lower than that 
for Pt. We do find that surface alloys are thermodynamically stable, but the process of 
forming these likely involves concerted many-atom processes or is facilitated by defects 
(rather than occurring by exchange of isolated Sn adatoms). 

The second stage of PtSn formation occurs once a complete intermetallic shell 
has formed. In Ref. 271, it is argued that this initially non-uniform shell should quickly 
develop a more uniform thickness, and then transformation kinetics can be reasonably 
described by adopting a refined version271 of a Ginstling-Brounshtein model.278,279 
 Pd-Ni-Pt sandwich NCs and Au-Pd-Ni-Pt multi-shelled NCs. Richer structures 
than simple core-shell NCs (as described above for Pd core – Pt shell NCs) can be 
utilized as the starting point for studies of post-synthesis evolution. Figure 119 provides 
an example obtained by starting with a Pd nanocube and sequentially reducing first Ni 
and then Pt resulting in a sandwich structure.82 Furthermore, it is possible to control the 
thickness of the various shells. Even more exotic structures such as a ternary Au-Pd-Ni-
Pt multi-shelled NC can be synthesized replacing the Pd nanocubing seed in the above 
study with an Au core – Pd shell nanocube, and then subsequently reducing Ni and 
then Pt. See Figure 120. Of particular interest is the kinetics of intermixing at least of the 
outer Pt and Ni shells. 
 

 
 
Figure 119. Pd-Ni-Pt sandwich NCs: colorized TEM for (a) 2.5 nm (n) 4.1 nm Ni shell;               
(c) HRTEM cross-section for 2.5 nm Ni shell. Reprinted with permission from Ref. 82. Copyright 
2014 American Chemical Society. 
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Figure 120. Multi-shelled Au-Pd-Ni-Pt NC. Curves approximately mark interfaces. Reprinted 
with permission from Ref. 82. Copyright 2014 American Chemical Society. 
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8. COARSENING OF ENSEMBLES OF 2D AND 3D NCs       
 
8.1. Diffusion of 2D epitaxial NCs: Smoluchowski Ripening 
 
Unexpected diffusion of large 2D epitaxial NCs of 100’s to 1000’s of atoms in 
metal(100) homoepitaxial systems was observed by STM in the early 1990’s.211 
Analysis of the energetics in these systems indicates that cluster diffusion is mediated 
by periphery-diffusion (PD) of edge atoms. It was later shown that such cluster diffusion 
and resulting coalescence (i.e., Smoluchowski Ripening or SR) was the dominant 
mechanism for coarsening under typical conditions.109 In Sec.4.4.2, we have noted that 
the key input to analysis of SR kinetics via the Smoluchowski equation is the 
dependence on size, N (in atoms), of the NC diffusion coefficient, DN. Indeed, these 
early observations of cluster diffusion sparked intense experimental and theoretical 

interest in size-scaling of diffusivity, DN ~ N- ~ L-* for * = 2. Recall from Sec.4.4.2 

that the size-scaling exponent, , controls the coarsening kinetics in that the mean 

island size scales like Nav ~ t1/(+1). In Sec.8.1, we focus on the N-dependence of DN. 
As noted in Sec.4.2, a continuum Langevin formulation (which should apply at 

least for sufficiently large NCs) predicts that  = 3/2 for PD-mediated diffusion.174,193 The 
same scaling exponent results from a simplistic mean-field type analysis where the 
motion of periphery atoms is assumed to be uncorrelated. Here, one writes DN ~        

MPD (RCM)2, where MPD ~ N1/2 gives the number of hopping periphery atoms and RCM 

~ 1/N is the shift in the center of mass upon each hop of a periphery atom.14,280 

However, an important STM study quantifying the size scaling found that   1.14 for Ag 

and   1.25 for Cu, for N from about 100-400 atoms at 300 K.212 See Figure 121. 
These values are well below the continuum/mean-field value. Furthermore, this STM 
study212 also quantified the coarsening kinetics finding that the mean NC size scaled 

like Nav ~ tn where n = 0.466 for Ag [versus 1/(+1) = 0.467] and n = 0.454 for Cu 

[versus 1/(+1) = 0.444]. Thus, the theoretical prediction for the connection between the 
size scaling of cluster diffusivity and coarsening kinetics is well satisfied.  

 

 

 
Figure 121. Size scaling of cluster diffusivity for: (a) Cu/Cu(100); (b) Ag/Ag(100). Reprinted with 
permission from Ref. 212. Copyright 1997 American Physical Society. 
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As noted above, the observed “anomalous” size scaling for cluster diffusivity 
prompted numerous theoretical analyses. Here, we first describe two studies utilizing 
generic models (cf. Sec.3.3) which provide insight into basic behavior in metal(100) 
homoepitaxial type systems rather than in describing specific systems. In the first, 
Heinonen et al.151 use a refined Metropolis prescription (cf. Sec.3.3.2) of the activation 

barrier for hopping, Eact = ES + min(0,NN)EB where ES = 0.258 eV when there is at least 
one atom diagonally adjacent to the TS for hopping (corresponding to edge diffusion) 

and ES = 0.399 eV otherwise (e.g., for terrace diffusion). Also NN is the number of NN 
atoms in the final state minus that in the initial state. The energetic parameters are 
intended to correspond to Cu(100). Results of simulations for this model are shown in 

Figure 122. The basic picture presented was that a scaling exponent greater  > 1 
associated with periphery diffusion was manifested for smaller N (ignoring the 

oscillatory behavior) crossing over to an exponent  = 1 for large N. The latter behavior 
was associated with cluster diffusion dominated by vacancy diffusion through the cluster 

interior. Thus, it was suggested that observed exponent of   1.25 observed for 
Cu(100) was proposed to correspond to crossover between these regimes. With regard 
to oscillatory behavior, it was noted that DN for “perfect” sizes N = L2 were significantly 
smaller than those for N = L2 + 1 for lower temperatures.  
 

 
 
Figure 122. Refined Metropolis model for metal(100) homoepitaxial cluster diffusivity versus size 
(for selected sizes).  Results are shown form T = 1000, 700, 500, 400, 300 K (from top to 
bottom). Stars for 300 K correspond to “perfect” sizes N = L2. Reprinted with permission from 
Ref. 151. Copyright 1999 American Physical Society. 

 
However, more recent analysis reveals that oscillatory behavior for small sizes is 

more subtle than suggested by the above study.154,155 Also, it is not viable to assign a 
higher exponent to the small size regime associated with traditional theory for periphery-
mediated diffusion. Finally, the crossover to vacancy-mediated diffusion for large sizes 
is likely a consequence of the feature that the refined Metropolis formulation assigns an 
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artificially small barrier for vacancy diffusion Edv = ES  0.26 eV which is well below the 

adatom terrace diffusion barrier Ed  0.40 eV. In fact, the vacancy diffusion barrier for 
most metal(100) systems including Cu is only slightly below Ed.152 

It is natural to analyze predictions for periphery-diffusion mediated cluster 
diffusion from the tailored model for metal(100) homoepitaxial systems described at the 
end of Sec.3.3.2 and applied in Sec.5.2 and 5.4.153-155 This model selects Eact = Ee +  

(n-1) for NN hops and Eact = Ee + (n-1) +  for 2NN hops for edge diffusion, and 
prohibits detachment of atoms from clusters. See Figure 12. Here Ee is the barrier for 

edge diffusion along close-packed step edges,  is the additional kink or corner 

rounding barrier, and  gives the strength of the NN attractive interactions.  
Before presenting results for cluster diffusivity, it is appropriate to describe 

anticipated distinct classes of behavior for specific sizes of clusters. We identify perfect 
sizes Np = L2 and L(L+1) with L = 3,4,… for which clusters have unique square or near 
square ground state shapes. Note that such uniqueness does not apply for sizes N = 

L(L+n) with n  2. For N = Np, diffusion is nucleation-mediated in that after an atom is 

extracted from a corner in the ground state to an edge (raising the energy by E = +), 
another atom must quickly detach from a corner or kink to join the first atom before the 
first atom returns to the corner. Such a pair of atoms nucleates a new edge. Long-range 
diffusion requires recovering ground state configurations with shifted center-of-mass 
(CM). The most direct pathway shifts atoms from kinks and corners of the opposite 
edge to complete this new edge. Shifting the second and subsequent atoms from one 
kink to another does not change the energy after each reattachment, so the system 

evolves through a series of first excited states with energy E = + above the ground 
state. Only shifting the last (isolated) edge atom to recover the ground state lowers the 

energy by E = -. See Figure 123a. Note that diffusion of clusters with sizes Np+3, 
Np+4, etc. is also nucleation-mediated. Nucleation-mediated diffusion involves an atom 

breaking out of a kink (or corner) site with rate hk =  exp[-(Ee+)/(kBT)] and aggregating 

with an isolated edge atom which has low quasi-equilibrium density neq = exp[-/(kBT)]. 

Thus, DN ~ neq hk ~ exp[-Eeff/(kBT)] with effective barrier281 Eeff = Ee +2 as confirmed by 
simulations.154-155 

Next, we consider facile sizes N = Np+1 and Np+2, where edge nucleation is not 
necessary. For N = Np+1, an isolated edge adatom on a perfect core, which we 
describe as a special ground state configuration, can readily diffuse around the cluster. 
For N = Np+2, an edge dimer on a perfect core, a special ground state, can dissociate 
and reform on another edge. Neither process results in a net change of energy. After 
the isolated edge atom or dimer is transferred to a new edge, atoms can be transferred 
from the opposite edge of the core to complete the edge to which the adatom or dimer 
was moved. This recovers a special configuration with an adatom or dimer on the edge 
of a displaced perfect core. Shifting of atoms from one kink to another does not change 
the energy after reattachment, and in this case the system evolves through a set of 
ground state configurations. See Figure 123b. Facile diffusion just involves breaking 

atoms out of kink sites and subsequent edge diffusion, so that Eeff = Ee + as confirmed 
by simulations.154,155 
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Figure 123. Direct diffusion pathways for (a) perfect; (b) facile sizes. (c) Indirect pathway for 

facile sizes. Reprinted with permission from Ref. 154. Copyright 2017 American Institute of 
Physics. 

 
In addition to direct pathways, there are many indirect pathways for cluster 

diffusion with atoms removed from multiple corners. Here, the cluster wanders through 
a large phase space of configurations iso-energetic with the first excited state for perfect 
sizes, or with the ground state for facile sizes. See Figure 123c. However, for long-
range diffusion by a sequence of transitions between ground states of the system, 
eroded corners must be rebuilt as the cluster must repeatedly pass through the unique 
ground state for perfect sizes, and the special ground state for facile sizes. 

An overview of KMC results illustrating various regimes and branches of DN 

behavior for  = 0.24 eV and  = 0 at 300 K is shown in Figure 124. Small sizes N  8 all 
have the form Np + 1 or Np + 2 and exhibit facile diffusion with high DN. For moderate 
sizes, N = 9 to O(102), we just show four distinct branches: facile Np + 1; facile Np + 2; 
perfect Np; and slow Np + 3. Key features are as follows: (i) High values for smaller N 

and rapid decay of DN ~ N-f for facile sizes Np + 1 with large f  2.6 up to N ~ 100 and 
similar less regular decay for Np +2. (ii) Weak size-dependence of DN for perfect sizes 

up to Np  81. (iii) Intermingling of DN for perfect Np with facile branches for Nmingle  81. 

(iv) Lowest values of DN for sizes Np + 3 (not Np) with slow decay DN ~ N-s where s  
0.53 for N ~ 67-200. Np and Np + 3 branches trivially merge at N = 12 = 9+3.                
(v) Analysis of DN versus N for a full contiguous range of N shows quasi-periodic 

behavior. See Figure 124 (inset). (vi) Near-merging of all branches for N  Nmerge  250.  

For larger sizes N > Nmerge, if we write DN ~ N-eff, the effective exponent slowly varies 

from eff  0.75 for N just above Nmerge, to eff  1.12 for N from 500-1000, to  = 1.5 (the 

continuum value) for N. Here, the kink separation is Lk  52, and the asymptotic 

regime N >> (Lk)2  2700 is not achieved in our simulations. However, we have also 

performed simulations for  = 0.20 eV (and  = 0) where Lk = 24, and we do realize 

asymptotic scaling N >> (Lk)2  570.  
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Figure 124. DN versus N for the tailored model for metal(100 homoepitaxial systems. Reprinted 
with permission from Ref. 154. Copyright 2017 American Institute of Physics.  

 
 Deeper insight into the above diverse and subtle features of DN versus N is 
desired. Various related comments are provided below. Of particular value is the 
application of combinatorial analysis assessing the number of cluster configurations in 
relevant ground states and excited states. Such an analysis exploits concepts from 
number theory. (We do not provide details here, but just note that possible 
configurations clusters associated with various ways of distributing vacancies in a 
corner of the cluster can be mapped onto Ferrer’s or Young’s diagrams developed in 

the theory of partitions of integers.) Below we let N(n) denote the number of 
configurations in the nth excited states for a cluster of size N. The basic conclusions are 
as follows.  

   (i). The number of ground state configurations, Np+1(0), for facile sizes N = Np+1 

scales like N(0) ~ N2.6 up to N ~ 100. Cluster diffusion requires repeatedly starting from 
the special configuration and wandering through a large ground state configuration 
space to return to a special configuration but with the cluster core is shifted by a lattice 

constant. DN ~ 1/ret should plausibly scale inversely with the return time, ret, and 

random walk theory indicates that ret ~ N(0). Thus, the relation DN ~ 1/N(0) explains 

the observed large size-scaling exponent   2.6. 
   (ii). The weak size dependence of diffusivity for perfect size clusters naturally reflects 
the feature that diffusion is limited by nucleation of new edges, a process which is not 
particularly sensitive to cluster size.   
   (iii). Perfect-sized clusters are only well-distinguished from facile clusters if there is a 
high probability that the cluster is in its unique ground state. The probability to be in an 

excited state scales like exp[-/(kBT)] Np(1). Evaluation of Np(1) reveals that this 

probability is significant for N  81 at 300 K with  = 0.24 eV.  
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   (iv,v). Perhaps surprisingly for nucleation-mediated diffusion, DN increases (rather 
than decreases) for increasing N = Np+3, Np+4,…, to Np+, where Np+ denotes the perfect 
size above Np. The inset to Figure 18 provides a few examples: Np+ = 49 for Np = 42; 
Np+ = 56 for Np = 49; and Np+ = 64 when Np = 56. Nucleation-mediated diffusion requires 
excitation of the cluster to the first excited state. Thus, it is reasonable to speculate that 
diffusivity should be higher for higher probability to be in the first excited state relative to 

the ground state, and thus for higher N(1)/N(0). Combinatorial analysis showed that 

indeed N(1)/N(0) tracks well the cyclical behavior in DN, and adopts local minima for 
N = Np+3.  

All the basic features described above apply upon introducing a finite kink 

rounding barrier  > 0. Naturally the actual value of DN decreases upon increasing  > 0. 
Also, the effective barrier for cluster diffusion increases.155  

Next, we briefly describe analysis of the diffusion of vacancy pits on metal(100) 
surfaces using the same tailored model as just applied for adatom cluster diffusion.156 

Results for  = 0 are shown in Figure 125. In this case, DN for pits is lower than for 
adatom clusters or islands of the same size. For large enough N, these curves must 
merge since continuum theory does not distinguish between diffusion of islands and 
pits. However, for smaller N there are differences, e.g., pit diffusion is always 

nucleation-mediated. It is appropriate to note that for large , island diffusion must 
become slower than pit diffusion. The reason is that there are pathways for pit diffusion 
which avoid any corner or kink rounding.156 
 

 
 
Figure 125. Comparison of vacancy pit and island diffusion for  = 0. 

 
Returning to analysis of experimental data, the ISU14 and Bochum groups282 

have compared vacancy pit and island diffusion for Ag(100) and both find similar DN for 
the same N. It should be noted, however, that these studies are not fully consistent with 
the ORNL data in Figure 121. The ISU data has somewhat higher values for island 
diffusivity, and the Bochum data has much larger values.156 At least the latter was 
suggested to be a consequence of significant surface strain associated with the 
extensive sputtering used to create pits. Thus, it was proposed that islands and pits 
have similar DN and the magnitude is best described by the ORNL data. With this target, 
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the tailored model was shown to recover the proposed behavior upon choosing Ee  

0.29 eV,   0.18 eV,   0.27 eV, and  = 1013/s.156  
 Finally, we remark that experimental data is available for diffusivity of vacancy 
pits on Cu(111) and Ag(111),243,283 and adatom islands in Ag/Ag(111) homoepitaxial 
systems.243  
 
8.2. Decay of 2D epitaxial NCs: classic and unconventional Ostwald Ripening 
 
 8.2.1. OR for Ag/Ag(111). Perhaps the optimal 2D example of Ostwald Ripening 
(OR), for which there exists detailed information on the evolution of the island 
distribution, is provided by STM studies of the coarsening of Ag islands on an Ag(111) 
surface.13,284  Since no additional barrier over that for terrace diffusion is expected for 
attachment to ascending steps on metal surfaces, OR should be terrace diffusion (TD)-
limited rather than attachment-limited. Figure 126 (top) shows STM images of island 
evolution, and Figure 126(b) tracks the corresponding changes in sizes for a subset of 
islands. The characteristic non-linear decay in size for shrinking islands for TD-limited 
decay is evident. The feature that curves tracking island size versus time for different 
islands can cross is also indicative of TD-limited decay as it reveals that growth/decay 
rates depend not just on island size, but on the local environment of the island. For 
attachment-limited decay (or in mean-field type treatments of TD-limited decay), curves 
do not cross. See Figure 126(c).  
 

 
 
Figure 126. (a) OR of Ag islands on Ag(111) for 0.3 ML at 300K. (b) Experimental island sizes 
versus time. (c) Mean-field type prediction of island size evolution. (d) Prediction of island size 
evolution in the nearest-neighbor approach. Reprinted with permission from Ref. 284. Copyright 
1999 Elsevier. 
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Selecting a finite ensemble of islands as shown in Figure 126, mass flow 

between those islands, and thus their rates of growth or decay, can be readily and 
precisely quantified in a continuum picture by adaptive mesh Finite Element Method 
(FEM) analysis. (See the discussion for Ag/Ag(110) below.) There is some 
approximation in treatment of the outer boundary. Nonetheless, by selecting a large 
enough ensemble, reasonable treatments should not significantly impact the evolution 
of islands in the center of the ensemble away from the boundary. However, rather than 
numerical analysis, development of an approximate analytic formulation to describe 
island growth/decay rates is perhaps more instructive. Such a formulation has been 
developed in Ref. 284 which emphasizes the local nature of evolution, specifically the 
dependence of the evolution of a specific island primarily on its nearest-neighbors. The 

formulation is based on the expression Jij = 2D(i - j) /ln(dij
2/rirj) for the flux between an 

isolated pair of islands with radii ri,j and separation dij >> ri,j. For a specific island, i, its 
nearest-neighbors are determined from a Voronoi construction. Then, the total flux 

between that island and all of its neighbors is assumed to have the form Ji = NN j ij Jij, 

where the weights, ij, are chosen as proportional to the opening angles, ij. See Figure 
127. This approach, which is particularly successful for Ag/Ag(111) as shown in Figure 
126(c), was motivated by earlier work in Ref. 285. 
 

 
 
Figure 127. Construction of a nearest-neighbor model for TD-mediated OR. Reprinted with 
permission from Ref. 284. Copyright 1999 Elsevier. 

 
 In addition to traditional coarsening of island arrays for the Ag/Ag(111) systems, 
there are also studies focusing on the evolution of individual islands including those in 
“tailored” geometries, e.g., islands on islands, islands in pits, and also pits in pits286-288. 
The goal here was to extract key system energetics by applying traditional continuum 
models to analyze detailed data for island decay. Corresponding generic atomistic KMC 
simulation studies (i.e., not tailored to a specific system) recover key features of 
observed behavior.289  
 
 8.2.2. Anomalous OR for Ag/Ag(110). For the anisotropic Ag/Ag(110) system, 
Ag islands have an elongated rectangular form with aspect ratio, R, adopting an 

equilibrium value of Req  3. For temperatures above about 220 K, coarsening of island 
arrays occurs via OR, with behavior described by conventional theory assuming 

equilibrated islands shapes with R  Req and thus well-defined chemical potentials. 
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However, below 220 K, an unusual one-dimensional decay is observed by Morgenstern 
et al.56 for “smaller” islands where these decrease in length with almost constant width 

so one can have initially R  Req and finally R < Req. When islands become very small 
they do also shrink in width. An example of such decay at 190 K from the ISU 

group57,112 with the initial R  Req is shown in Figure 128 where the island decay rate is 

Kexpt = -dA/dt  0.007 nm2/s.  
 

 
 
Figure 128. (a-c) STM data for one-dimensional decay of an Ag island on Ag(110) at 190 K. (d) 
Island area versus time. Reprinted with permission from Ref. 112. Copyright 2013 American 
Physical Society. 

 
Suitable stochastic atomistic modeling can be applied to describe and potentially 

further elucidate behavior. However, such models should capture both system 
thermodynamics (i.e., the equilibrium aspect ratio) and kinetics. Key features of the 
kinetics (anisotropic terrace diffusion which is significantly more facile along the troughs 
in the x-direction than in the orthogonal y-direction; details of periphery diffusion 
including corner rounding) are described in Ref. 56 based on semi-empirical energetics. 
To this end, it is convenient to adopt the strategy described in Sec.3.5.1 developing 
models prescribing both conventional and unconventional interactions. However, we 
just include short-range pair interactions for both types as shown in Figure 129 which 
are tuned to recover the desired equilibrium island aspect ratio and the key features of 
terrace and periphery diffusion.57,112  

This atomistic model was applied to simulate decay of island whose behavior is 
characterized above by incorporating the experimental distribution of islands 
surrounding the island of interest into the KMC simulation. See Figure 130. These 
simulations also apply atom-tracking KMC to follow the atoms (shown in white) initial in 
the island of interest.57 Many of the atoms detaching from this shrinking island are 
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incorporated into the left end larger island to the right (as is already evident from the 
snap shot shown early in the decay process), and there is substantial attachment to the 
right end of island to the left (which due to PBC artificially corresponds to the right end 
of the island to the right). A key advantage of simulation relative to experiment is that 
one can repeat the simulation to assess the extent of fluctuations in island decay. As is 
clear from Figure 130, the spread in decay rates is large for the 99 trials shown from 

KKMC  0.008 nm2/s to much smaller values, a range including the experimental value. 

The average initial decay rate from simulation is KKMC  0.0026 nm2/s, although this 

increases to KKMC  0.0033 nm2/s after 750 s.112  
 

 
 

Figure 129. Energies for stochastic atomistic model describing Ag/Ag(110). Reprinted with 
permission from Ref. 57. Copyright 2013 American Physical Society. 
 

 
 

Figure 130. Atomistic model of the decay of the Ag island on Ag(110) shown in Figure 129. 
Results for area versus time for 99 trials and their average are shown. Also shown are the 
results of a refined BCF (rBCF) treatment. Reprinted with permission from Ref. 112. Copyright 
2013 American Physical Society. 
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 While stochastic modeling and simulation is instructive, deeper insight can be 
obtained by development of an appropriate analytical formulation (and from related 
numerical analysis). The first fundamental challenge is the lack of equilibration of island 
shapes during decay which precludes the assignment of a (standard) chemical potential 
for each island. However, particularly given the one-dimensional nature of decay, it is 

natural to introduce a partial chemical potential, <001>, describing the change in (free) 

energy for the “evolution mode” with varying island length, L||, for fixed width, L. One 
also assumes that adatoms at the <001> ends of the island with density n<001> are in 

equilibrium with the <001> steps and have the same chemical potential, ||. From the 
expression for the total island energy, it follows that57,112 
 

<001> =  + 2110/L and n<001> = n exp[2110/(kBTL)].    (84) 
 
Although it is not so relevant for our study, one can also define a partial chemical 

potential, <110>, for the evolution mode where the island changes width for fixed length. 

One obtains <110> =  + 2001/L|| and a corresponding expression for the density, 
n<110>, for the density of adatoms in equilibrium with <110> step edges. In these 

expressions, 110 (001) is the step energy for <110> (<001>) steps, and  demotes the 

unit cell area. For equilibrated island shapes, one has <001> = <110> and thus Req = 

L||
eq/L

eq = 001/110.  
 A standard continuum treatment of island evolution assuming facile attachment 
at ascending steps of Ag islands would solve a Dirichlet boundary value problem (BVP) 
for the steady-state (anisotropic) diffusion equation where adatom densities matched 
their appropriate partial equilibrium values at the different island edges. However, such 
a treatment leads to a decrease in island width as well as length for decaying islands. 
This problem is resolved by recognizing that <110> edges of islands are quite facetted 
with low or negligible kink populated, so that adatom attachment is effectively strongly 
inhibited. This behavior is quantified by a refined BCF (rBCF) treatment shows that the 
kinetic coefficient describing adatom attachment decreases like the square of kink 
density. Thus, we reasonably ignore adatom attachment/detachment at <110> step 
edges in which case this analytic formulation describes well observed behavior. 
Numerical analysis of the BVP using adaptive mesh FEM shown in Figure 131. This 

analysis predicts an initial decay rate of KrBCF  0.0022 nm2/s quite consistent with the 
KMC result averaged over many trials. 
 There are other features of behavior in this system which differ from traditional 
OR in isotropic systems. The strongly anisotropic nature of diffusion leads to a quasi-1D 
flow of atoms between the <001> ends of neighboring islands. In this case, mass fluxes 
are more strongly dependent on the separation between islands than for an isotropic 2D 
systems with weaker logarithmic dependence. This impacts Arrhenius behavior of 
coarsening where the temperature-dependence of island separation now 
unconventionally plays a role. See Ref. 57 for further details. 

 



144 
 

 
 
Figure 131. Adaptive mesh FEM analysis of mass transport between islands based upon partial 
chemical potentials and a rBCF treatment of boundary conditions. Reprinted with permission 
from Ref. 112. Copyright 2013 American Physical Society. 

 
 8.2.3. General comments. Traditional continuum OR theory has been 
particularly effective at characterizing behavior in traditional isotropic systems such as 
Ag/Ag(111). The theoretical framework requires equilibrated island shapes. The key 
concept is that islands with smaller area and higher chemical potential decay by 
transferring atoms to islands with larger area and lower chemical potential (locally for 
TD-limited decay, and globally for AD-limited decay). However, for the anisotropic 
Ag/Ag(110) system, islands do not have equilibrated shapes. It is necessary to 
introduce the concept of partial chemical potentials and also refined BCF boundary 
conditions accounting for inhibited attachment/detachment to steps with a low or 
negligible kink population. The conclusion is that coarsening is controlled by the 

relevant partial chemical potential, <001> =  + 2110/L, so it is narrower islands 
(versus islands which are smaller in area) which decay. Consequently, one can have 
anti-coarsening behavior where islands with larger area shrink and those with smaller 
area grow provided that the larger islands are narrower than the smaller islands. 

Numerical analysis of the relevant continuum BVPs with sophisticated adaptive-
mesh FEM can precisely analyze mass flow between dozens of islands. Results 
facilitate interpretation of experimental observations.  One caveat is that while such a 
procedure does precisely capture behavior even at sharp corners of islands with a fine 
mesh, the physical systems have a discrete array of adsorption sites. Thus, if the mesh 
is finer that the actual adsorption site grid, this analysis becomes artificial. An alternative 
to implement discrete diffusion equations where the grid corresponds to the actual 
adsorption sites.112,207,208 Such formulations are quite versatile in that one can build in 
structure to the step edges and also higher-fidelity step edge kinetics. Consequently, 
further insight can be derived from traditional continuum treatments (and this approach 
provides a complementary strategy to stochastic atomistic modeling).  
 In Sec.4.4.3, we have discussed crossover possible crossover between OR and 
SR.14,110 For example, based on this discussion, one anticipated a crossover from SR-
dominated coarsening for Ag/Ag(100) or Cu/Cu(100) systems at 300 K to OR as the 
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mean island size becomes sufficiently large. It is appropriate to note that other more 
novel types of crossover behavior can also occur. STM studies reveal that coarsening 
for Cu/Cu(100) between 343 K to 413 K (rather than 300 K) is dominated by 
attachment-limited OR.289 It was proposed that this coarsening process was mediated 
by diffusion of vacancies in the top Cu(100) surface layer rather than by adatoms, 
where the attachment-limited behavior is associated with an additional barrier for 
vacancies to diffuse between layers. It should be noted for this system that the diffusion 
barrier for vacancies is lower than for adatoms.152 The viability of OR mediated by 
vacancy diffusion is discussed more generally in Ref. 14. 
 
8.3. Diffusion and SR for supported 3D NCs 
 

For decades, there has been debate as to whether the degradation of 3D 
supported catalysis NCs is dominated by OR or SR, where of course the latter is 
controlled by the diffusion of supported 3D NCs. There exist classic observations of 3D 
NC migration by Ruckenstein and coworkers290 as well as more recent in-situ TEM 
studies.30 There has also been extensive analysis of NC migration and coalescence on 
both amorphous C and SiO2 substrates and crystalline substrates (MgO, KCl, NaCl, 
etc.) in the materials science literature.20 A separate line of investigations assessed 
metallic NC diffusion of graphite (which is much more rapid than on amorphous C).249 
There has also been consideration of the mechanism of cluster diffusion with individual 
atom motion being ruled out in some cases for graphite and ionic substrates.249 A key 
factor controlling diffusivity is suggested to be the degree of epitaxy with the substrate. 

In terms of theory, a classic continuum analysis of 3D cluster diffusion mediated 
by surface diffusion suggested that the diffusion coefficient for NC of N atoms scaled 
like291 DN ~ N-4/3. A prominent study by Reiss for non-epitaxial systems revealed a weak 
activation barrier for rotation (since some atoms move towards more stable positions as 
other move away).292 Other models allowed for a partial rearrangement of the interface 
between the island and the substrate where there is substantial misfit.20 Numerous 
other studies have utilized MD simulation to characterize 3D NC diffusion assessing the 
effects of mismatch and characterizing size-scaling if any.249 A key general conclusion 
is that epitaxy of the NC with the substrate implies slow diffusion mediated by single-
atom movements.249 
 Next, we consider in more detail a recent study by Abild-Pedersen and 
coworkers157 of epitaxially-supported 3D Pt NC diffusion utilizing a stochastic atomistic 
model with ab-initio kinetics. As discussed in Sec.3.5.2, NC thermodynamics is 
described within a NN interaction model where the interaction strength is selected as 
~0.35 eV based on DFT analysis. Interaction of the metallic NC with the substrate 
requires separate specification. In the study, it was assumed that a Pt NC was 
epitaxially supported on rutile SiO2(001). The adhesion energy of Pt atoms in the lowest 
layer is assumed to depend on their coordination in the metal NC. Again DFT guides 
selection of these values: Pt(111) and Pt(100) slabs on SiO2(001) gives values for 9- 
and 8-coordinated atoms respectively; nanowires supported by a 2-atom wide side give 
values for lower coordination 5, and 7. A single adatom gives the value for coordination 
0. Values for other coordination numbers were obtained by interpolation with values 
vary from 0.25 eV for coordination 9 to 0.75 eV for coordination 0. Some account of 
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strain effect on these adhesion energies due to lattice mismatch was also included. As 
also noted in Sec.3.5.2, barriers for metal NC atom hopping to neighboring fcc sites 
were informed by DFT analysis.   
 Given the finite adhesion to the substrate, the equilibrium shape of the supported 
clusters differs from the unsupported case according to the Winterbottom construction. 
Simulated shapes are consistent with this construction and display overhanging {111} 
facets consistent with adhesion which is not extremely strong. See Figure 132(a) for a 
NC supported on a {100} facet. It is also noted that the equilibrium supported cluster 
shapes generally have lower symmetry that in the unsupported case. Note the 3x2 top 
{100} facet in Figure 132(a). Rotation of this facet without substantial diffusion of the 
cluster (see Figure 132(b)) leads to a shift in the center of mass (CM) and associated 
“fine-structure” in the CM trajectory at 1000 K as shown in Figure 132(c). The model 
was used to provide a comprehensive analysis of both the temperature and NC size 
dependence of cluster diffusivity. Figure 132(a) shows the activation barrier extracted 
from the T-dependence of diffusivity which tends to be fairly constant (as expected from 
our analysis of diffusion of 2D epitaxial NCs). However, there is a significant difference 
between the barrier for NCs supported on {100} versus {111} facets. This is not 
surprising as these cases have different effective adhesion to the substrate. Separate 
targeted studies of the influence of adhesion on cluster diffusivity show little difference 
between {100} and {111} supported NCs for weak adhesion and that the effective 
barrier for diffusion in both cases grows with increasing adhesion strength. 
 

 
 

Figure 132. (a) Epitaxially-supported Pt309 NC; (b) rotation of the top 3x2 {100} facet; (c) 
simulated CM trajectory at 1000 K. Reprinted with permission from Ref. 157. Copyright 2017 
American Chemical Society. 

 
Finally, for this model, we present in Figure 133(b) predictions for the 

dependence on size, N (atoms), of cluster diffusivity, DN,  of supported Pt NCs at 1400 
K. Apart from an overall decrease with increasing size, strong quasi-periodic oscillations 
are also apparent somewhat reminiscent of the behavior shown in Sec.8.1 for 2D 
epitaxial NCs. It was suggested that the local minima in diffusivity correspond to 
situations where the cluster size corresponds to a closed shell configuration with all 
facets completely filled. This view anticipates that in clusters with partially filled facets, 
there are more atoms with lower coordination which are more mobile. However, we 
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have noted in Sec.8.1 for 2D epitaxial clusters that local minima in diffusivity do not 
correspond to close-shell sizes. Indeed, for the Pt system, N = 316 corresponds to a 
natural closed shell size which is not a minimum in local diffusivity. This issue could 
benefit from further analysis. 
 

 
 

Figure 133. (a) Arrhenius barrier for epitaxially-supported Pt NC diffusion on SiO2 for sizes N = 
309 ({100} and {111}-supported) and N = 1400 ({100} supported). (b) Size-dependence of {100}-
supported cluster diffusivity at 1400 K. Reprinted with permission from Ref. 157. Copyright 2017 
American Chemical Society. 
 

 Next, we describe additional results for diffusion of epitaxially-supported 3D Ag 
NCs ignoring strain effects where now we utilize the tailored model to capture Ag atom 
hopping kinetics described in Sec.3.4. This model is adapted to treat epitaxially 
supported NCs by simply incorporating a separate NN interaction between NC atoms 
and substrate atoms where the NC is supported on a {100} facet, and atoms in the 
lowest NC layer reside at four-follow hollow sites on the substrate surface which has fcc 
{100} structure with lattice constant matching the NC. Figure 134 shows a trajectory for 

N = 52 at 700 K with strong adhesion with s/ = 0.75 (cf. Sec.3.5.2). The initial cluster 
configuration is flatter than the typical equilibrium configuration. 
 

 
 
Figure 133. Diffusion trajectory for a size N = 52 epitaxially-supported Ag NC with adhesion 

75% strength also showing snapshots at different times. 
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In addition, this model was applied to characterize the size (N) dependence of Ag 
NC diffusivity, DN, for both strong and weak adhesion. Figure 134 shows behavior at 

700 K for strong adhesion (s/ = 0.75). For the size range shown, natural discrete 
closed-shell Winterbottom-type configurations are 3-layer truncated pyramids (e.g., 5x5 
base and 4x4 and 3x3  higher layers for N = 50; 5x6 base and 4x5 and 3x4 higher 
layers for N = 62; etc.). Strong oscillations occur in DN versus N as for the Pt NCs. For 
contrast, behavior of the substantially higher DN versus N for Ag NCs at 700 K is shown 

in Figure 135 for the case of weak adhesion (s/ = 0.05). In this case, equilibrium 
shapes should correspond closely to Wulff shapes for unsupported NCs, so that closed-
shell sizes for truncated octahedral are N(3,3) = 201, N(3,4) = 314, etc. 
 

 
 
Figure 134. Diffusion coefficients for epitaxially-supported Ag NC for strong adhesion (s/ = 
0.75) at 700 K. 

 

 
 
Figure 135. Diffusion coefficients for epitaxially-supported Ag NC for weak adhesion (s/ = 
0.05) at 900 K for N =201-314. 
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8.4. Coarsening for supported and unsupported 3D NC 
 
As noted above, there has been extensive historical speculation and discussion of the 
mechanism for degradation of catalysts: OR versus SR (where SR is often referred to 
as Particle Migration and Coalescence or PMC for these systems). Traditionally, an 
attempt was made to obtain insight into the mechanism from analysis of the particle size 
distribution, noting that different forms are predicted for OR and SR by theories of the 
type described in Sec.4.4. However, this strategy has proved inconclusive.28 Instead, 
the issue can be resolved more directly and definitively exploiting recent advances in in-
situ TEM allow direct observation of catalyst evolution at elevated temperatures under 
working conditions.28,30,293 We briefly describe two such studies. 

One study focused on Ni NC on MgAl2O4 divided the coarsening process into 3 
stages: (i) rapid degradation; (ii) slower degradation; (iii) quasi-stabilization.29 The study 
of Ni NC evolution was performed in an environment with 200 Pa H2O and 200 Pa H2 at 

750 C. The coarsening mechanism in stage (i) was identified as OR as validated by the 
in-situ TEM images shown in Figure 136.  The decay in size of an individual island was 
tracked (analogous to the study of OR for 2D Ag/Ag(111) islands in Figure 126). In this 
case, behavior was described by theories for AD-limited decay of 3D islands as 
presented in Sec.4.4.1. For stage (ii), there is evidence for a combination of OR and 
SR. Figure 137 shows a sequence of TEM images revealing mobility and coalescence 
events.30 In the first 13 s, NC I and a small nearby NC coalesce. NC II coalescences 
with a nearby small NC in the first 25 s. By 30 s, NC II has coalesced with a second 
nearby small NC. Significant mobility is also observed over 80 s with larger NCs more 
mobile than smaller ones. However, the authors note that such examples of mobility 
and coalescence are rare. It is difficult to assess general features such as the extent of 
SR, and also size-dependence of mobility (as different NC are in different environments 
and pinning is possible in some cases). For stage (iii), naturally no true steady-state is 
achieved and other effects such as support restructuring dominate behavior. 
 

 
 
Figure 136. Early stage OR of Ni/ MgAl2O4 with 200 Pa H2O and 200 Pa H2 at 750 C. Decay of 
the small NC is described by mean-field type AD-limited decay. Reprinted with permission from 
Ref. 29. Copyright 2011 American Chemical Society. 
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Figure 137. Early stage OR of Ni/MgAl2O4 with 200 Pa H2O and 200 Pa H2 at 750 C. Thin white 
circles denote initial NC positions. Reprinted with permission from Ref.  30. Copyright 2013 
American Chemical Society. 

 
 Another study explored coarsening separately for small 2.2 nm Pt NC and for 
large 4.4 nm Pt NC, and for a mixture thereof, supported on Al2O3 in forming gas (5% 
H2/N2) at elevated temperature up to 800 C293. The particle size distribution evolved 
significantly for the small NC but not for the larger ones. However, the largest change 
occurred for an initial mixture indicating that coarsening was dominated by OR. Again, it 
was proposed that OR was AD-limited. In contrast, under conditions of low NC density, 
mobility of small 2.2 nm NCs was evident (see Figure 138), but not of the larger 4.4 nm 
NCs. Such a decrease in mobility with increasing size is consistent with traditional 
theories.291. 
 

 
 
Figure 138. 2.2 nm Pt NC with low density (14x10-4 nm-2) on Al2O3 in forming gas (5% H2/N2) 
formed at 700 C evolving at 800 C. Reprinted with permission from Ref. 293. Copyright 2013 
Elsevier. 

 
 A third study related to supported Pt NCs performed TEM analysis of coarsening 
on a simpler planar SiO2 support and found OR as the dominant process with negligible 
NC mobility.294,295 While the default expectation was AD-limited OR, sizes of individual 
decaying NCs were tracked and found to display deviations from a mean-field AD-
limited picture, i.e., evolution depended to some extent on the local environment.  
However, rather than the TD-limited analysis described in Sec.8.1 for Ag/Ag(111), an 

AD limited picture was still adopted where the total flux to NC i was written as Ji        

2 ri exp[-Es/(kBT)](local - i), where Es is the energy barrier for a Pt atom to detach to 

the substrate, ri is the radius of NC i, and critically local is the local equilibrium density 
associated with nearest-neighbor NCs to i. The nearest neighbors, j, are determined 

from a Voronoi construction, and local is determined from a weighted average of the j 
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utilizing the opening angles as defined in Sec.8.1. See Figure 139. This type of 
formulation has been applied for coarsening in semiconductor systems.296 
 

 
 

Figure 139. OR of Pt NC on SiO2 with AD-limited behavior modified by local effects. 
Reprinted with permission from Ref. 295. Copyright 2011 Elsevier. 
 

 For a more comprehensive discussion of the sintering of NCs of various metals 
(Pt, Ir, Ag, Au, etc.) prepared in various ways (vapor deposition, micelle-synthesized) on 
various supports (TiO2, SiO2, Al2O3, etc.) under various conditions (oxidizing, reducing), 
see Ref. 297. 

For solution-phase coarsening of 3D NCs, in general there is a challenge to 
deconvolute the classical nucleation and growth, aggregative growth (or SR), and 
Ostwald Ripening (OR) stages indicated in Figure 27. Studying subsequent growth of 
small preformed particles eliminates the first nucleation stage thereby reducing the 
challenge to distinguishing between aggregative growth and OR44 (somewhat akin to 
the challenge described above for supported 3D NCs). Nucleation kinetics is often 
associated with a sigmoidal form for mean NC volume, V(t), vs time, t, whereas (AD-
limited) OR is associated with a linear increase of V(t) with t. However, it has been 
suggested that aggregative growth can also display sigmoidal kinetics as illustrated in 
Figure 140 for thiolate-capped 1.7 nm gold nanocrystals.298 Evidence for aggregative 
growth comes from observation of a bimodal NC size distribution (inset) at the end of 
the initial induction period. The smaller-size peak is assumed to correspond to the initial 
primary NCs and the larger-size peak with critical-sized aggregates. 
 

 
 
Figure 140. Mean size evolution during coarsening of 1.7 nm thiolate-capped Au NCs. The inset 
particle size distribution is taken just after the initial induction period. Reprinted with permission 
from Ref. 298. Copyright 2010 American Chemical Society. 
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Another example for which fairly detailed analysis of kinetics is available is for Ag 

NC growth by reaction of (PPh3)Ag(O2CC13H27) and AIBN in the presence of a PHD-co-
PVP polymer stabilizer where primary nanocrystals of 1.8 nm diameter were observed 
to form within 3-4 min.299 Again a bimodal distribution of NC sizes emerged after the first 
several minutes indicative of aggregative growth. However, in contrast to the above 
example for Au NCs, a clear long-time regime of OR emerges, i.e., classical nucleation 
occurs from 0-15 min, aggregative growth from 5-60 min., and OR from 60-100 min. 
See Figure 141.  
 

 
 
Figure 141. Mean size evolution during growth and coarsening of Ag NCs. Reprinted with 
permission from Ref. 299. Copyright 2010 American Chemical Society. 
 

8.5. Accelerated complex-mediated Ostwald Ripening 
 
It has long been speculated for complex systems involving supported 3D catalytic 
NCs,70 and more recently for 2D epitaxial NCs, that coarsening can be accelerated 
through the formation of “volatile complexes” including the metal and some additional 
chemisorbed species.59 For the former, facile formation of PtO2 was proposed to 
facilitate metal mass transport, a process which was recently explored and confirmed by 
both HP-XPS experiment300 and by theory.301  
 Here, we focus on analyses for 2D homoepitaxial systems where oxygen302 and 
sulfur303 have been shown to accelerate OR on Ag(100), and S has been shown to 
dramatically accelerate OR (by two orders of magnitude) on Cu(111)304 and Ag(111).113 
Specifically, we describe in some detail the latter systems. A particularly comprehensive 
study was performed of the decay of Cu NCs on Cu(111) in the presence of trace 
amounts of S.304 This study found three regimes of coarsening kinetics: (i) no significant 
change from TD-limited OR kinetics for S coverages up to 2 milli-monolayers (mML); (ii) 
a transition to apparent AD-limited OR with accelerated rate for 2-6 mML S; (iii) a 
second transition back to apparent TD-limited OR with further enhanced rates above 7 
mML S. It was suggested that this enhancement in OR was due to mass transport 
facilitated by the formation of a Cu-sulfur surface complex, initially proposed by 
Feibelman305 to be Cu3S3. The basic idea is similar to that for PtO2 in catalytic systems 
that Cu3S3 is volatile in the sense that it has a low formation energy305 associated with 
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extracting three Cu from the surface to form the complex with three terrace S. The fact 
that this formation energy is much lower than for atomic Cu on the terrace means that 
the equilibrium density of complexes is far higher than atomic Cu which more than 
compensates for their lower mobility. 

 Elucidation of the remarkable changes in OR kinetics with S coverage, S, 
requires more sophisticated modeling. A simple but particularly effective and insightful 
strategy was adopted in Ref. 304 which replaced the standard steady-state diffusion 

equation /t = D2  0 with a coupled linear pair of diffusion equations for the M = 

Cu metal adatom density (or coverage), M, and the complex density, Cx. Assuming 
that Cu detaches from step edges and forms a complex on terraces with linear kinetics 

at rate , and that the complexes decompose to atoms with linear kinetics at rate , one 
has that 
 

/t M = DM 2M - M + Cx  0 and /t Cx = DCx 2Cx - Cx + M  0. (85) 
 

Here, DM (DCx) denotes the surface diffusion coefficient for M (the complex). If M(eq) 

[Cx(eq)] denotes the equilibrium density or coverage of adatoms [complexes] on 

terraces, then one has / = Cx(eq)/M(eq). Thus, for decreasing S, one has that / 

 0. There is a Dirichlet boundary condition for M at step edges which requires M to 
match the equilibrium density given by the Gibbs-Thompson condition. There is a zero 

flux boundary condition for NC. 
Analysis of the solutions of these equations for simple geometries provides 

substantial insight into the observed distinct regimes of OR.304 It is natural and 

instructive to introduce the characteristic “reaction length”, LM ~ (DM/), which is the 
typical length that metal adatoms must diffuse before forming complexes. The above 

three regimes are elucidated as follows. (i) For very low S and thus , one has that LM 
>> Lc, the typical separation between NCs. Then, atoms detaching from small NCs 
typically diffuse across terraces and are incorporated into larger NCs before reaction to 
form complexes. Coarsening behavior is dominated by TD-limited M adatom transport, 

as for the S-free system. Fluxes scale like J ~ DM M(eq) with a “small” magnitude 

reflecting the “large” distances of order Lc over which M varies significantly. (ii) For 

higher S and , one has that LM < Lc. Now, M becomes uniform away from islands, 

specifically a distance greater than LM from island edges. However, while NC is flat at 
step edges due to the boundary conditions, it varies away from step edges 
corresponding to mass transport mediated by complex diffusion away from NC edges. 

Fluxes still scale like J ~ DM CM(eq), but now with a “larger” magnitude reflecting the 

“smaller” distance, LM, over which M varies significantly. These fluxes do not reflect 

distances between islands thereby producing AD-like behavior. (iii) For even higher S 

and  with LM << Lc, the complex density is essentially fully equilibrated with the adatom 
density, and both vary across terraces in a fashion reminiscent of standard TD-limited 

OR. Thus, fluxes scale like J ~ DCx Cx(eq) with a magnitude again reflecting the larger 

distances of order Lc over which M and CX varies strongly, and which again produces 
TD-like behavior. 
 The above experimental and theoretical analysis for the S+Cu(111) system was 
limited in two respects. First, at the time there was no direct experimental observation or 
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evidence for the existence or nature of the complexes mediating mass transport. 
Second, the simple linear analytic theory could not be used make quantitative 
predictions of various contributions to mass transport needed to fully confirm the model.  

Later similar accelerated coarsening was observed for the S+Ag(111) system 
with some differences in interpretation.113 One of these is that there was a critical value, 

S(crit), for S such that for S < S(crit), all S on the surface is incorporated at step 

edges and does not participate in complex formation. Clearly, S(crit) depends on the 

step density and thus the sample. It was S(crit)  7 mML for the S+Ag(111) study113. It 
is expected that such a non-zero critical coverage also exists in the S+Cu(111) system, 

although evidently S(crit) < 2 mML. Also, rather than using S to characterize different 

regimes, it is more appropriate to use the excess coverage S = S - S(crit). In 
addition, for the S+Ag(111) system, it was not assumed that a single complex was 
involved in accelerated coarsening but rather various complexes. Furthermore, the 
above linear reaction-diffusion equations were replaced by an appropriate coupled non-
linear set of reaction-diffusion equations involving relevant complexes.113 Analysis of 
such complex equations is in fact viable by linearization considering small deviations in 
densities from their equilibrium values. In this way, explicit expressions for relevant 
complex formation and annihilation rates can be obtained.113  

 

 
 

Figure 142. S-metal complexes observed by STM at 5 K on Ag and Cu, but not on Au. (a) 
proposed structural model; (b) simulated STM images; (c) actual STM image. Ag, Cu, Au image 
reprinted with permission from Ref. 306, 307, 308, respectively. Copyright 2013 American 
Institute of Physics, 2015 American Physical Society, 2015 American Institute of Physics, 
respectively. 

 
With regard to the existence and identity of complexes, a systematic analysis has 

since been undertaken combining low-T STM studies and DFT analysis to identify 
adsorbed complexes in various S + metal systems.306-308 The systems are dosed with S 
at higher temperature, but anticipated significant mobility of complexes means that 
these cannot be imaged at such temperatures and at the low coverages of interest. 
Consequently, for imaging, the system is quenched to 5 K where the complexes should 
be frozen. (Potentially, complexes can also be imaged at high temperatures for higher 
coverages if they become locked into an ordered pattern.309,310) Selected results are 
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shown in Figure 142 for S on Ag(111)306, Cu(111)307, and Au(111). 308 The lack of 
observation of M3S3 complexes are perhaps unexpected in that the Feibelman 
conjecture305 prompted speculation of the existence of such complexes for several 
metals311. For Ag, the observed large Ag16S13 complex is presumably not stable at 300 
K where coarsening is observed, and a range of smaller complexes were proposed to 
participate (see below). For Cu, Cu2S3 rather than Cu3S3 was observed, and indeed we 
propose that the former dominates mass transport for the S+Cu(111) system (see 
below). For Au, no complexes were observed, only S adatoms. S adatom ordering 
occurs at higher T were S is mobile results from a combination of linear trio attraction 
and long-range pairwise repulsions. It is “frozen in” in this 5 K image.  

To develop an appropriate theory for enhanced coarsening in the S+Cu(111) and 
S+Ag(111) systems, it is necessary to first assess with DFT the stability of various 
metal-S complexes. Figure 143 shows such viable complexes, and also indicates for M 

= Cu their associated T=0 K S chemical potentials, S. These S reflects the energy per 
S atom to form the complex by extracting metal atoms from (kink sites at step edges on) 
the metal substrate. Thus, lower S implies higher relative stability. For Cu, one finds that 
the Cu2S3 complex is most stable (consistent with experimental observations), with 
CuS3, CuS2 and Cu3S3 all having similar slightly lower stability.307  Table 7 shows these 

S as well as corresponding diffusion barriers and formation energies Eform(MmSn) = 

n[S(MmSn) - S(S)].  
 

 
 

Figure 143. Viable small metal(M)-sulfur (S) complexes on metal(111) surfaces. S chemical 
potentials are shown for M = Cu indicating that Cu2S3 is the most stable. Reprinted with 
permission from Ref. 307. Copyright 2015 American Physical Society. 
 

Table 7. S chemical potential, S, diffusion barrier, Ed, and formation energy, Eform, for various 
CumSn complexes adsorbed on Cu(111).  
 

Complex  S (in eV) Ed (in eV) Eform (in eV) 

Cu n/a 0.05 +0.78 

CuS -1.24 0.33 +0.67 

CuS2 -1.82 0.34 +0.15 

CuS3 -1.83 0.36 +0.24 

Cu2S3 -1.87 0.35 +0.11 

Cu3S3 -1.82 0.36 +0.24 
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Comprehensive analysis of accelerated coarsening kinetics based on appropriate 
reaction-diffusion equations for complex formation. It is clear that not just complex 
thermodynamics (e.g., Eform) but also kinetics (as reflected in reaction lengths) is 
relevant. Said differently, the ease of complex formation is important as well as its 
stability. In fact, there are many possible mechanism or pathways involving different 
subsets of complexes which could be relevant. Suppose that mass transport is 
dominated by the complex C+ = M2S3 (or M3S3) which is formed by the reaction M + C- 

 C+ where C- = MS3 (or M2S3). Then, if Kform(M+C-  C+) and Kdiss(C+  M+C-) 
denote corresponding forward and reverse rates, one has that 
 

/t M = DM 2M + Kdiss(C+  M+C-) - Kform(M+C-  C+) + …  0, and 
 

/t C+ = DC+ 2C+ - Kdiss(C+  M+C-) + Kform(M+C-  C+) + …  0,   (86) 
 
where dots indicates various other possible reaction mechanisms. Also, one has that 

Kform(M+C-  C+) = (DM + DC-)M C- and Kdiss(C+  M+C-) = (DM + DC-) exp[-E/(kBT)] 

C+ where E denotes the energy difference between separated M & C- and C+. 

Linearization writes M = M(eq) + M, etc., and obtains 
 

2 M - M/[LM(C-)]2  0, where LM(C-) = [DM/k(M+C-  C+)]1/2,   (87) 
 

with k(M+C-  C+) = (DM + DC-)C-(eq) and where we have used that the equilibrium 

values of Kform and Kdiss are equal (so these terms cancel in the M-equation).  
 As indicated above, one needs that LM(C-) < Lc in order for the cluster C+ to 
enhance mass transport. However, it was suggested that this is not the case for C+ = 
Cu2S3 or Cu3S3 in the S+Cu(111) system, and that other possible pathways for 
enhanced coarsening might be considered, e.g., direct detachment of complexes from 
NC step edges. 
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9. SUMMARY 
 
Stability of metallic NCs is a key issue for functionality in applications to catalysis and 
other areas. In this context, stability includes resistance to reshaping, e.g., from 
synthesized simple geometric shapes such as nanocubes, tetraheda, etc.,  to 
equilibrium Wulff polyhedral, or resistance to pinch-off of elongated nanorods. In 
addition, resistance to coarsening of ensembles of synthesized NCs via either Ostwald 
Ripening or Smoluchowski ripening is often desired. As the latter involves coalescence 
or sintering of pairs of NCs, the kinetics of this process is also of interest. For multi-
component NCs, and particularly bimetallic NCs, stability of synthesized core-shell 
structures against intermixing is also of relevance. In this review, we have 
systematically described and compared these phenomena for 2D epitaxial NCs and for 
crystalline 3D NCs, where evolution for the former is typically observed by Scanning 
Tunneling Microscopy (STM) and for the latter by Transmission Electron Microscopy 
(TEM).  

Our primary focus is on predictive atomistic-level stochastic modeling of the post-
synthesis evolution of metallic NCs, although considerable additional insight is often 
also obtained from coarse-grained continuum modeling. Given the non-equilibrium 
nature of these phenomena, we emphasize the need for such modeling to include a 
realistic description of the kinetics (versus generic Metropolis, IVA, or even BEP 
prescriptions), as well as a realistic description of the system thermodynamics. This 
goal has been achieved traditionally for 2D epitaxial systems by crafting system-specific 
tailored models, and more recently by formulations incorporating ab-initio kinetics. 
Extensive success has been and continues to be achieved in providing detailed insight 
into behavior underlying experimental STM observations. Application of predictive 
atomistic-level modeling with realistic kinetics to elucidate the evolution of 3D NCs, 
either supported on substrates or unsupported, is relatively undeveloped field. However, 
we illustrate the potential of this approach with examples of relatively recent modeling 
efforts. 
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