

Scale-up of Chemical Looping Reactors: Practical Considerations and Design of Industrial Systems

Thomas J. Flynn
The Babcock & Wilcox Company
Research Center, Barberton, Ohio

5th International Chemical Looping Conference
Park City, Utah

9/25/2018

Acknowledgments

Babcock & Wilcox

- Jinhua Bao
- Bartev Sakadjian
- Prasanna Seshadri
- Luis Velazquez-Vargas

Clearskies Consulting

- Robert Statnick

Dover Light & Power

- Dave Filippi

Electric Power Research Institute

- Andrew Maxson

Industrial Review Committee

- AEP, CONSOL, DOE, Duke Energy, First Energy, Ohio Development Services Agency, Tri-States

Johnson-Matthey

- Gareth Williams
- Andrew Scullard

Ohio State University

- L-S Fan
- Andrew Tong
- Dawei Wang

Trinity Consulting

- Mike Burr
- Dave Strohm

WorleyParsons

- Jim Simpson
- Xie Qinghua

Overview

► Purpose

- Bench-scale and pilot-scale demonstrations have significantly advanced chemical looping technology
- Intermediate-scale demonstrations must bridge technology gap and incorporate features of commercial-scale units
- Active applications of chemical looping applications growing

► Goal of Presentation

- Provide non-technology specific discussion of scale-up considerations and design issues.
- Focus on power as most complicated implementation

► Objectives

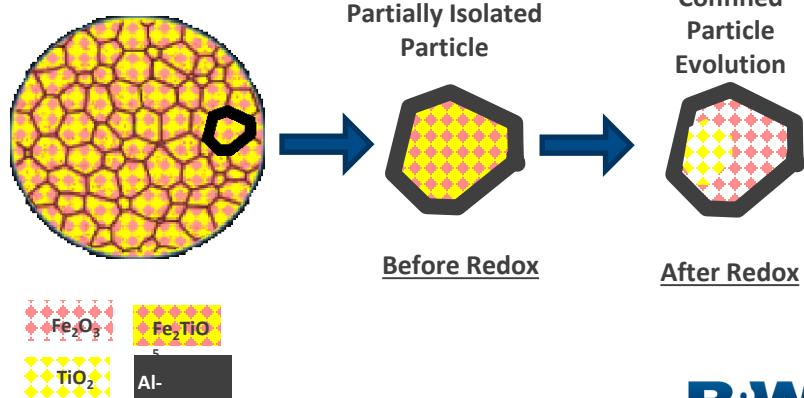
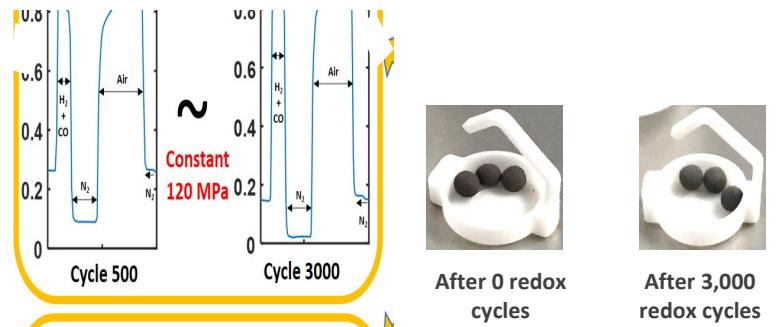
- Particle manufacture
- Reactor scale-up
- Thermal integration
- Environmental
- Sparing philosophy
- Operation
- Safety

Particle Manufacture Scale-up

Particle formulation and performance demonstrated successfully at small scale

Raw material sourcing & specification

Material(s) processing issues:



- Flowability and segregation
- Hygroscopicity and compactability
- Gel/emulsion/suspension stability

Equipment scale-up issues:

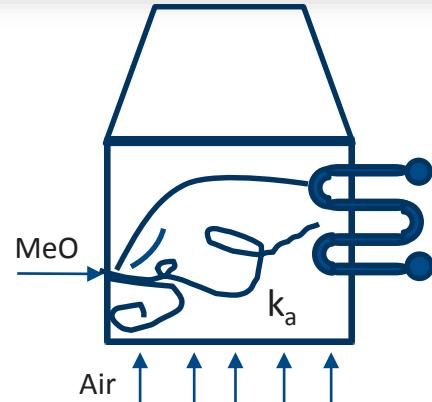
- Intermediate stages required
- Mixing and comminution effectiveness and energy demand
- Heating/cooling kinetics
- Temperature uniformity
- Safety risk assessments / hazard studies

Control issues:

- Process monitoring and control
- Product specifications
- Process cost evaluation

Reactor Scale-up

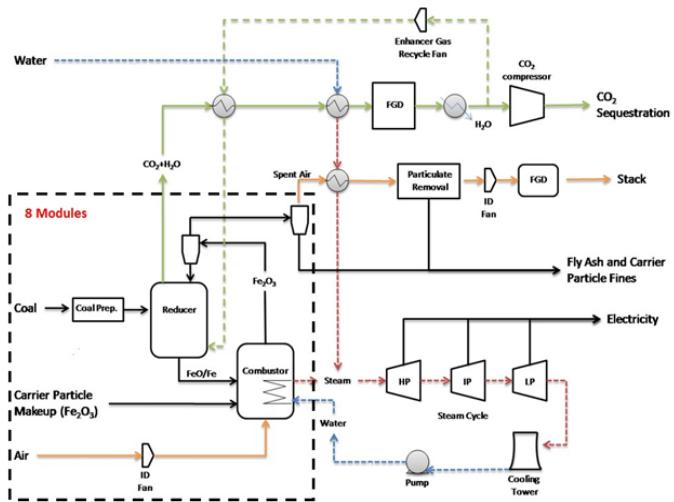
► Surface-to-volume ratio

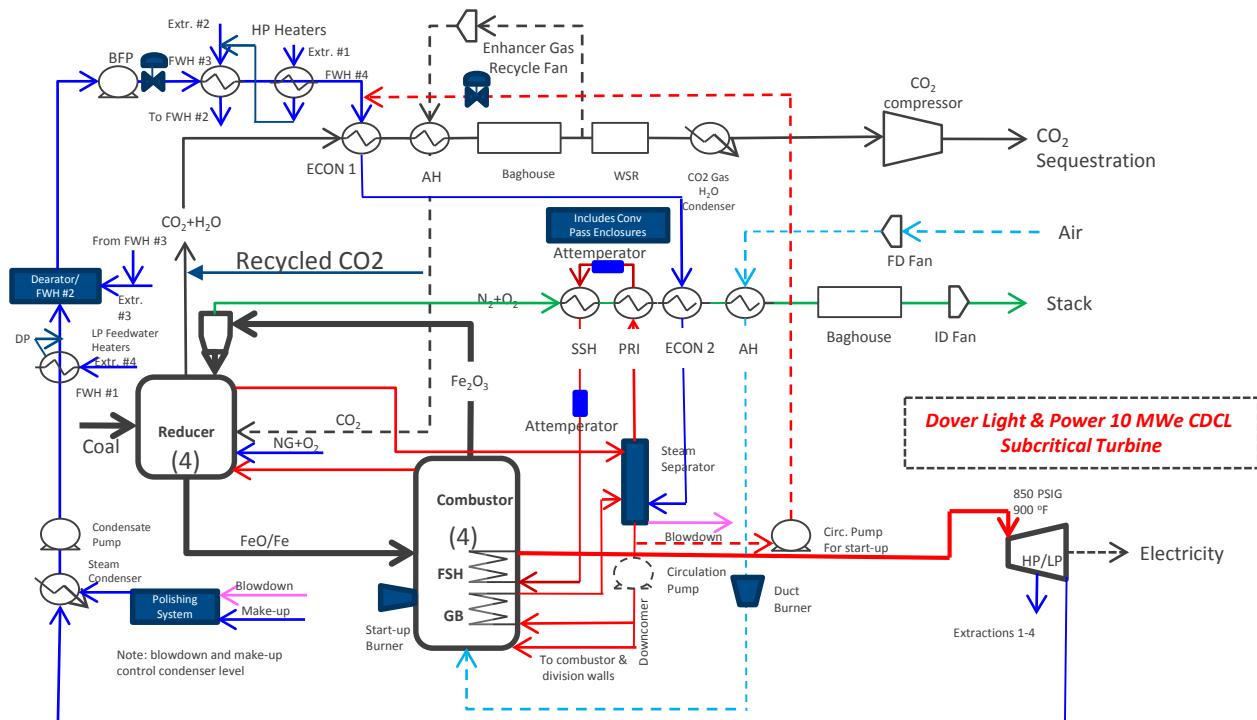

- Refractory-lined, electrically heated
- Membrane wall

► Feed point spacing – unit cell

- Fuel
- Metal Oxide

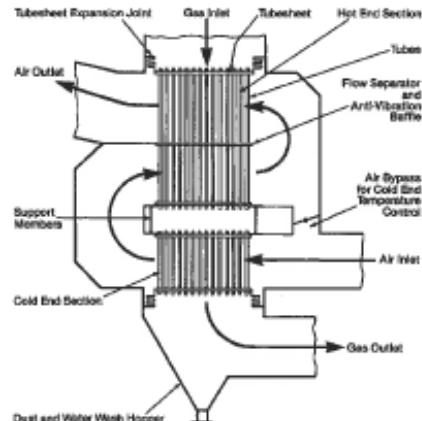
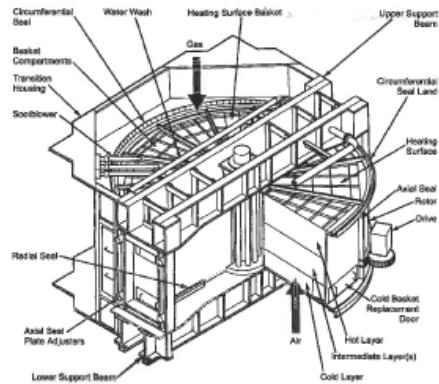
► Matching air/fuel distribution and kinetics to lateral and vertical mixing rates


- Multiphase computational fluid dynamic models (MFix, Barracuda® and Fluent) provide effective design tool
- Intrinsic kinetic and mixing data from laboratory and sub-pilot facilities


Thermal Integration – High-Grade Heat Recovery

Steam Cycle

- Heat recovery schemes
 - Pinch analysis - ASPEN Energy Analyzer module
- Metal temperatures
 - Sufficient cooling during start-up or part-load
 - Gas tempering with recycle
 - Attemperator sprays
- Steam separation (subcritical) or once-through design (supercritical)
- High temperature valves

Thermal Integration

Thermal Integration – Low-Grade Heat Recovery

- › Mismatch between reducer and combustor exhaust gas
- › Air Heaters
 - Coal dryer
 - Pulverizer
- › Air heater for combustion air – regenerative design
- › Gas heater for recycle CO₂ – tubular design???

Steam: its generation and use edition 41, The Babcock & Wilcox Company, 2005.

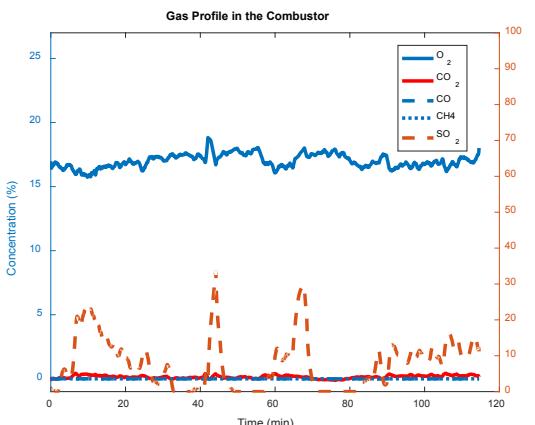
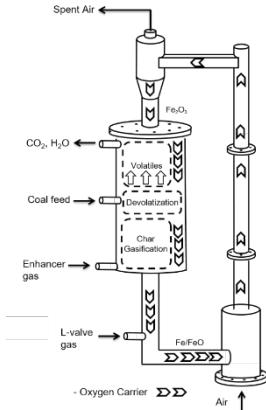
Environmental

▶ Split backpass issues

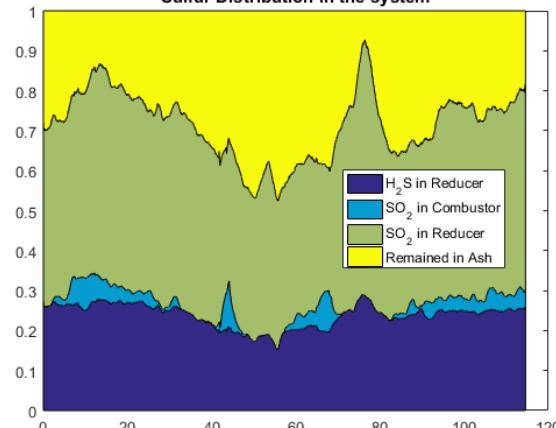
- CO₂ for baghouse cleaning – pulse jet or reverse flow – not chemical looping specific
- Strict emission limits for pipeline quality CO₂
- Wet scrubber performance with CO₂-rich flue gas
- SO₂ and H₂S removal

▶ Permitting

- Pilot facility demonstrated emissions for permit application
- Waste disposal of metal oxide
- CO₂ credits???
 - Sequestration
 - Beneficial use



Exhibit 2-1 CO₂ Stream Compositions Recommended Limits

Component	Unit (Max unless otherwise noted)	Carbon Steel Pipeline		Enhanced Oil Recovery		Saline Reservoir Sequestration		Saline Reservoir CO ₂ & H ₂ S Co-sequestration		Venting Concerns (Section 3.0)
		Conceptual Design	Range in Literature	Conceptual Design	Range in Literature	Conceptual Design	Range in Literature	Conceptual Design	Range in Literature	
CO ₂	vol%	95	90-99.8	95	90-99.8	95	90-99.8	95	20 – 99.8	Yes-IDLH 40,000 ppmv
H ₂ O	ppm _{wt}	300	20 - 650	300	20 - 650	300	20 - 650	300	20 - 650	
N ₂	vol%	4	0.01 - 7	1	0.01 - 2	4	0.01 - 7	4	0.01 - 7	
O ₂	vol%	4	0.01 - 4	0.01	0.001 - 1.3	4	0.01 - 4	4	0.01 - 4	
Ar	vol%	4	0.01 - 4	1	0.01 - 1	4	0.01 - 4	4	0.01 - 4	
CH ₄	vol%	4	0.01 - 4	1	0.01 - 2	4	0.01 - 4	4	0.01 - 4	Yes-Asphyxiate, Explosive
H ₂	vol%	4	0.01 - 4	1	0.01 - 1	4	0.01 - 4	4	0.02 - 4	Yes-Asphyxiate, Explosive
CO	ppm _v	35	10 - 5000	35	10 - 5000	35	10 - 5000	35	10 - 5000	Yes-IDLH 1,200 ppmv
H ₂ S	vol%	0.01	0.002 – 1.3	0.01	0.002 – 1.3	0.01	0.002 – 1.3	75	10 - 77	Yes-IDLH 100 ppmv
SO ₂	ppm _v	100	10 - 50000	100	10 - 50000	100	10 - 50000	100	10 - 50000	Yes-IDLH 100 ppmv
NO _x	ppm _v	100	20 - 2500	100	20 - 2500	100	20 - 2500	100	20 - 2500	Yes-IDLH NO-100 ppmv, NO ₂ - 200 ppmv


Source: "QGESS: CO2 Impurity Design Parameters", NETL August 2013, DOE/NETL-341/011212

Fate of Sulfur: Injection of high sulfur coal

25 kW_{th} Sub-Pilot Test Unit

Sulfur Distribution in the system

- >95% sulfur capture efficiency
- 1.2 lb SO₂/MW_{gross} from spent air
- Meet EPA's sulfur regulation for new power plants
- Cost saving in desulfurization unit on the combustor

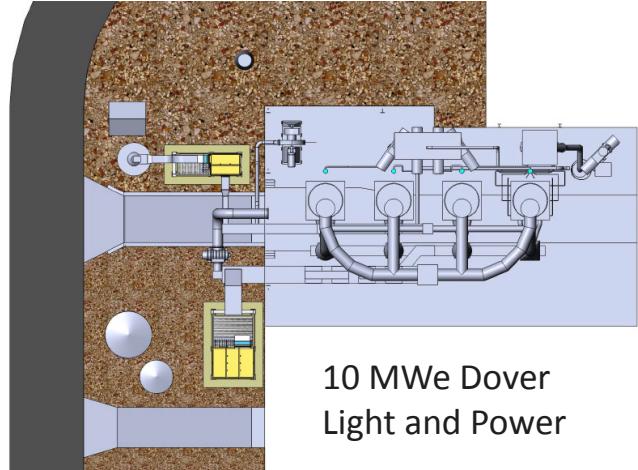
C	H	N	S	O	Ash
71.80	4.22	1.24	1.27	14.02	7.45

Chung, C., Pottimurthy, Y., Tong, A. Applied Energy Journal, 2017

Sparing Philosophy

- **Single vs. multiple module capacity**

- Standalone plant
- Coupled capacity


- **Fuel preparation system capacity**

- **Redundant feedwater and recirculation pumps**

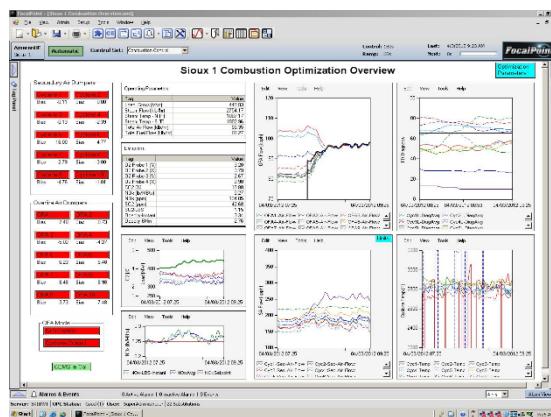
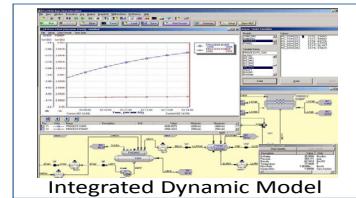
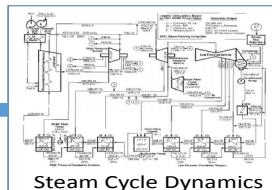
- **Instrumentation**

- **Environmental equipment**

- No redundancy in wet scrubber
- Spare baghouse modules

10 MWe Dover
Light and Power

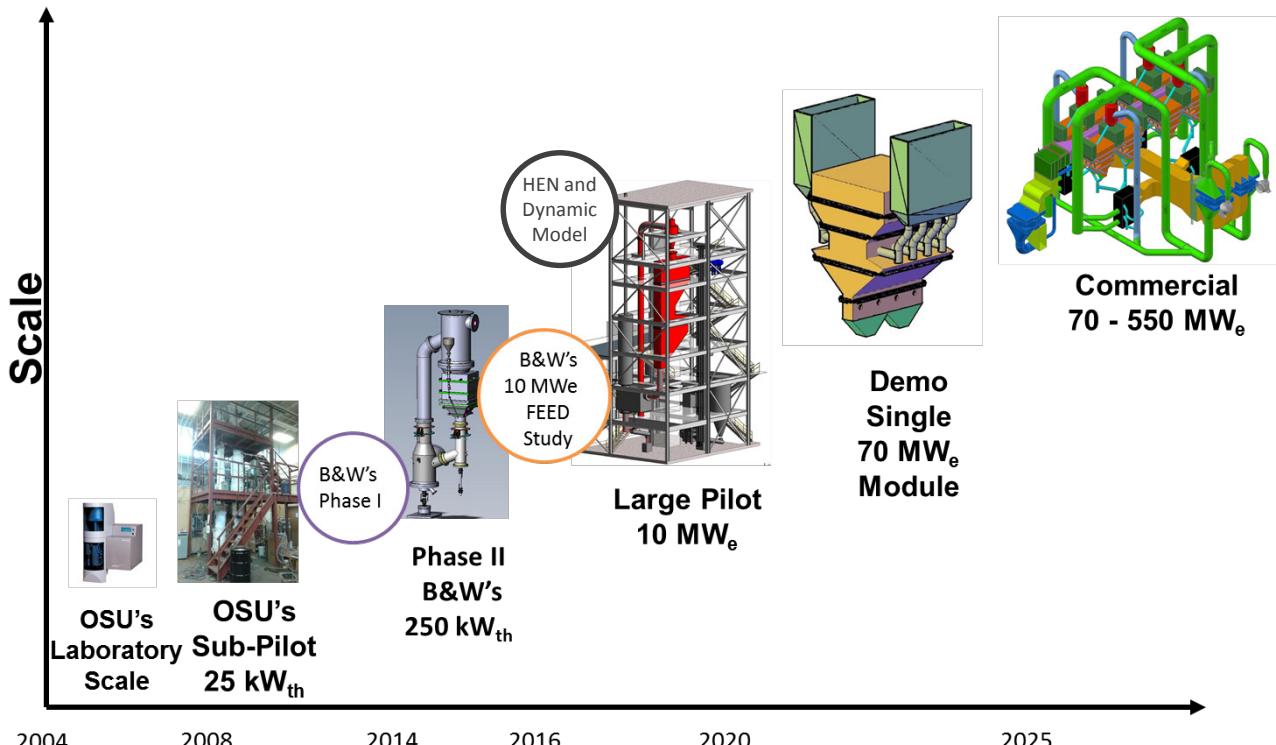
550 MWe Concept




Operation

► Start-up of Modular Reactors

- Start-up burner capacity
- Auxiliary circulation pumps
- Rapid start-up vs baseload

► Transient response


- Long transient response due to inventory of metal oxide (time constants)
- Impact of fuel variability on steam quality
- Shutdown, trip, black plant trip
- ASPEN or ProTRAX dynamic modeling
- Rules-based optimizer or neural net

Safety

- **Hazard Design Analysis and Hazardous Operation Analysis (HAZOP)**
- **Area Classification**
 - Combustible mixtures (Class I Div II Classification)
 - Hydrogen
 - Hydrogen sulfide
- **Pressurized operation for gasification and reforming applications**
- **Metal oxide components**
- **Hazardous waste – exothermic reaction of metal oxide in air**

Commercialization Pathway

Conclusions

- Timing is right to consider scale-up issues.
- Need to consider scale-up in the design of sub-pilot facilities and test conditions – design test matrices that span operating space and provide intrinsic design data.
- Current pilot-scale facilities have many hours of operation but lack thermal integration and heat recovery.
- Start-up, transient operation (e.g., load following), shutdown and black plant trip scenarios introduce additional complexity in the design.
- As a community, success for one is success for all!!!!

Acknowledgments

This presentation is based upon work supported by the Department of Energy under the Awards: [DE-FE0009761](#), [DE-FE0026334](#), [DE-FE0029093](#), [DE-FE0031582](#) and the Ohio Development Services Agency under the Awards: [OER-CDO-D-15-17](#) and [OER-CDO-D-17-03](#).

DISCLAIMER

The Babcock & Wilcox Company (B&W) assumes no liability or responsibility with respect to the use of, or for damages resulting from the use of, any information, methods, processes, or recommendations provided in this presentation. B&W expressly excludes and disclaims any and all warranties, whether expressed or implied, which might arise or apply under law or equity or custom or usage of trade, including, without limitation, any warranties of merchantability and/or fitness for a particular or intended purpose.