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Abstract

23Na NMR spin lattice relaxation times, Ty, and central linewidths were obtained for
yNazS+(1-y)[xSiS2+(1-x)PSs/2] glassy solid electrolytes for two series of glasses, y = 0.5
and 0.67, and x = 0.1, 0.3, 0.5, 0.7, and 0.9. No pronounced mixed glass former effect in
the activation energy for T; relaxation was observed within experimental uncertainty
for either series of glasses. DC Na* ion conductivity values calculated using NMR-
derived correlation times, an available site coordination number z = 3 around the Na*
ions, and an energy cutoff determined from the critical percolation threshold, were in
agreement with the increasing trend in the experimental values for the y = 0.67 glasses.
Using the same model, the conductivity values were calculated for the y = 0.50 glasses,
which have as yet to be measured, and these revealed a decreasing conductivity as x
increased. Energy barriers to sodium motion were calculated using the Anderson-
Stuart model for the y = 0.67 sample, and the results suggested that the energy barriers
as a function of composition are strongly influenced by the dielectric constant of these
glasses. Sodium NMR second moment measurements show sodium-sodium separation
distances decreasing by 6.5% across the full composition range of the glassy solid

electolytes.



L. Introduction

Ionic conduction in glassy materials is of considerable scientific and technological
interest [1]. In particular, sodium-based glasses have promise as solid-state electrolytes,
and may result in lower cost batteries capable of high energy density, long cycle life, and
safer operation. Given the ready availability of sodium in the oceans and in the earth’s
crust, rechargeable solid-state sodium batteries based upon fast sodium-ion conducting
glassy solid electrolytes hold promise for providing low cost stationary storage of electric

energy generated by solar and wind power [2-4].

In this investigation, we focus on the very promising ternary glass systems [5-11].
These glasses, represented as yM2X+(1-y)[xA+(1-x)B], consist of two glass network
forming materials (A and B), and the network modifier component M2X (M=Li, Na and X =0,
S) added to give rise to ionic conduction. When the modifier is held constant with fixed
mole fraction y, increasing x increases the concentration of glass former A while reducing
that of B. The mixed glass former effect (MGFE) is observed when there is a non-linear,
non-additive change in the physical properties observed across the glass system, x = 0 to x
= 1. By mixing glass formers such as B203 and P20s with modifying alkali oxide such as
Na;O0, significant nonlinear variations of physical properties (electrical, thermal,
mechanical) are often found as a function of the mixed glass former composition, x (Ref.
[8]). A positive MGFE occurs when these compositional changes improve the properties of
the glass needed for conduction and has been seen in the Naz0 + B203 + P05 (NBPO)
system [8,12]. A negative MGFE appears to be less common in these systems, but has been

seen in the Naz0 + SiOz + B203 (NBSO) system [10]. The short-range order structures



formed and their connections to the physical properties as a function of the mixed glass
former ratios are of considerable interest in understanding the origins of these positive and
negative MGFEs. Therefore, in order to understand the origin, it is important to investigate

the physical properties of the mixed glass former systems in detail.

Nuclear magnetic resonance (NMR) is a powerful experimental tool for extracting
microscopic information at the individual nuclear sites within crystalline and amorphous
materials [13-16]. The technique has been applied to many mixed glass former systems and
has played a significant role in elucidating their microscopic physical characters.
Considerable literature exists on the application of NMR to ionic conductors in general [16],
and sodium-based glasses in particular [10,17,18]. The variation of the NMR spectrum with
temperature can yield dynamic information about a specific nuclear isotope, and the
nuclear relaxation times probe nuclear dynamics over frequencies ranging from tens of kHz
to tens of MHz. Careful measurements and analysis of the mobile ion spin lattice relaxation
time using low frequency NMR techniques can yield significant understanding of the
conductivity controlling activation energies for cation jumping events in glasses, see for

example references [10,16,19-25].

In previous NMR studies on Li-ion conducting glasses [22,23,26-28], the
temperature dependence of the NMR spin-lattice relaxation time (T1) and DC conductivities
do not follow simple Arrhenius behavior. The first investigations were motivated by the
need to explain non-Arrhenius behavior in NMR and conductivity data, as well as to
account for discrepancies in the NMR- and conductivity-determined activation energies to

ionic motion [23,26]. It was found that the non-Arrhenius behavior could be addressed



using two different methods: distributions of energy barriers [22,23,27] or non-
exponential correlation functions. These authors found, however, that—all other factors
being the same—using a distribution of activation energies (DAEs) was often preferable for
several reasons [27]. First, it treated both the NMR and conductivity data within a single
formalism. Second, it was naturally identified with the glassy state and third, it could be
readily adapted to multiple-ion dynamics, where one population of ions exhibits markedly
different dynamical behavior than another [28]. Further, discrepancies between NMR- and
conductivity-derived energy distributions can be resolved by noting that while NMR should
probe all ions—both mobile and immobile—conductivity detects only the mobile ones that
generate a measurable current in response to the applied voltage, and hence samples a
subset of the activation energies. For example, in many glassy solid electrolytes, lower
activation energies have been reported for the DC conductivity data than the NMR data.
This has been explained by a percolation model, in which ions in wells deeper than a
percolation energy threshold cannot participate in long-range motion, but do participate in

spin relaxation [22,23].

In sodium oxide glasses, 23Na T studies of the mobile Na* ion dynamics have
focused on the considerably easier to prepare and handle, but significantly lower Na* ion
conducting NBPO and NBSO oxide glasses [10]. The origins of the MGFE were probed with
a variety of theoretical and experimental methods techniques. This work yielded
significant insights into how the concentration of short range order structures in those

systems with different Coulombic charges-trapping capabilities leads to the MGFE.



Though instructive, these oxide glassy solid electolytes have room temperature
conductivities unsuitably low for energy storage applications, typically < 10-8 (QQcm)-1 at 25
°C and far below benchmark values of 10-# (QQcm)-1 often thought required for application
in solid-state batteries. One well-known option for improving the conductivity is to study
the sulfide analogs of these systems. It was shown some time ago[29] that while a simple
alkali oxide doped oxide glass such as Naz0 + SiOz has a room temperature conductivity of
~ 109 (Qcm)-1, the sulfide analogue NazS + SiSz can have a room temperature conductivity
some 10,000-fold higher at ~ 10-> (QQcm)-1. While still much lower than typical organic
liquid electrolytes at 10-2 (Q2cm)-1, these conductivities make these sulfide glasses quite
attractive and they are now the subject of a very active field of research. For these reasons,
we have long studied the corresponding sulfide analogues of these common oxide glasses
[7,9,19,28,30-35]. A unique challenge of studying these systems is that the highestion
conductivity is most commonly observed at the highest alkali sulfide content.
Correspondingly, this is also at the lowest glass former content and likewise, typically, at
the poorest glass forming ability. Hence, just as the glassy solid electrolyte becomes
sufficiently conductive due to the increased alkali sulfide content, these compositions also
require increasingly rapid cooling rates to reach the glassy state without the presence of

(typically) conductivity lowering crystalline phases.

In our studies, we have observed however, that by mixing the glass formers in these
systems the entropy of the liquid is significantly increased while presumably decreasing
the liquidus temperatures through the formation of eutectics in the compositional phase

field. These effects in turn create the observation that these glasses can be quite strongly



glass forming, requiring no more than free-cooling to reach the glassy state without the
observable presence of any significant crystalline or polycrystalline phases. Among our

many studies, this is the case of the system we report on here.

The macroscopic physical properties of yNazS + (1-y)[xSiS2+(1-x)PSs,2] for the two
series of glasses, y = 0.5 and 0.67, such as the distribution of short range order structures
with composition x [36], ionic conductivity [37], glass transition temperature [36,37],
molar volume [36,37], and density have been reported recently [36,37]. But, there is no
report on these system yet of the dynamics of the Na* cations as measured by NMR. In this
paper, we have carried out 23Na NMR measurements, for two series of glasses, y = 0.5 and
0.67, with x = 0.1, 0.3, 0.5, 0.7, and 0.9 to investigate the Na* ion dynamics from a
microscopic point of view. We have kept the number of glass formers constant in this

system by using PSs/; instead of the more common P2Ss [30].

Based on NMR data, the DAEs as a function of composition were determined. In
addition, DC conductivity values were calculated using NMR-derived correlation times and
percolation theory, and were compared with available experimental values for y = 0.67.
From this, a Na* ion dynamics model was created to predict DC conductivities for the as yet
unmeasured y = 0.50 system, where rapid crystallization on cooling has frustrated the
formation of amorphous samples large enough for conductivity measurements. Further, energy
barriers were analyzed using the Anderson-Stuart model [30,38], and the dependence on
key parameters investigated. Finally, sodium ion clustering was investigated by NMR

second moment measurements as a function of sample composition.



II. Experimental Methods

Glassy solid electrolytes for y = 0.50 and 0.67 and x = 0.1, 0.3, 0.5, and 0.9 were
prepared as described elsewhere [36,37,39]. Powder XRD and SEM EDS compositional
analyses wereperformed on representative samples in this series, and it was found that all
samples tested were X-ray amorphous and their compositions were as batched to within a
few percent. Samples for NMR were flame sealed in thin-walled quartz tubes under 0.16
atm of helium gas.

The main challenge in this work was to extract motional information about the
sodium ion by changing temperature over a wide enough range to probe sufficient change
in the correlation times, but without exceeding the glass transition temperature, T, and

thus altering the structure of the glass [10].

NMR measurements were performed on 23Na (nuclear spin [=3/2, gyromagnetic
ratio y/2m=11.2653 MHz/T) by using a homemade phase-coherent spin-echo pulse
spectrometer from 4.2 K to just below the T of the samples, ~500 K. The 22Na NMR
spectra were obtained either by sweeping the external magnetic field Bo at a fixed Larmor
frequency of v, = 83.45 MHz or by Fourier transform of the NMR echo signals at a
constant magnetic field of Bo =7.41 T. The 23Na spin-lattice relaxation rates, R1=1/Tj,
were measured by the saturation recovery method [40]. The 23Na rigid-lattice second
moment M due to the magnetic dipole-dipole interaction, was obtained following the

methods described in Refs. [18,41]. Following this method, spin-echo measurements were

performed using the Hahn spin echo sequence ( g — T —m, — T — echo ), taking care to
X

irradiate only the central line. The duration of the , pulse was 10-14 ps. As will be shown



in the next section, because we found that detectable sodium ionic motion ceased for all
samples at 150 K and below, a temperature of 100 K was deemed suitable for all

subsequent rigid lattice M2 measurements.

III. Results
A. 23Na NMR spectrum

The typical spectrum for a nucleus with spin 1=3/2 with Zeeman and quadrupolar

interactions can be described by a nuclear spin Hamiltonian [13,14]
H=H, +H,+H, (D

where H, =—yhByl, is the interaction of the nuclear spin with the external magnetic field
By, H, = %[(C&IZ2 —1%)+(£)(17 +1?)] is the electric quadrupole interaction, and H, is
the magnetic dipole-dipole interaction between nuclear spins. 7 is written in principal

axis system (PAS) of the electric field gradient Vi, The PAS axes are defined such that

V,,| =Ny |2 Ny | . Here eQ is the quadrupole moment of the 23Na nucleus, eq =|V,, | , the
_ 3e2qQ _ Vi Wy
quadrupole frequency v, = TIETE and asymmetry parameter 7 = S

When the Zeeman interaction is greater than the quadrupolar interaction, this
Hamiltonian produces a spectrum with a sharp central transition line (I;=-1/2< 1/2)
flanked by one satellite peak on either side (I,=1/2<> 3/2 and -1/2< -3/2). Since the

samples are in the form of a powder, the spectrum is an NMR powder pattern [42]. Figure



1 shows the typical 23Na spectrum for the satellite lines observed at 4.2 Kin the y = 0.67

and x = 0.1 powder sample.

T T T T T
400kHz

T=42K
M M’M v,= 83.48 MHz

Spin echo intensity (a.u.)

FIGURE 1. Field swept 23Na spectra for 0.67Na2S+0.33[xSiS2+(1-x)PSs/2] glasses x = 0.1,
0.5, and 0.9. Measurements (represented as gray lines) were performed at T=4.2 Kand v,
=83.48 MHz. Due to the narrowness of the central line compared to that of the satellite
peaks, the field sweep was not performed over the central line region. Red solid lines are
simulations of the first order electric quadrupole powder patterns as described in the text
for a Gaussian distribution of parameters v, and . Results are listed in Table 1. The green

curve shows a simulation of powder pattern with a fixed v, and a fixed n = 0 without any

distributions. The blue curve represents a simulated powder pattern with a Gaussian
distribution in vyand no distribution in 7.

The observed satellite lines are too broad to be explained by a single value of v, and 7 as

shown in Fig. 1, where the green curve represents a simulated powder pattern f(v,,n)
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for vy = 0.4 MHz and 1 = 0, using the well-known quadrupolar powder pattern line shape
given in [42]. A powder pattern described by a single v, and n would suggest a well

defined local environment for the Na, as would be expected for a crystalline powder, but
distributions of these quantities would be expected for amorphous samples [16]. One may

model distributions in the local environments by creating a weighted sum of powder

patterns » " g,(v,)d,(17) f (v4.7), where g,(v,) and g,() are distributions of v, and 7.

vo 1
Using only a distribution in v, does not suffice, as seen by the blue curve in Fig. 1, where a

Gaussian distribution with mean v, = 0.4 and standard deviation o, = 0.2 MHz was used,

withn = 0. In order to reproduce the broad satellite line, it is necessary to use two

independent Gaussian distributions in v, and n, with vy = 0.9 MHz, o,, = 0.2 MHz, n=0.2

and o,=0.1, as shown at the bottom of Fig. 1 by the red curve. These results indicate that

the local atomic-level environment around the Na* ions are highly inhomogeneous in these

glass compositions.

Similar broad satellite lines are observed in all mixed glass former compounds with
y = 0.67 studied here. The typical spectra observed for three of the five samples across the
compositional range of the system studied (x =0.1, 0.5, and 0.9) are shown in Fig. 1,
together with the simulated spectra whose fitting parameters are summarized in Table 1.

As shown in Table 1, distributions of v, and 7 are not significantly different across the glass

series.
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vo (MHZz) n
Sample

meanSD meanSD
x=0.1 0.9+0.2 0.2+0.1
x=0.5 0.9+0.2 0.320.1
x=0.9 0.9+0.2 0.28+0.09

Table 1. 23Na electric quadrupole parameters vg and n for 0.67Na>S+0.33[xSiS>+(1-
x)PSs/2] glasses obtained from the simulated powder patterns of Fig. 1 as described in the
text. A Gaussian distribution of both vg and n was assumed, and is given in the table as the
mean * standard deviation.

Similar, but slightly broader, 23Na NMR satellite lines have also been observed in the
y = 0.50 series, as shown in Fig. 2 where the spectrum for x = 0.1 glass measured at 4.2 K is
shown as an example. The broadening due to the distributions results in an indistinct
quadrupole shoulder, making it difficult to find unique parameter values. However, the
values vy = (1.1 £ 0.3) MHz 1 =(0.3 £ 0.1) reasonably reproduced the observed spectrum
as shown by the black curve, indicating that the values of v, and 7 are not significantly
different from those for the y = 0.67 samples. For simplicity, then, we took the values for
the two systems y = 0.50 and y = 0.67 to be the same: v, = (0.9 £ 0.2) MHzandn =0.3

0.1.
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FIGURE 2. Field-swept 23Na spin-echo amplitude versus magnetic field scans for

0.50NazS+0.50[xSiS2+(1-x)PSs/2] glass x = 0.1. Due to the narrowness of the central line
compared to that of the satellite peaks, the field sweep was not performed over the central
line region. Solid lines are simulations of the first order electric quadrupole powder
patterns as described in the text for a Gaussian distribution of parameters v and 1. Lack of
a clear quadrupole shoulder complicated the determination of the fit parameters. The
simulation shown here is for v, = (1.1 £ 0.3) MHzandn = 0.3 £ 0.1.

Figure 3 shows the 22Na NMR central line obtained from the Fourier transform of the half
spin-echo NMR signal, for the y=0.67, x = 0.1 glass at different temperatures. As can be
seen, the full-width at half maximum (FWHM) of the central line depends on temperature.
The FWHM is nearly constant at low temperature, then starts to decrease around 150 - 200
K with increasing temperature and then levels off at higher temperatures, as summarized

in Fig. 4(a) forall y = 0.67 series samples studied here.
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FIGURE 3. Typical temperature dependence of 23Na NMR central lines for
0.67NazS+0.33[xSiS2+(1-x)PSs/2] glass for x=0.1. The figure illustrates the motional
narrowing of the NMR line with increasing temperature.

The temperature dependence of the FWHM provides information about the time
scale of nuclear motion. The temperature independent behavior at low temperatures is due
to the freezing of the ionic motion, and the reduction in the FWHM occurs when the
fluctuation frequency of the local field approaches the rigid-lattice central line width, on the
order of 10 kHz. With further increase in the frequency, the NMR central line is
completely narrowed, giving rise to a lower constant value of FWHM observed at higher

temperature.

14



Na central line FWHM (Hz)

6000

4000

2000

(a) y=0.67

(b) y=0.50

6000

4000

2000

6000

4000

2000

6000

4000

2000

6000

4000

2000

6000

4000

2000

x=0.5

6000

4000

2000

Na central line FWHM (Hz)

6000

4000

2000

6000

4000

2000

6000

4000

2000

0
0 50 100 150 200 250 300 350 400 450

Temperature (K)

15

0
0 50 100 150 200 250 300 350 400 450

Temperature (K)

FIGURE 4. Temperature dependence of FWHM for the 23Na NMR central line for yNaS+(1-
y)[xSiS2+(1-x)PSs,2] glassy solid electrolytes for two series of glasses with x = 0.1, 0.3, 0.5,
0.7,and 0.9. (a) y = 0.67. (b) y = 0.5. The solid lines were determined by simultaneously
fitting line width and R: data as described in the text assuming a Gaussian distribution of
activation barriers.

In the case of the y = 0.5 series samples, similar temperature dependence of the
FWHM is observed as shown in Fig. 4(b). However, the raw FWHM line widths increased

as temperature decreased, indicating the presence of a paramagnetic impurity. Such



increases of FWHM at low temperature were not observed in the y = 0.67 series of samples.
The effect was eliminated by fitting raw FWHM line widths in the temperature range below
where motional effects become appreciable, 50-150 K, to a Curie model y = A+B/T. The
paramagnetic contribution B/T was then subtracted from the raw FWHM at all
temperatures. These values are given in Table 2, and a discussion of the contribution this
makes to nuclear relaxation is given in Section V. We believe the paramagnetic impurity to
be Fe which arises from the steel container used to mill the samples to a fine powder
required for the NMR measurements. We are repeating some of these measurements using

samples prepared in ceramic containers to investigate this hypothesis.

Hioc (T) at
X B (HzK) 300 K Ripmax (51)
0.1 2.6 x104 5.1x10¢ 0.000765
0.3 2.5x105 5.0x10-5 0.074156
0.5 5.1 x104 1.0x10-5 0.003013
0.7 3.6 x104 7.1x106 0.001497
0.9 1.6 x10° 3.2x10> 0.031407

Table 2. 23Na central line FWHM paramagnetic contribution parameter B for
0.50NazS+0.50[xSiS2+(1-x)PSs/2] glasses. The estimated local field Hy, due to the
paramagnetic ion, and the estimated maximum contribution to the nuclear spin-lattice
relaxation Ry are described in Section V.
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B. 23Na spin-lattice relaxation

Further information about the time scale of nuclear motion may be obtained from
temperature dependence of the spin-lattice relaxation rate, R1 = 1/T1. The nuclear spin-
lattice relaxation time T of the 23Na central transition (-2« %2) were obtained by the
saturation recovery method [40]. In crystalline materials for nucleus with [ = 3/2, this
selective irradiation of the central line combined with a well-defined transition probability
resulting from the time-dependent interaction as the nucleus hops through the lattice
produces a double-exponential behavior [43]. However, in glassy materials a broad
distribution of nuclear interactions results in a distribution of nuclear relaxation times, and
may be modeled by a stretched exponential function. The normalized longitudinal

magnetization 1 — M,(t)/M,, was fit to a stretched exponential function [1,10]

B
1-M,()/M,, =exp —(TLJ @)

The quantity 3 characterizes the distribution of interaction strengths throughout the
sample. Single relaxation time behavior is recovered in T1 for = 1. We initially performed
the fits using Eqn. (2) and allowed both 3 and T; to be adjustable parameters. We chose to
average 3 for all temperatures, and then refit the data with f fixed at the average value over
all temperature for each sample. This method inherently assumes that any temperature

dependence of 3 over the temperature range studied is small. We have studied other

17



systems, Li glasses in particular, where f3 is strongly temperature dependent and the

simplification used here is not valid [27].

Figure 5 shows the normalized longitudinal magnetization of the 23Na central
line versus time between saturation and the read pulse for the x = 0.1 sample at several

temperatures.

0.01

O.I02
Time (s)

FIGURE 5. Example spin-lattice relaxation data of the 23Na central line for
0.67NazS+0.33[xSiS2+(1-x)PSs,2] glasses, where x = 0.1. The method for estimating the
stretched exponential parameter f over the temperature range studied is described in the
text. For this sample, f=0.82+ 0.02, and the fits using this value are shown as solid lines.

Solid lines represent fits to Eqn. (2) with 3 fixed to the average value given in Fig. 6 for

each sample.
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FIGURE 6. Stretched exponential parameter f determined from the 23Na central lines
nuclear spin-lattice relaxation of yNazS+(1-y)[xSiS2+(1-x)PSs,2] glasses for y = 0.50, 0.67
and x=0.1, 0.3, 0.5, 0.7, and 0.9. These values were extracted from the magnetization
recovery data (Fig. 5), and described in the text. Error bars are symmetric, but only one
side was drawn for each data point to simplify the graph.

The estimated R1 values versus 1000/T are plotted in Figs. 7(a) and 7(b). Theory predicts
that R1 becomes a maximum at the temperature where the inverse correlation time for

nuclear motion 1/t is on the order of the Larmor frequency, ;.
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FIGURE 7. Temperature dependence of 23Na spin-lattice relaxation rate Ri for
yNazS+(1-y)[xSiS2+(1-x)PSs,2] glassy solid electrolytes for two series of glasses with
x = 0.1, 0.3, 0.5, 0.7, and 0.9. (a) y = 0.67. (b) y = 0.5. The solid lines were
determined by simultaneously fitting line width and R; data as described in the text
assuming a Gaussian distribution of activation barriers. Error bars are within the
size of the marker.

As seen in Fig. 7, the maximum in Ri—expected for cross-over from slow-motion to a fast-
motion regime—could not be observed experimentally. This is due to the relatively low Ty
for all of these samples. The low Tgvalues of these glasses are consistent with the

presumed low liquidus (T1) temperatures for these compositions. T ~ (3/2)Tg is observed

2
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for nearly all glass forming liquids [44]. Thus, data are in the slow motion (frequency

dependent) regime for nuclear motion.

C. 23Na second moment

The rigid-lattice second moment M2, measured for experimental conditions in which
the ionic motion is frozen out, and in which the dominant interaction between nuclei is the
magnetic dipole-dipole interaction, was calculated by Van Vleck [14]. For quadrupolar
nuclei such as 23Na in glasses, modifications must be made. The key ideas are as follows.
The fluctuation of precession rates due to local field variations tend to reduce the spin-echo
amplitude. Homonuclear magnetic dipole-dipole and electric quadrupole interactions,
which are bilinear in I, are not refocused by the NMR pulse sequence, and lead to a
reduction in spin-echo amplitude [41]. By applying m pulses selectively to the central
transition (I,=-1/2« 74) for quadrupolar nuclei, the system can be made to act like a spin
Y2 system, and the spin-echo decay spectroscopy yields information specifically about the

magnetic dipole coupling [45]. The criterion for selective irradiation of the central line is

[ [>> M [ >> 1] 1o

 where ‘Hél)‘ and ‘Hg)‘ are the magnitudes of the first and

second order quadrupole contributions to the Hamiltonian,

H, ‘ is the magnitude of the
radio frequency 7 pulse used to flip the spins, and ‘HD‘ is the nuclear magnetic dipole-

dipole contribution. For these experiments,

H| 1 MHz (Table 1) and [H|,|H| 08 kHz
(Fig. 4). The z pulse durations were 7, =10-14 ps, resulting in a spectral width of
approximately 1/7_[] 70 kHz, thus fulfilling the selective irradiation criterion. Further, due

to a distribution of second moment values arising in many sodium compounds, it has been
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shown that the 23Na second moment Mz determined in the limit of short evolution times
yields experimental values consistent with theoretical ones where crystalline structure is

known [18,41].

1(27)

Figure 8 illustrates the method. The normalized spin-echo amplitude — versus
0
evolutions time 2t is shown, and was fit to
(2
(I 7) =exp (—%(ZT)ZJ 3)
0

for evolution times up to 2tmax .

D

T IINm B2 T T
1 8
2’[:max 1 ‘%
1 9 61
1.00 + 1 ujo 41
—
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= | 0 : :
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B=7.41T |
n
|
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FIGURE 8. Method for determining 23Na central line second moment in the limit of short
evolution times, illustrated for the 0.67NazS+0.33[xSiS2+(1-x)PSs,2] glass x=0.1. The
normalized spin-echo amplitude versus evolutions time 2t. is shown in the outer graph.

I (27)

The solid line shows a fit to the Gaussian curve - = exp(—%(h)zj from time 0 up to
0

2Tmax (dotted line). Mz was plotted as a function of 2Tmax (inset). A linear fit determined M;
in the limit of zero evolution time. In this case, M2=(7.5+ 0.1)x 10°rad?/s2.
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From this, M2 was determined as a function of 2tmax. As shown in the Fig. 8 inset, by
extrapolating to time 0, the Mz in the limit of short evolution times was determined. Itis

related to the Na-Na distances rij by [18,41,45]

2
Hy 432 -6
M, =0.9562| == h EI’-- 4
2 (472') 7/ - j ( )

V. Discussion
A. 23Na motional activation energies

The activation energies for 23Na motion may be obtained by performing
simultaneous fits to both the line width, FWHM, and relaxation rates, R1 (Ref.[10]). In this
treatment, the correlation time for nuclear motion was assumed to follow the Arrhenius

law

(M)=1, exp[%j (5)

B

where AEa is the activation energy for nuclear motion, and t« the correlation time at
infinite temperature. Following Ref. [10], T« was fixed at 10-13 s for all calculations. In our
many studies of these systems, we have observed that due to the disordered nature of the
short range order in these glasses, the energy environments around the mobile cations are

distributed and this leads to a DAEs for ion hopping events in these glasses [21,22]. A
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Gaussian distribution of activation energies has provided a good description of this

distribution and is used here. Itis given by

g(AE )=

p[%j ©)

2
20¢

1
o \2n

In the analysis, and consistent with our previous studies, both the mean barrier height for
nuclear motion AEa and the standard deviation of the energy barrier distribution og were
taken to be the only free-fit parameters. The central line width as a function of

temperature was modelled using the relation [10,13]
o0’ = jdAE g(AE) [5@%3 +3(5w§ — 5w;)>< tan™ (T(AE) 6w )} (7)
Vs
0

Here éw. and d&w? represent the low- and high-temperature values of the second moment

of the line width. Assuming the dominant interaction is the fluctuating nuclear quadrupole
interaction as the sodium hops through the glass, and assuming exponential correlation

times, theory gives the relaxation rate for the central line to be [10]

R =

4 2.2 2\ w
1_27vq (1+"_deAE g(AE)| — 4 —— (8)
T S5 3 )% 1+(rw, )" 1+(270,)

Note that the formula in Eq. (7) introduces no new fit parameters, since vq and ) are
already known. Using Eqns. (5-8) and the vq and 1 values of Table 1, for each sample
simultaneous fits of the central line width and 1/T1 data were performed, and are shown as

solid lines in Figs. 4 and 7.
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Several points may be noted. First, measurements reveal thatv, [ v,[J FWHM

consistent, and the dominant interaction is the nuclear quadrupole, consistent with the
original assumptions. For the y = 0.67 series of glasses, the model appears to adequately
describe both the FWHM and R1. The fit appears to be less good for the y = 0.50 series of
glasses, and, in particular, the x = 0.9 sample does not yield a fully narrowed 23Na line up to
Tg. We are continuing to investigate the source of this discrepancy. The paramagnetic
effects were subtracted out of the FWHM data and do not contribute to the R significantly
at high temperatures. This was verified by estimating the contribution to the relaxation
rate from magnetic impurities. The line broadening occurs due to a distribution of line
shifts from the interaction between the local field Hi. due to the paramagnetic ion and the

magnetic dipole moment of 23Na. This contribution to the line width and its connection to

the Curie paramagnetic fit parameter B may be expressed as ©H

loc

hB )
=—, where u is the
T
23Na nuclear magnetic dipole moment, h is Planck’s constant, and T is the Kelvin

temperature. From this H

loc

= h—_? was determined for T=300 K, and is listed in Table 2.

The paramagnetic contribution to relaxation for dilute impurity concentrations has been

described by R, =* <H 2

loc

>#2 [13,46-48] where z,is the electronic correlation
+(w.7,)

time arising from the paramagnetic impurity, and @, is the nuclear Larmor frequency. The

electronic correlation time is described by an Arrhenius relation with its own activation

energy, describing the tendency for molecular reorientation of the impurity ion [47]. The

2 2
: . . /4 < H loc >
maximum 23Na paramagnetic relaxation rate becomes R, ., = N and when
)
L
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evaluated for T=300 K is expected to give an upper limit on the relaxation rate due to the

paramagnetic impurity. From Table 2 the R, values for the y=0.50 samples are typically

three orders of magnitude smaller than the measured R; values at 300 K in Fig. 7(b). We
take this as a further indication that the dominant relaxation mechanism over the
temperature range we probed is quadrupole relaxation, and at these temperatures ignoring
the contribution from paramagnetic impurities is justied. Second, we noted that assuming a
distribution of activation energies was important to obtaining simultaneous fits to FWHM
and Ry data. Without this assumption, adequate fits could not be obtained. The average
barrier heights AE.: for the Gaussian distribution for all compositions studied are

summarized in Fig. 9.
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0.551 ? SRR
S PR
= N T
w” ’}”"‘3‘~——_§____
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FIGURE 9. 23Na average barrier energy AE,.;determined by NMR for yNaxS+(1-y)[xSiSz+(1-
x)PSs/2] glasses for y=0.50, 0.67 and x =0.1, 0.3, 0.5, 0.7, and 0.9. The values are the mean
values obtained from Gaussian distributions determined from fits using NMR data in Figs. 4
and 7 and the method described in the text. The error bars represent the uncertainty in the
mean value determined from the fit. The standard deviation of the Gaussian distributions is
not shown, but was o [1 0.10 eV. The dotted lines are guides for the eye.
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The distribution widths as measured by the standard deviation og were all within the range
(0.10+0.01) eV. Third, we tested other values of 1, specifically t» =10-14 s, but this resulted
in fits that deviated significantly from both datasets, and was rejected. Lastly, we checked
that the resulting values from the Arrhenius model and the AE,. values gave plausible
correlation times. The method of Bjokstam et al. [10,49] gives a correlation time estimate

of 7,,, = 0.3/ 6v,,, at the temperature where the line-width is év,,, = (év, + v _)/2. This
resulted in 7,,, =805 at 300 K for the x = 0.1 sample, which is on the same order of

magnitude as the 50 ps at 300 K from the Arrhenius model obtained from Eqn. (5) using
the value of AE,: for the x = 0.1 sample. Finally, the anomalous behavior of the y=0.50,
x=0.9 may be an indication that one or both of the assumptions regarding the DAE and the
nature of the relaxation mechanism are violated. Since the fit to the FWHM data appears to

underestimate the AE_, it is possible that this is in fact somewhat higher. This would

act?
accentuate the trend indicated in Fig. 9. However, further work is needed to settle this
quesiont. Overall, general agreement between the model and data are consistent with the
dominant 23Na relaxation mechanism being the quadrupole interaction, a Gaussian

distribution of activation energies, and T« = 10-13 s for nearly all samples studied.

B. Anderson-Stuart model for AEact

AEact values estimated from the FWHM and R; data are shown in shown Fig. 9. AEact
shows clear changes as the SiS; concentration x increases, although the changes are not

significant. For the y = 0.50 series, the activation energy increases, and for y = 0.67 it
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decreases. The dotted lines are unweighted parabolic fits to the data. These curves appear

very nearly linear, suggesting the MGFE is relatively weak in these systems.

In order to discuss the compositional dependence of AE,c: in more detail, we adopt
the Anderson-Stuart model [30,38]. According to this model, the activation energy is the
sum of a Coulombic contribution, AEc, arising from the electric interactions between the
mobile cation and the other ions in the glass, and a strain contribution, AEs, arising from
the lattice strain caused by the cations displacing the other network ions in the glass as

they move through the structure. The total activation energy is then:

AE,, = AE. +AE, 9)

Parameters necessary for calculating the Coulombic contribution to the activation

energy are indicated in Fig. 10.

FIGURE 10. Diagram of relevant quantities needed for estimating the Coulombic
contribution in the Anderson-Stuart model. The sodium and sulfur ionic radii are indicated,
as well as the average jump distance A from one sodium site to another. The shaded circle
indicates an unoccupied sodium site to which the sodium cation can jump.
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The Coulombic contribution is defined as the energy difference between the sulfur-sodium

interaction at ion separations of ry +r,, and r; +r,, +A/2 yielding [30]:

AE _kzZeet( 1 1 (10)
¢ £ +h, f+h,+A/2

o0

where k = Coulomb's constant, Zy, = sodium charge, Zs = sulfur charge, ry, =

sodium radius, rg¢ = sulfur radius, A = sodium cation separation, &, = dielectric constant.

The average sodium-sodium distance A may be estimated from the molar volume Vi, using

a simple cubic model by

(11)

where V,,, = molar volume, 2y = number of sodium per formula unit, and Ny, =

Avogadro’s number. The strain contribution to the activation energy is given by [50]
2
(rNa - rD) (12)

where the shear modulus G may be estimated by Gilman'’s expression [51]

3e?
Na +1s)a

G(x)= o (13)

_35(e,-1) M
&, +2 pN,

a (14)
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Here r, = doorway radius, the opening size available to the sodium ion for motion

through the glass; p = mass density; €, = permittivity of free space; M = molar mass.

The values used were: ry, = 1.02 A, = 1.84 A (Ref.[52]),and Zy, = +1, Zs =

-1, &w1p, M,p,V,, [37,39].

Fig. 11 shows the results of the model compared with AEq: determined from NMR

and conductivity measurements.
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FIGURE 11. 23Na energy barriers AE;; for 0.67Na2S+0.33[xSiS2+(1-x)PSs,2] glass
determined using sodium NMR measurements from this investigation, conductivity
measurements reported in Ref.[37], and the Anderson-Stuart model as calculated from Eqn.
(16), where a is an adjustable multiplicative constant for the Coulombic energy.

The sum of the Coulomb and strain energy terms AE,, = AE. + AE; is significantly and

systematically lower than the experimental values across the entire composition range.
This is not surprising, since the model includes only a single sodium-sulfur interaction. A

simple but revised model may be obtained by adjusting the Coulombic interaction by a
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multiplicative constant a, which here plays a role similar to the Madelung constant found in

crystalline systems [30]

*

AE;

aE, (15)

The adjusted total activation energy is

AE,, = AE_ +AE, (16)

*

Figure 11 shows AE_, calculated for a=2.2+0.1, and using this factor for all sample

act

*

compositions one finds that AE_, matches the data within three standard deviations for

act
most data points. We note that the value for the Madelung constant found here is similar to
the value reported in the y=0.5 germanium analog system, which uses a Ge-based glass
former rather than the Si-based former used here [30]. This may be interpreted then as the
correction factor for incorporating the full set of sodium-sulfur interaction of the glass

originally ignored in the simple model of Fig. 10.

Figure 12 (a) compares AE,, with experimental AE,, values obtained by DC

act

conductivity and NMR for the y=0.67 sample.
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FIGURE 12. (a) Detail of 23Na energy
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Note that AE_, is within three standard deviations for experimental data for all but one

act

*

sample composition, x = 0.3. Taking the view that AE,, and Eqn. (16) model the

experimental data reasonably well, Fig. 12(b) probes how variations in the only two
experimental parameters of the model, 1 and &, compare to variations in AE,_, . Ignoring
for the moment the values at x = 0.3, one sees that fluctuations in the dielectric constant

*

enmirror the changes in AE_, and are nearly 20 times larger than changes in 4 over the
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entire range of x. Thus, the energy barriers, and the conducting properties that result, are

driven strongly by the dielectric properties of the glass.
C. Percolation model and the Na* ion conductivity

Figure 13 shows the composition dependence of the Na* ion DC conductivity values

at 30 °C for the y=0.67 samples.
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FIGURE 13. DC conductivity for yNaS+(1-y)[xSiSz+(1-x)PSs/2] glass at 30 °C. The solid
line represents values calculated based on NMR data and the percolation theory model as
described in the text, and assuming a sodium coordination number of z=3 (red) and z=4
(green). (a) Values for y=0.50 sample. (b) Values for y=0.67 sample. The data points are
experimental values taken from Ref.[37]. (c) A schematic Gaussian DAE for sodium
coordination number z=3. The shaded area represents the fraction P of ions participating
in conduction at the percolation threshold. (d) A similar plot for z=4.
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These experimental values were taken from Ref.[37] for the y = 0.67 samples. So far, the
DC conductivity for the y = 0.5 series of glasses have not been measured, but will be

reported on in future publications in this series.

The DC conductivity may be estimated from NMR data using percolation theory
[21,23,27,53]. In this model, the glassy nature of the material provides a variety of
pathways for the sodium to move, each with a different AE value, representing the
relative difficulty of taking a given pathway. Mobile charge percolates through the network,
and below a critical fraction P of pathways, known as the critical percolation threshold, the
DC conductivity is zero [54]. The critical threshold is related to the number of sodium
nearest neighbor sites z by the empirically determined relation for regular 3-dimensional
lattices [54]

145
=

P (17)

This relationship is a near-invariant for percolation [54], and indicates that at the
percolation threshold the average cation site sees approximately zP [ 1.5 unblocked
pathways. In this model, pathways above activation energy threshold AE, are considered

blocked, and this threshold satifies [21]
P= [ g(AE)dAE. (18)

Thus, for a given z, one may determine P, and from the NMR-determined distribution g(AE),

AE, may be found. For this study, z is taken as a free parameter, and Fig. 13 (c ) and (d)
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show schematic DAE and AE), for z=3 and z=4. The effective time between cation hops

between sites is time average [21,23]
1 AE,
a (T)=—5 [ 7(AE)g(AE)dAE (19)
0

and is interpreted as the correlation time for the ions determining the DC current. The DC
conductivity for uncorrelated sodium jumps assuming equal jump distances A and a sodium
concentration C is given by [21,23]

_ CPe’A?

= -7 20
Toc 6kBTTavg (20)

Figure 13(b) shows o, determined using the percolation theory model for the y =
0.67 sample, for z=3 and z=4 (solid lines). Comparison with experimental values shows
general agreement with z in this range, but the scatter in the data does not allow clear
determination of a specific value. From percolation theory, one generally expects that the
activation energy found from NMR will be higher than that obtained by o,-.measurements.
This is due to the fact that only the lower energy pathways are explored for op., whereas
NMR simultaneously probes the dynamics of all sodium ions, whether they jump or not. Fig.
12 (a) shows that for the five compositions for which AEq. data exist for both methods,
three yielded AE,. values that were within 3 standard deviations of one another. One
possible explanation may be seen from Fig. 13 (c) and (d). From Eqns. (17) and (18) one

finds that for z=3, AE = AE,, —0.0420 where AEu: and o are the mean and standard

deviation of the NMR-determined activation energy distribution. Taking AE), as an estimate
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of the expected average activation energy from DC conductivity, this model predicts a
smaller AE,. As z gets larger, the difference between NMR- and DC conductivity-
determined values becomes more pronounced. The difference is within 1 error bar. For

z=4 the same analysis yields AE = AE,, —0.350; and the difference is within 3 error bars.

The percolation model therefore accounts for the DC conductivity values and the small
differences between the NMR- and conducitivity determined activation energies, and is

consistent with z=3-4.

In Fig. 13(a) we show the same model applied to the y = 0.50 system, and assume a
similar coordianation of the cation. The solid lines indicate calculated DC conductivity
values for z=3 and z=4 based on the NMR-determined DAE, and indicate a downward trend
with increasing x. This is consistent with a Ge analog of this system for which z=4 [30]. The

estimates here represent the first determination of conductivity for these samples.

D. Length scales from M; measurements

The length scale of the sodium-sodium separation was probed in two ways. From
Eqn. (11), the molar volume Vi, data and the stoichiometry of the glass, one can calculate a
separation distance that reflects an average cation separation across the sample. A more
refined method is obtained from Mz, which measures the strength of the homonuclear 23Na

magnetic dipole-dipole interaction. Assuming all the radii of the sodium coordination shells

scale by the same factor a so that rIJ =ar;

ij’

Eqn. (4) gives
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Figure 14 shows the 23Na second moments M; for y = 0.50 and 0.67 glass series

across the SiS; composition range x.

M, /10°(rad”/s?)
o
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FIGURE 14. Second moment of 23Na central line for yNa;S+(1-y)[xSiS2+(1-x)PSs,2] glasses
for y = 0.50, 0.67. Solid lines are guides for the eye.

Both data sets suggest a trend to larger Mz with larger x, indicating the sodium-sodium
distances are decreasing. Figure 15 shows the ratio of sodium-sodium distances estimated

using these two methods.
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FIGURE 15. Ratios of sodium-sodium distances for yNazS+(1-y)[xSiS2+(1-x)PSs,2] glasses.

The values are estimated two ways: using the Mz values of Fig. 14 and ratio calculated from
Eqn. (21), and using molar volume data and Eqn. (11). (a) For y=0.67, the ratio r, /r,_,

was calculated, the ratio relative to the sodium-sodium distance value for the x=0.1 sample.
(b) The ratio r,_,q /1,45 was calculated for each x value, comparing sodium-sodium

distance values for the 0.67 sample to the 0.50 sample.

Figure 15 (a) plots r, /r,_,, forthey=0.67 series of glasses as a function of x, comparing

distances for each composition x to that obtained for the x=0.1 sample. Both Mz and Vi,
methods show a trend to shorter sodium-sodium distances with increasing x. Atx=0.9,
the M; data reveal that the sodium-sodium distance is smaller than that at x = 0.1 by (6.5 =
0.5) %, as compared with the Vi, method which shows a reduction by (2.7 £ 0.7) %. Since

the distance obtain from Vi, represents an average over the entire sample, and that from M>
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from a probe of local sodium interactions, the discrepancy between the two is not

surprising. Figure 15 (b) shows r,4, /1, as a function of x, comparing the y = 0.67 with the

y = 0.50 series of sodium-sodium distances for each composition x. At each x, the increased

sodium concentration should result in a change in sodium distance. From the graph, one

. . I
sees that the volumetric data show a nearly constant ratio of -2~ = (91 + 1)% when taken
r0.50

across all compositions x. The smaller r,_, distances are consistent with the higher

sodium concentration y. There is no significant difference between this value and those
obtained from M; for the data available, suggesting that volume changes appear to account

for the changes in sodium-sodium distances with changing y.
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FIGURE 16. Second moment of 23Na central line versus sodium number density for
yNazS+(1-y)[xSiS2+(1-x)PSs/2] glasses, y = 0.50, 0.67. Solid line is a fit proportional to N2.
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Fig. 16 shows M versus sodium number density N. If the increase in number

density is associated with a homogeneous change in the Na-Na coordination shells r; =ar;

thoughout the structure, one expects from Eqn. (4) that M, oc N?[41]. A fit proportional to
N2 in Fig. 16 shows that the data is consistent with a homogeneous distribution. Only the

y=0.67, x=0.9 value shows a significant deviation above this line, suggesting that at higher

concentrations in this system there may be a tendency for sodium aggregation.

Conclusions

We performed a 23Na NMR study of the yNazS + (1-y)[xSiSz+(1-x)PSs/2] for y = 0.5
and 0.67, and x = 0.1, 0.3, 0.5, 0.7, and 0.9. Using 23Na central line widths as a function of
temperature, and 23Na central line relaxation as a function of temperature, a Gaussian DAEs
was found consistent with experimental data, and mean barrier values were extracted.
Though no pronounced MGFE was observed within experimental error for either sample,
for increasing SiSz concentration x the mean barrier height, AE.:, decreased across the
composition range for the y = 0.67 series, and an increased for the y = 0.50 series. The DC
conductivity values calculated using NMR-derived correlation times, a sodium coordination
number z = 3, and energy cutoff determined from the critical percolation threshold, were in
agreement with experimental values in the y = 0.67 series of glasses. Using the same model,
values were calculated for the y = 0.50 sample, and these revealed a decreasing
conductivity as x increased. Energy barriers to sodium motion were analyzed using the
Anderson-Stuart model for the y = 0.67 series, and this analysis suggested that the energy
barriers as a function of composition are strongly influenced by the dielectric constant of

these materials. Sodium clustering becomes more pronounced with increasing x in the y =
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0.67 sample, as seen by NMR second moment measurements that show sodium-sodium

separation distances decreasing by 6.5% across the full composition range sample.
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