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Overview

» Purpose

* Bench-scale and pilot-scale demonstrations have significantly advanced chemical looping
technology

* Intermediate-scale demonstrations must bridge technology gap and incorporate features of
commercial-scale units

* Active applications of chemical looping applications growing

» Goal of Presentation
* Provide non-technology specific discussion of scale-up considerations and design issues.
* Focus on power as most complicated implementation

» Objectives
* Particle manufacture
* Reactor scale-up
* Thermal integration
* Environmental
* Sparing philosophy
* Operation
* Safety




Particle Manufacture Scale-up
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Reactor Scale-up

» Surface-to-volume ratio
* Refractory-lined, electrically heated
* Membrane wall

» Feed point spacing — unit cell
* Fuel
* Metal Oxide

» Matching air/fuel distribution
and kinetics to lateral and
vertical mixing rates

* Multiphase computational fluid
dynamic models (MFiX, Barracuda®
and Fluent) provide effective design
tool

* Intrinsic kinetic and mixing data from MeO /
laboratory and sub-pilot facilities K
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Thermal Integration — High-Grade Heat Recovery

»Steam Cycle

* Heat recovery schemes
* Pinch analysis - ASPEN Energy
Analyzer module
* Metal temperatures

 Sufficient cooling during start-up
or part-load

* Gas tempering with recycle
* Attemperator sprays

* Steam separation
(subcritical) or once-through
design (supercritical

* High temperature valves

Fly Ash and Carrier

Particle Fines.




Thermal Integration
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Thermal Integration — Low-Grade Heat Recovery

» Mismatch between reducer
and combustor exhaust gas

» Air Heaters
* Coal dryer

* Pulverizer

» Air heater for combustion air
— regenerative design

» Gas heater for recycle CO, —
tubular design???

Steam: its generation and use edition 41, The Babcock
& Wilcox Company, 2005. B:w




Environmental

»  Split backpass issues
¢ CO, for baghouse cleaning — pulse
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Fate of Sulfur: Injection of high sulfur coal
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Sparing Philosophy

» Single vs. multiple module
capacity
* Standalone plant

* Coupled capacity

» Fuel preparation system
capacity

10 MWe Dover
» Redundant feedwater and Light and Power

recirculation pumps
» Instrumentation
» Environmental equipment

* No redundancy in wet scrubber
 Spare baghouse modules



Operation

» Start-up of Modular Reactors
* Start-up burner capacity
* Auxiliary circulation pumps

* Rapid start-up vs baseload

» Transient response

* Long transient response due to
inventory of metal oxide (time
constants)

* Impact of fuel variability on steam
quality
* Shutdown, trip, black plant trip

* ASPEN or ProTRAX dynamic
modeling

* Rules-based optimizer or neural
net
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Safety

» Hazard Design Analysis and Hazardous Operation
Analysis (HAZOP)

» Area Classification

* Combustible mixtures (Class | Div Il Classification)
* Hydrogen

* Hydrogen sulfide

» Pressurized operation for gasification and reforming
applications

» Metal oxide components

» Hazardous waste — exothermic reaction of metal
oxide in air
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Commercialization Pathway
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Conclusions

» Timing is right to consider scale-up
issues.

» Need to consider scale-up in the
design of sub-pilot facilities and test
conditions — design test matrices that
span operating space and provide
intrinsic design data.

» Current pilot-scale facilities have
many hours of operation but lack
thermal integration and heat
recovery.

» Start-up, transient operation (e.g.,
load following), shutdown and black
plant trip scenarios introduce
additional complexity in the design.

» As a community, success for one is
success for allllll
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DISCLAIMER

The Babcock & Wilcox Company (B&W) assumes no liability or responsibility with respect to the use of, or
for damages resulting from the use of, any information, methods, processes, or recommendations provided
in this presentation. B&W expressly excludes and disclaims any and all warranties, whether expressed or
implied, which might arise or apply under law or equity or custom or usage of trade, including, without
limitation, any warranties of merchantability and/or fitness for a particular or intended purpose.
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