
1 
 

23Na Nuclear Magnetic Resonance Study of  yNa2S+(1-y)[xSiS2+(1-x)PS5/2] Glassy 
Solid Electrolytes 

 

Ananda Shastri*,1,2, Deborah Watson†,3, Qing-Ping Ding2, Yuji Furukawa2,4, Steve W. 
Martin2,3 

 

 

 

1Department of Physics and Astronomy, Minnesota State University Moorhead, Moorhead, 

MN 56560, USA 

2Ames Laboratory, U.S. Department of Energy,  Iowa State University, Ames, IA 50011, USA 

3Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, 

USA 

4Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA 

 

 

 

*Corresponding author:  shastri@mnstate.edu, 218 477 2448 

†Current address: 3M, Central Research and Development, St. Paul, MN 

 

  

mailto:shastri@mnstate.edu


2 
 

Abstract 

23Na NMR spin lattice relaxation times, T1, and central linewidths were obtained for 

yNa2S+(1-y)[xSiS2+(1-x)PS5/2] glassy solid electrolytes for two series of glasses, y = 0.5 

and 0.67, and x = 0.1, 0.3, 0.5, 0.7, and 0.9.  No pronounced mixed glass former effect in 

the activation energy for T1 relaxation was observed within experimental uncertainty 

for either series of glasses. DC Na+ ion conductivity values calculated using NMR-

derived correlation times, an available site coordination number z = 3 around the Na+ 

ions, and an energy cutoff determined from the critical percolation threshold, were in 

agreement with the increasing trend in the experimental values for the y = 0.67 glasses.  

Using the same model, the conductivity values were calculated for the y = 0.50 glasses, 

which have as yet to be measured, and these revealed a decreasing conductivity as x 

increased.  Energy barriers to sodium motion were calculated using the Anderson-

Stuart model for the y = 0.67 sample, and the results suggested that the energy barriers 

as a function of composition are strongly influenced by the dielectric constant of these 

glasses.  Sodium NMR second moment measurements show sodium-sodium separation 

distances decreasing by 6.5% across the full composition range of the glassy solid 

electolytes. 
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I. Introduction 

Ionic conduction in glassy materials is of considerable scientific and technological 

interest [1]. In particular, sodium-based glasses have promise as solid-state electrolytes, 

and may result in lower cost batteries capable of high energy density, long cycle life, and 

safer operation.  Given the ready availability of sodium in the oceans and in the earth’s 

crust, rechargeable solid-state sodium batteries based upon fast sodium-ion conducting 

glassy solid electrolytes hold promise for providing low cost stationary storage of electric 

energy generated by solar and wind power [2-4]. 

In this investigation, we focus on the very promising ternary glass systems [5-11]. 

These glasses, represented as yM2X+(1-y)[xA+(1-x)B],  consist of two glass network 

forming materials (A and B), and the network modifier component M2X (M=Li, Na and X =O, 

S) added to give rise to ionic conduction.  When the modifier is held constant with fixed 

mole fraction y,  increasing x increases the concentration of glass former A while reducing 

that of B.  The mixed glass former effect (MGFE) is observed when there is a non-linear, 

non-additive change in the physical properties observed across the glass system, x = 0 to x 

= 1.   By mixing glass formers such as B2O3 and P2O5 with modifying alkali oxide such as 

Na2O, significant nonlinear variations of physical properties (electrical, thermal, 

mechanical) are often found as a function of the mixed glass former composition, x (Ref. 

[8]).  A positive MGFE occurs when these compositional changes improve the properties of 

the glass needed for conduction and has been seen in the Na2O + B2O3 + P2O5  (NBPO) 

system [8,12]. A negative MGFE appears to be less common in these systems, but has been 

seen in the Na2O + SiO2 + B2O3 (NBSO) system [10].  The short-range order structures 
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formed and their connections to the physical properties as a function of the mixed glass 

former ratios are of considerable interest in understanding the origins of these positive and 

negative MGFEs.  Therefore, in order to understand the origin, it is important to investigate 

the physical properties of the mixed glass former systems in detail. 

Nuclear magnetic resonance (NMR) is a powerful experimental tool for extracting 

microscopic information at the individual nuclear sites within crystalline and amorphous 

materials [13-16]. The technique has been applied to many mixed glass former systems and 

has played a significant role in elucidating their microscopic physical characters. 

Considerable literature exists on the application of NMR to ionic conductors in general [16], 

and sodium-based glasses in particular [10,17,18]. The variation of the NMR spectrum with 

temperature can yield dynamic information about a specific nuclear isotope, and the 

nuclear relaxation times probe nuclear dynamics over frequencies ranging from tens of kHz 

to tens of MHz.  Careful measurements and analysis of the mobile ion spin lattice relaxation 

time using low frequency NMR techniques can yield significant understanding of the 

conductivity controlling activation energies for cation jumping events in glasses, see for 

example references [10,16,19-25]. 

In previous NMR studies on  Li-ion conducting glasses [22,23,26-28], the 

temperature dependence of the NMR spin-lattice relaxation time (T1) and DC conductivities 

do not follow simple Arrhenius behavior.  The first investigations were motivated by the 

need to explain non-Arrhenius behavior in NMR and conductivity data, as well as to 

account for discrepancies in the NMR- and conductivity-determined activation energies to 

ionic motion [23,26]. It was found that the non-Arrhenius behavior could be addressed 
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using two different methods: distributions of energy barriers [22,23,27] or non-

exponential correlation functions.   These authors found, however, that—all other factors 

being the same—using a distribution of activation energies (DAEs) was often preferable for 

several reasons [27]. First,  it treated both the NMR and conductivity data within a single 

formalism. Second, it was naturally identified with the glassy state and third, it could be 

readily adapted to multiple-ion dynamics, where one population of ions exhibits markedly 

different dynamical behavior than another [28]. Further, discrepancies between NMR- and 

conductivity-derived energy distributions can be resolved by noting that while NMR should 

probe all ions—both mobile and immobile—conductivity detects only the mobile ones that 

generate a measurable current in response to the applied voltage, and hence samples a 

subset of the activation energies.  For example, in many glassy solid electrolytes, lower 

activation energies have been reported for the DC conductivity data than the NMR data.  

This has been explained by a percolation model, in which ions in wells deeper than a 

percolation energy threshold cannot participate in long-range motion, but do participate in 

spin relaxation [22,23]. 

In sodium oxide glasses, 23Na T1 studies of the mobile Na+ ion dynamics have 

focused on the considerably easier to prepare and handle, but significantly lower Na+ ion 

conducting NBPO and NBSO oxide glasses [10].   The origins of the MGFE were probed with 

a variety of theoretical and experimental methods techniques.  This work yielded 

significant insights into how the concentration of short range order structures in those 

systems with different Coulombic charges-trapping capabilities leads to the MGFE. 
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Though instructive, these oxide glassy solid electolytes have room temperature 

conductivities unsuitably low for energy storage applications, typically < 10-8 (cm)-1 at 25 

oC and far below benchmark values of 10-4 (cm)-1 often thought required for application 

in solid-state batteries.   One well-known option for improving the conductivity is to study 

the sulfide analogs of these systems.  It was shown some time ago[29] that while a simple 

alkali oxide doped oxide glass such as Na2O + SiO2 has a room temperature conductivity of 

~ 10-9 (cm)-1, the sulfide analogue Na2S + SiS2 can have a room temperature conductivity 

some 10,000-fold higher at ~ 10-5 (cm)-1. While still much lower than typical organic 

liquid electrolytes at 10-2 (cm)-1, these conductivities make these sulfide glasses quite 

attractive and they are now the subject of a very active field of research. For these reasons, 

we have long studied the corresponding sulfide analogues of these common oxide glasses 

[7,9,19,28,30-35].   A unique challenge of studying these systems is that the highest ion 

conductivity is most commonly observed at the highest alkali sulfide content. 

Correspondingly, this is also at the lowest glass former content and likewise, typically, at 

the poorest glass forming ability. Hence, just as the glassy solid electrolyte becomes 

sufficiently conductive due to the increased alkali sulfide content, these compositions also 

require increasingly rapid cooling rates to reach the glassy state without the presence of 

(typically) conductivity lowering crystalline phases.  

In our studies, we have observed however, that by mixing the glass formers in these 

systems the entropy of the liquid is significantly increased while presumably decreasing 

the liquidus temperatures through the formation of eutectics in the compositional phase 

field. These effects in turn create the observation that these glasses can be quite strongly 
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glass forming, requiring no more than free-cooling to reach the glassy state without the 

observable presence of any significant crystalline or polycrystalline phases. Among our 

many studies, this is the case of the system we report on here.   

The macroscopic physical properties of yNa2S + (1-y)[xSiS2+(1-x)PS5/2] for the two 

series of glasses, y = 0.5 and 0.67, such as the distribution of short range order structures 

with composition x [36], ionic conductivity [37], glass transition temperature [36,37], 

molar volume [36,37], and density have been reported recently [36,37].  But, there is no 

report on these system yet of the dynamics of the Na+ cations as measured by NMR. In this 

paper, we have carried out 23Na NMR measurements, for two series of glasses, y = 0.5 and 

0.67, with x  = 0.1, 0.3, 0.5, 0.7, and 0.9 to investigate the Na+ ion dynamics from a 

microscopic point of view. We have kept the number of glass formers constant in this 

system by using PS5/2 instead of the more common P2S5 [30].   

Based on NMR data, the DAEs as a function of composition were determined.  In 

addition, DC conductivity values were calculated using NMR-derived correlation times and 

percolation theory, and were compared with available experimental values for y = 0.67.  

From this,  a Na+ ion dynamics model was created to predict DC conductivities for the as yet 

unmeasured y = 0.50 system, where rapid crystallization on cooling has frustrated the 

formation of amorphous samples large enough for conductivity measurements. Further, energy 

barriers were analyzed using the Anderson-Stuart model [30,38], and the dependence on 

key parameters investigated.  Finally, sodium ion clustering was investigated by NMR 

second moment measurements  as a function of sample composition.  

 



8 
 

II. Experimental Methods 

Glassy solid electrolytes for y = 0.50 and 0.67 and  x = 0.1, 0.3, 0.5, and 0.9 were 

prepared as described elsewhere [36,37,39]. Powder XRD and SEM EDS compositional 

analyses wereperformed on representative samples in this series, and it was found that all 

samples tested were X-ray amorphous and their compositions were as batched to within a 

few percent. Samples for NMR were flame sealed in thin-walled quartz tubes under 0.16 

atm of helium gas. 

The main challenge in this work was to extract motional information about the 

sodium ion by changing temperature over a wide enough range to probe sufficient change 

in the correlation times, but without exceeding the glass transition temperature, Tg, and 

thus altering the structure of the glass [10]. 

NMR measurements were performed on 23Na (nuclear spin I=3/2, gyromagnetic 

ratio γ/2π=11.2653 MHz/T) by using a homemade phase-coherent spin-echo pulse 

spectrometer from 4.2 K to just below the Tg of the samples, ∼500 K.  The 23Na  NMR 

spectra were obtained either by sweeping the external magnetic field B0 at a fixed Larmor 

frequency of 𝜈𝐿 =  83.45 MHz  or by Fourier transform of the NMR echo signals at a 

constant magnetic field of B0 =7.41 T.  The 23Na  spin-lattice relaxation rates, R1 = 1/T1, 

were measured by the saturation recovery method [40].  The 23Na  rigid-lattice second 

moment M2 due to the magnetic dipole-dipole interaction, was obtained following the 

methods described in Refs. [18,41].  Following this method, spin-echo measurements were 

performed using the Hahn spin echo sequence (  
𝜋

2
|

𝑥
− 𝜏 − 𝜋𝑦 − 𝜏 − 𝑒𝑐ℎ𝑜 ), taking care to 

irradiate only the central line.  The duration of the 𝜋𝑦pulse was 10-14 μs. As will be shown 
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in the next section, because we found that detectable sodium ionic motion ceased for all 

samples at 150 K and below, a temperature of 100 K was deemed suitable for all 

subsequent rigid lattice M2 measurements.   

 

III.  Results 

A.  23Na NMR spectrum 

 The typical spectrum for a nucleus with spin I=3/2 with Zeeman and quadrupolar 

interactions can be described by a nuclear spin Hamiltonian [13,14] 

 Z Q D                                                                     (1) 

where 0Z zB I    is the interaction of the nuclear spin with the external magnetic field 

0B , 
2

2 2 2 2

4 (2 1) 2
[(3 ) ( )( )]

e qQ

Q zI I
I I I I



 
      is the electric quadrupole interaction, and D  is 

the magnetic dipole-dipole interaction between nuclear spins.  Q is written in principal 

axis system (PAS) of the electric field gradient Vij.    The PAS axes are defined such that  

ZZ YY XXV V V  . Here eQ is the quadrupole moment of the 23Na nucleus, ZZeq V  , the 

quadrupole frequency 
 

23

2 2 1

e qQ

Q I I h



 , and asymmetry parameter XX YY

ZZ

V V

V



  . 

          When the Zeeman interaction is greater than the quadrupolar interaction, this 

Hamiltonian produces a spectrum with a sharp central transition line (Iz=-1/2↔ 1/2) 

flanked by one satellite peak on either side (Iz=1/2↔ 3/2 and -1/2↔ -3/2 ).     Since the 

samples are in the form of a powder, the spectrum is an NMR powder pattern [42].     Figure 



10 
 

1  shows the typical 23Na spectrum for the satellite lines observed at 4.2 K in the y = 0.67 

and x = 0.1 powder sample.  
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FIGURE 1.    Field swept 23Na spectra for 0.67Na2S+0.33[xSiS2+(1-x)PS5/2] glasses x = 0.1, 
0.5, and 0.9.  Measurements (represented as gray lines) were performed at T=4.2 K and νL 
=83.48 MHz.  Due to the narrowness of the central line compared to that of the satellite 
peaks, the field sweep was not performed over the central line region.   Red solid lines are 
simulations of the first order electric quadrupole powder patterns as described in the text 
for a Gaussian distribution of parameters 𝜈𝑄 and 𝜂.  Results are listed in Table 1. The green 

curve shows a simulation of powder pattern with a fixed 𝜈𝑄 and a fixed 𝜂 = 0 without any 

distributions. The blue curve represents a simulated powder pattern with a Gaussian 
distribution in 𝜈𝑄and no distribution in 𝜂. 

 

The observed satellite lines are too broad to be explained by a single value of  𝜈𝑄  and 𝜂  as 

shown in Fig. 1, where the green curve  represents a simulated powder pattern Qf(ν ,η)  
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for 𝜈𝑄 = 0.4 MHz and 𝜂 = 0, using the well-known quadrupolar powder pattern line shape 

given in [42].   A powder pattern described by a single  𝜈𝑄 and 𝜂 would suggest a well 

defined local environment for the Na, as would be expected for a crystalline powder, but 

distributions of these quantities would be expected for amorphous samples [16].  One may 

model distributions in the local environments by creating a weighted sum of powder 

patterns 
1 2( ) ( ) ( , )

Q

Q Qg g f
 

    , where 
1( )Qg   and

2 ( )g   are distributions of  𝜈𝑄 and 𝜂.   

Using only a distribution in 𝜈𝑄 does not suffice, as seen by the blue curve in Fig. 1, where a 

Gaussian distribution with mean  𝜈𝑄 = 0.4 and standard deviation 
Q

  = 0.2 MHz was used, 

with 𝜂 = 0.   In order to reproduce the broad satellite line, it is necessary to use two 

independent Gaussian distributions in 𝜈𝑄 and 𝜂, with 𝜈𝑄 = 0.9 MHz,  
Q

  = 0.2 MHz,  𝜂 = 0.2 

and  = 0.1,  as shown at the bottom of Fig. 1 by the red curve.    These results indicate that 

the local atomic-level environment around the Na+ ions are highly inhomogeneous in these 

glass compositions.      

Similar broad satellite lines are observed in all mixed glass former compounds with 

y = 0.67 studied here.   The  typical spectra observed for three of the five samples across the 

compositional range of the system studied  (x  = 0.1, 0.5, and 0.9) are shown in Fig. 1, 

together with the simulated spectra whose fitting parameters are summarized in Table 1.  

As shown in Table 1, distributions of 𝜈𝑄 and 𝜂 are not significantly different across the glass 

series.  
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Sample 
νQ (MHz) 

mean±SD 

η 

mean±SD 

x=0.1 0.9±0.2 0.2±0.1 

x=0.5 0.9±0.2 0.3±0.1 

x=0.9 0.9±0.2 0.28±0.09 

 

Table 1.   23Na electric quadrupole parameters νQ and η for 0.67Na2S+0.33[xSiS2+(1-
x)PS5/2] glasses obtained from the simulated powder patterns of Fig. 1 as described in the 
text.  A Gaussian distribution of both νQ and η was assumed, and is given in the table as the 
mean ± standard deviation. 

 

    Similar, but slightly broader, 23Na NMR satellite lines have also been observed in the 

y = 0.50 series, as shown in Fig. 2 where the spectrum for   x = 0.1 glass measured at 4.2 K is 

shown as an example.  The broadening due to the distributions results in an indistinct 

quadrupole shoulder, making  it difficult to find unique parameter values.  However, the 

values 𝜈𝑄 = (1.1 ± 0.3) MHz  𝜂 =(0.3  ± 0.1) reasonably reproduced the observed spectrum 

as shown by the black curve, indicating that the values of 𝜈𝑄 and 𝜂 are not significantly 

different from those for the y = 0.67 samples.  For simplicity, then, we took the values for 

the two systems y = 0.50 and y = 0.67 to be the same:  𝜈𝑄 = (0.9 ± 0.2) MHz and 𝜂 = 0.3  ± 

0.1. 
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FIGURE 2.    Field-swept 23Na spin-echo amplitude versus magnetic field scans for 
0.50Na2S+0.50[xSiS2+(1-x)PS5/2] glass x = 0.1.    Due to the narrowness of the central line 
compared to that of the satellite peaks, the field sweep was not performed over the central 
line region.  Solid lines are simulations of the first order electric quadrupole powder 
patterns as described in the text for a Gaussian distribution of parameters νQ and η.  Lack of 
a clear quadrupole shoulder complicated the determination of the fit parameters.  The 
simulation shown here is for 𝜈𝑄 = (1.1 ± 0.3) MHz and 𝜂 = 0.3 ± 0.1 . 

 

Figure 3 shows the 23Na NMR central line obtained from the Fourier transform of the half 

spin-echo NMR signal, for the y=0.67, x  = 0.1 glass at different temperatures.   As can be 

seen, the full-width at half maximum (FWHM) of the central line depends on temperature.  

The FWHM is nearly constant at low temperature, then starts to decrease around 150 - 200 

K  with increasing temperature and then levels off at higher temperatures, as summarized 

in  Fig.  4(a)  for all y = 0.67 series samples studied here. 
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FIGURE 3.   Typical temperature dependence of  23Na NMR central lines for 
0.67Na2S+0.33[xSiS2+(1-x)PS5/2] glass for x=0.1.  The figure illustrates the motional 
narrowing of the NMR line with increasing temperature. 

 

The temperature dependence of the FWHM provides information about the time 

scale of nuclear motion. The temperature independent behavior at low temperatures is due 

to the freezing of the ionic motion, and the reduction in the FWHM occurs when the 

fluctuation frequency of the local field approaches the rigid-lattice central line width, on the 

order of 10 kHz.  With further increase in the frequency,  the NMR central line is  

completely narrowed, giving rise to a lower constant value of FWHM observed at higher 

temperature. 
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FIGURE 4.  Temperature dependence of FWHM for the 23Na NMR central line for yNa2S+(1-
y)[xSiS2+(1-x)PS5/2]   glassy solid electrolytes  for two series of glasses with x = 0.1, 0.3, 0.5, 
0.7, and 0.9.  (a) y = 0.67. (b) y = 0.5.  The solid lines were determined by simultaneously 
fitting line width and R1 data as described in the text assuming a Gaussian distribution of 
activation barriers. 

 

In the case of the y = 0.5 series samples, similar temperature dependence of the 

FWHM is observed as shown in Fig. 4(b).  However, the raw FWHM line widths increased 

as temperature decreased, indicating the presence of a paramagnetic impurity. Such 
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increases of FWHM at low temperature were not observed in the y = 0.67 series of samples. 

The effect was eliminated by fitting raw FWHM line widths in the temperature range below 

where motional effects become appreciable, 50-150 K, to a Curie model  y = A+B/T.   The 

paramagnetic contribution B/T was then subtracted from the raw FWHM at all 

temperatures.  These values are given in Table 2, and a discussion of the contribution this 

makes to nuclear relaxation is given in Section V.  We believe the paramagnetic impurity to 

be Fe which arises from the steel container used to mill the samples to a fine powder 

required for the NMR measurements.  We are repeating some of these measurements using 

samples prepared in ceramic containers to investigate this hypothesis. 

 

x B (Hz K) 

Hloc (T) at 

300 K R1pmax (s-1) 

0.1 2.6 x104 5.1x10-6 0.000765 

0.3 2.5 x105 5.0x10-5 0.074156 

0.5 5.1 x104 1.0x10-5 0.003013 

0.7 3.6 x104 7.1x10-6 0.001497 

0.9 1.6 x105 3.2x10-5 0.031407 

 

Table 2.   23Na central line FWHM paramagnetic contribution parameter B for  
0.50Na2S+0.50[xSiS2+(1-x)PS5/2] glasses.  The estimated local field HL due to the 
paramagnetic ion, and the estimated maximum contribution to the nuclear spin-lattice 
relaxation R1 are described in Section V. 
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B. 23Na spin-lattice relaxation 

Further information about the time scale of nuclear motion may be obtained from 

temperature dependence of the spin-lattice relaxation rate, R1  1/T1.  The nuclear spin-

lattice relaxation time T1 of the 23Na central transition (-½↔ ½) were obtained by the 

saturation recovery method [40].  In crystalline materials for nucleus with I = 3/2, this 

selective irradiation of the central line combined with a well-defined transition probability 

resulting from the time-dependent interaction as the nucleus hops through the lattice 

produces a double-exponential behavior [43].  However, in glassy materials a broad 

distribution of nuclear interactions results in a distribution of nuclear relaxation times, and 

may be modeled by a stretched exponential function. The normalized longitudinal 

magnetization 1 − 𝑀𝑧(𝑡)/𝑀∞  was fit to a stretched exponential function [1,10] 























 



1

exp/)(1
T

t
MtM z                                                          (2) 

The quantity β characterizes the distribution of interaction strengths throughout the 

sample. Single relaxation time behavior is recovered in T1 for β = 1.  We initially performed 

the fits using Eqn. (2) and allowed both β and 𝑇1 to be adjustable parameters. We chose to 

average β for all temperatures, and then refit the data with β fixed at the average value over 

all temperature for each sample.  This method inherently assumes that any temperature 

dependence of β over the temperature range studied is small.  We have studied other 
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systems, Li glasses in particular, where β is strongly temperature dependent and the 

simplification used here is not valid [27]. 

      Figure  5 shows the normalized longitudinal magnetization of the 23Na central 

line versus time between saturation and the read pulse for the x = 0.1 sample at several 

temperatures.   
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FIGURE 5.   Example spin-lattice relaxation data of the 23Na central line for 
0.67Na2S+0.33[xSiS2+(1-x)PS5/2] glasses, where x = 0.1.    The method for estimating the 
stretched exponential parameter β over the temperature range studied is described in the 
text.  For this sample, β = 0.82± 0.02, and the fits using this value are shown as solid lines. 

 Solid lines represent fits to Eqn. (2) with β  fixed to the average value given in Fig. 6 for 

each sample.   
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FIGURE 6.  Stretched exponential parameter β determined from the 23Na central lines 
nuclear spin-lattice relaxation of yNa2S+(1-y)[xSiS2+(1-x)PS5/2] glasses for y = 0.50, 0.67 
and x = 0.1, 0.3, 0.5, 0.7, and 0.9.  These values were extracted from the magnetization 
recovery data (Fig. 5), and described in the text.  Error bars are symmetric, but only one 
side was drawn for each data point to simplify the graph. 

The estimated R1  values versus 1000/T are plotted in Figs.  7(a) and 7(b). Theory predicts 

that R1 becomes a maximum at the temperature where the inverse correlation time for 

nuclear motion 1/τ is on the order of the Larmor frequency, L.  
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FIGURE 7.   Temperature dependence of 23Na spin-lattice relaxation rate R1 for 
yNa2S+(1-y)[xSiS2+(1-x)PS5/2]  glassy solid electrolytes for two series of glasses with 
x  = 0.1, 0.3, 0.5, 0.7, and 0.9.  (a) y = 0.67. (b) y = 0.5.  The solid lines were 
determined by simultaneously fitting line width and R1 data as described in the text 
assuming a Gaussian distribution of activation barriers.  Error bars are within the 
size of the marker. 

 

 As seen in Fig. 7, the maximum in R1—expected for cross-over from slow-motion to a fast-

motion regime—could not be observed experimentally.  This is due to the relatively low Tg 

for all of these samples.   The low Tg values of these glasses are consistent with the 

presumed low liquidus (TL) temperatures for these compositions.  TL ~ (3/2)Tg is observed 
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for nearly all glass forming liquids [44]. Thus, data are in the slow motion (frequency 

dependent) regime for nuclear motion. 

C. 23Na second moment 

The rigid-lattice second moment M2, measured for experimental conditions in which 

the ionic motion is frozen out, and in which the dominant interaction between nuclei is the 

magnetic dipole-dipole interaction, was calculated by Van Vleck [14].  For quadrupolar 

nuclei such as 23Na in glasses, modifications must be made.  The key ideas are as follows. 

The fluctuation of precession rates due to local field variations tend to reduce the spin-echo 

amplitude.  Homonuclear magnetic dipole-dipole and electric quadrupole interactions, 

which are bilinear in Iz, are not refocused by the NMR pulse sequence, and lead to a 

reduction in spin-echo amplitude [41].  By applying π pulses selectively to the central 

transition (Iz=-1/2↔ ½) for quadrupolar nuclei, the system can be made to act like a spin 

½ system, and the spin-echo decay spectroscopy yields information specifically about the 

magnetic dipole coupling [45]. The criterion for selective irradiation of the central line is 

(1) (2) ,Q rf Q D  , where (1)

Q
 and (2)

Q
are the magnitudes of the first and 

second order quadrupole contributions to the Hamiltonian, 
rf

 is the magnitude of the 

radio frequency   pulse used to flip the spins, and 
D

 is the nuclear magnetic dipole-

dipole contribution.  For these experiments, (1) 1 MHzQ
(Table 1) and (2) , 8 kHzQ D

(Fig. 4).  The  pulse durations were  10-14 μs,  resulting in a spectral width of 

approximately 1/  70 kHz, thus fulfilling the selective irradiation criterion. Further, due 

to a distribution of second moment values arising in many sodium compounds, it has been 
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shown that  the  23Na second moment M2 determined in the limit of short evolution times 

yields experimental values consistent with theoretical ones where crystalline structure is 

known [18,41].  

Figure 8 illustrates the method.  The normalized spin-echo amplitude 
𝐼(2𝜏)

𝐼0
 versus 

evolutions time 2τ is shown, and was fit to  

 
 

 
22

0

2
2    

2

I M
exp

I




 
  

 
                                                            (3) 

 for evolution times up to 2τmax .   

0.00 0.12 0.24 0.36 0.48 0.60
0.75

1.00

2
max

23
Na

T=100 K

B
0
=7.41 T

I(
2
)

/I
0

2 (ms)

0.0 0.1 0.2
0

2

4

6

8

10

M
2
/1

0
6
ra

d
2
/s

2

2
max

 (ms)

 

FIGURE 8.   Method for determining 23Na central line second moment in the limit of short 
evolution times, illustrated for the 0.67Na2S+0.33[xSiS2+(1-x)PS5/2] glass  x=0.1.  The 
normalized spin-echo amplitude versus evolutions time 2τ.  is shown in the outer graph.  

The solid line shows a fit to the Gaussian curve 
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  from time 0 up to 

2τmax (dotted line). M2 was plotted as a function of 2τmax (inset). A linear fit determined M2 
in the limit of zero evolution time.  In this case, M2=(7.5± 0.1)× 106rad2/s2. 
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From this, M2 was determined  as a function of 2τmax .  As shown in the Fig. 8 inset, by 

extrapolating to time 0, the M2 in the limit of short evolution times was determined.  It is 

related to the Na-Na distances rij by [18,41,45] 

 

 
2

4 2 60
2  0.9562

4
ij

i

M r





 
  

 
                                                          (4) 

 

V.  Discussion 

A.  23Na motional activation energies 

The activation energies for 23Na motion may be obtained by performing 

simultaneous fits to both the line width, FWHM, and relaxation rates, R1 (Ref.[10]).  In this 

treatment, the correlation time for nuclear motion was assumed to follow the Arrhenius 

law 

( ) exp act

B

E
T

k T
 

 
  

 
                                                                (5)  

where Eact is the activation energy for nuclear motion, and τ∞ the correlation time at 

infinite temperature.  Following Ref. [10], τ∞ was fixed at 10-13 s for all calculations.  In our 

many studies of these systems, we have observed that due to the disordered nature of the 

short range order in these glasses, the energy environments around the mobile cations are 

distributed and this leads to a DAEs for ion hopping events in these glasses [21,22]. A 
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Gaussian distribution of activation energies has provided a good description of this 

distribution and is used here.  It is given by 

2

2

( )1
( ) exp

22

act

EE

E E
g E

 

  
   

 
                                                 (6) 

In the analysis, and consistent with our previous studies, both the mean barrier height for 

nuclear motion Eact and the standard deviation of the energy barrier distribution σE were 

taken to be the only free-fit parameters.  The central line width as a function of 

temperature was modelled using the relation [10,13] 

   2 2 2 2 1 2

0

0

2
( ) tan ( )d E g E E     







 

 
        

 
                    (7) 

Here 2

0  and 2

  represent the low- and high-temperature values of the second moment 

of the line width.  Assuming the dominant interaction is the fluctuating nuclear quadrupole 

interaction as the sodium hops through the glass, and assuming exponential correlation 

times, theory gives the relaxation rate for the central line to be [10] 

   

2 2 2

1 2 2

1 0

41
1 ( )

5 3 1 1 2

Q

L L

R d E g E
T

    

 

   
       

     
                    (8) 

Note that the formula in Eq. (7) introduces no new fit parameters, since νQ and η are 

already known.  Using Eqns. (5-8) and the νQ and η values of Table 1, for each sample 

simultaneous fits of the central line width and 1/T1 data were performed, and are shown as 

solid lines in Figs. 4 and 7.   
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Several points may be noted.  First, measurements reveal that
L Q FWHM   

consistent, and the dominant interaction is the nuclear quadrupole, consistent with the 

original assumptions.  For the y = 0.67 series of glasses, the model appears to adequately 

describe both the FWHM and R1.  The fit appears to be less good for the y = 0.50 series of 

glasses, and, in particular, the x = 0.9 sample does not yield a fully narrowed 23Na line up to 

Tg. We are continuing to investigate the source of this discrepancy. The paramagnetic 

effects were subtracted out of the FWHM data and do not contribute to the R1 significantly 

at high temperatures.  This was verified by estimating the contribution to the relaxation 

rate from magnetic impurities.  The line broadening occurs due to a distribution of line 

shifts from the interaction between the local field HL due to the paramagnetic ion and the 

magnetic dipole moment of 23Na.  This contribution to the line width and its connection to 

the Curie paramagnetic fit parameter B may be expressed as 
loc

hB
H

T
  , where is the 

23Na nuclear magnetic dipole moment, h is Planck’s constant, and T is the Kelvin 

temperature.  From this loc

hB
H

T
  was determined for T=300 K, and is listed in Table 2.  

The paramagnetic contribution to relaxation for dilute impurity concentrations has been 

described by 
 

2 2

1 2
1

e
p loc

L e

R H



 




 [13,46-48] where e is the electronic correlation 

time arising from the paramagnetic impurity, and L is the nuclear Larmor frequency. The 

electronic correlation time is described by an Arrhenius relation with its own activation 

energy, describing the tendency for molecular reorientation of the impurity ion [47].  The 

maximum 23Na paramagnetic relaxation rate becomes 

2 2

1 max
2

loc

p

L

H
R




 and when 
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evaluated for  T=300 K is expected to give an upper limit on the relaxation rate due to the 

paramagnetic impurity.  From Table 2 the
1 maxpR values for the y=0.50 samples are typically 

three orders of magnitude smaller than the measured R1 values at 300 K in Fig. 7(b). We 

take this as a further indication that the dominant relaxation mechanism over the 

temperature range we probed is quadrupole relaxation, and at these temperatures ignoring 

the contribution from paramagnetic impurities is justied. Second, we noted that assuming a 

distribution of activation energies was important to obtaining simultaneous fits to FWHM 

and R1 data.  Without this assumption, adequate fits could not be obtained.  The average 

barrier heights Eact for the Gaussian distribution for all compositions studied are 

summarized in Fig. 9.   
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FIGURE 9. 23Na average barrier energy 𝐸𝑎𝑐𝑡
∗ determined by NMR for yNa2S+(1-y)[xSiS2+(1-

x)PS5/2] glasses for y=0.50, 0.67 and x =0.1, 0.3, 0.5, 0.7, and 0.9.  The values are the mean 
values obtained from Gaussian distributions  determined from fits using NMR data in Figs. 4 
and 7 and the method described in the text.  The error bars represent the uncertainty in the 
mean value determined from the fit.  The standard deviation of the Gaussian distributions is 
not shown, but was E 0.10 eV.  The dotted lines are guides for the eye. 
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The distribution widths as measured by the standard deviation σE were all within the range 

(0.10±0.01) eV. Third, we tested other values of τ∞, specifically τ∞ =10-14 s, but this resulted 

in fits that deviated significantly from both datasets, and was rejected.  Lastly, we checked 

that the resulting values from the Arrhenius model and the Eact values gave plausible 

correlation times.  The method of Bjokstam et al. [10,49] gives a correlation time estimate 

of 2/12/1 /3.0    at the temperature where the line-width is 2/)( 02/1   .  This 

resulted in s 802/1  at 300 K for the x = 0.1 sample, which is on the same order of 

magnitude as the 50 μs at 300 K from the Arrhenius model obtained from Eqn. (5) using 

the value of Eact  for the x = 0.1 sample.  Finally, the anomalous behavior of the y=0.50, 

x=0.9 may be an indication that one or both of the assumptions regarding the DAE and the 

nature of the relaxation mechanism are violated.  Since the fit to the FWHM data appears to 

underestimate the actE , it is possible that this is in fact somewhat higher.  This would 

accentuate the trend indicated in Fig. 9. However, further work is needed to settle this 

quesiont. Overall, general agreement between the model and data are consistent with the 

dominant  23Na relaxation mechanism being the quadrupole interaction, a Gaussian 

distribution of activation energies, and τ∞ = 10-13 s for nearly all samples studied. 

B.  Anderson-Stuart model for Eact 

Eact values estimated from the FWHM and R1 data are shown in shown Fig. 9.  Eact 

shows clear changes as the SiS2 concentration x increases, although the changes are not 

significant.  For the y = 0.50 series, the activation energy increases, and for y = 0.67 it 
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decreases.  The dotted lines are unweighted parabolic fits to the data.  These curves appear 

very nearly linear, suggesting the MGFE is relatively weak in these systems. 

In order to discuss the compositional dependence of Eact in more detail, we adopt 

the Anderson-Stuart model [30,38].  According to this model, the activation energy is the 

sum of a Coulombic contribution, EC, arising from the electric interactions between the 

mobile cation and the other ions in the glass, and a strain contribution, ES, arising from 

the lattice strain caused by the cations displacing the other network ions in the glass as 

they move through the structure.  The total activation energy is then: 

act C SE E E          (9) 

Parameters necessary for calculating the Coulombic contribution to the activation 

energy are indicated in Fig. 10.   

 

 

FIGURE 10.  Diagram of relevant quantities needed for estimating the Coulombic 
contribution in the Anderson-Stuart model.  The sodium and sulfur ionic radii are indicated, 
as well as the average jump distance λ from one sodium site to another.  The shaded circle 
indicates an unoccupied sodium site to which the sodium cation can jump. 
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The Coulombic contribution is defined as the energy difference between the sulfur-sodium 

interaction at ion separations of S Nar r   and / 2S Nar r    yielding [30]: 
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where  𝑘 = Coulomb′s constant,  𝑍𝑁𝑎 = sodium charge, 𝑍𝑆 = sulfur charge, 𝑟𝑁𝑎 =

sodium radius, 𝑟𝑆 = sulfur radius, λ = sodium cation separation,  ε∞ = dielectric constant. 

The average sodium-sodium distance λ may be estimated from the molar volume Vm using 

a simple cubic model by  
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where 𝑉𝑚 = molar volume, 2𝑦 = number of sodium per formula unit,  and 𝑁𝐴 =

Avogadro′s number.  The strain contribution to the activation energy is given by [50] 

    
2

2
S Na DE G x r r


                                                         (12) 

where the shear modulus G may be estimated by Gilman’s expression [51] 
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Here  𝑟𝐷 =  doorway radius, the opening size available to the sodium ion for motion 

through the glass;  𝜌 = mass density;  𝜀0 =  permittivity of free space;   𝑀 = molar mass. 

The values used were: 𝑟𝑁𝑎 = 1.02 Å, 𝑟𝑆 = 1.84 Å  (Ref.[52]), and   𝑍𝑁𝑎 = +1, 𝑍𝑆 =

−1,   𝜀∞ 𝑟𝐷, 𝑀, 𝜌, 𝑉𝑚 [37,39].    

Fig. 11 shows the results of the model compared with Eact determined from NMR 

and conductivity measurements.   
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FIGURE 11. 23Na energy barriers 𝐸𝑎𝑐𝑡
∗  for 0.67Na2S+0.33[xSiS2+(1-x)PS5/2] glass 

determined using sodium NMR measurements from this investigation,  conductivity 
measurements reported in Ref.[37], and the Anderson-Stuart model as calculated from Eqn. 
(16), where a is an adjustable multiplicative constant for the Coulombic energy.   

The sum of the Coulomb and strain energy terms act C SE E E    is significantly and 

systematically lower than the experimental values across the entire composition range.  

This is not surprising, since the model includes only a single sodium-sulfur interaction.  A 

simple but revised model may be obtained by adjusting the Coulombic interaction by a 
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multiplicative constant a, which here plays a role similar to the Madelung constant found in 

crystalline systems [30] 

 *   C CE aE                                                                       (15) 

The adjusted total activation energy is 

 * *    act C SE E E                                                           (16) 

Figure 11 shows *

actE  calculated for a=2.2±0.1, and using this factor for all sample 

compositions one finds that *

actE  matches the data within three standard deviations for 

most data points.  We note that the value for the Madelung constant found here is similar to 

the value reported in the y=0.5 germanium analog system, which uses a Ge-based glass 

former rather than the Si-based former used here [30].  This may be interpreted then as the 

correction factor for incorporating the full set of sodium-sulfur interaction of the glass 

originally ignored in the simple model of Fig. 10.   

 Figure 12 (a) compares *

actE  with experimental 
actE  values obtained by DC 

conductivity and NMR for the y=0.67 sample.   



32 
 

FIGURE 12. (a) Detail of 23Na energy 

barriers *

actE  for 

0.67Na2S+0.33[xSiS2+(1-x)PS5/2] glass 
using sodium NMR measurements from 
this investigation,  conductivity 
measurements reported in Ref.[37], and 
the Anderson-Stuart model as 
calculated from Eqn. (16).  (b)  Ratios of 
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Note that *

actE is within three standard deviations for experimental data for all but one 

sample composition, x = 0.3.  Taking the view that *

actE  and Eqn. (16) model the 

experimental data reasonably well, Fig. 12(b) probes how variations in the only two 

experimental parameters of the model, 𝜆 and 𝜀∞,  compare to variations in *

actE .  Ignoring 

for the moment the values at x = 0.3, one sees that fluctuations in the dielectric constant 

𝜀∞mirror the changes in *

actE , and are nearly 20 times larger than changes in 𝜆 over the 
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entire range of x.  Thus, the energy barriers, and the conducting properties that result, are 

driven strongly by the dielectric properties of the glass. 

 C.  Percolation model and the Na+ ion conductivity 

 Figure 13 shows the composition dependence of the Na+ ion DC conductivity values 

at 30 °C for the y=0.67 samples.   
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FIGURE 13.   DC conductivity for yNa2S+(1-y)[xSiS2+(1-x)PS5/2] glass at 30 °C.    The solid 
line represents values calculated based on NMR data and the percolation theory model as 
described in the text, and assuming a sodium coordination number of z=3 (red) and z=4 
(green).  (a) Values for y=0.50 sample.  (b)  Values for y=0.67 sample.  The data points are 
experimental values taken from Ref.[37].  (c ) A schematic Gaussian DAE for sodium 
coordination number z=3.  The shaded area represents the fraction P of ions participating 
in conduction at the percolation threshold. (d)  A similar plot for z=4. 
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These experimental values were taken from Ref.[37]  for the y = 0.67 samples. So far, the 

DC conductivity for the y = 0.5 series of glasses have not been measured,  but will be 

reported on in future publications in this series. 

 The DC conductivity may be estimated from NMR data using percolation theory 

[21,23,27,53]. In this model, the glassy nature of the material provides a variety of 

pathways for the sodium to move, each with a different Eact value, representing the 

relative difficulty of taking a given pathway.  Mobile charge percolates through the network, 

and below a critical fraction P of  pathways, known as the critical percolation threshold, the 

DC conductivity is zero [54].  The critical threshold is related to the number of sodium 

nearest neighbor sites z by the empirically determined relation for regular 3-dimensional 

lattices [54] 

 
1.45

.    P
z

                                                                      (17) 

This relationship is a near-invariant for percolation [54], and indicates that at the 

percolation threshold the average cation site sees approximately 1.5zP  unblocked 

pathways. In this model, pathways above activation energy threshold Ep are considered 

blocked, and this threshold satifies [21] 

  
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. 
PE

P g E d E



                                                                 (18) 

Thus, for a given z, one may determine P, and from the NMR-determined distribution g(ΔE), 

Ep  may be found.  For this study, z is taken as a free parameter, and Fig. 13 (c ) and (d) 
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show schematic DAE and Ep for z=3 and z=4.  The effective time between cation hops 

between sites is time average [21,23] 

      
0

1
        

pE

avg T E g E d E
zP

 



                                        (19) 

and is interpreted as the correlation time for the ions determining the DC current. The DC 

conductivity for uncorrelated sodium jumps assuming equal jump distances  and a sodium 

concentration C is given by  [21,23] 
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Figure 13(b) shows 𝜎𝐷𝐶  determined using the percolation theory model for the y = 

0.67 sample, for z=3 and z=4 (solid lines).  Comparison with experimental values shows 

general agreement with z in this range, but the scatter in the data does not allow clear 

determination of a specific value.  From percolation theory, one generally expects that the 

activation energy found from NMR will be higher than that obtained by 𝜎𝐷𝐶measurements.  

This is due to the fact that only the lower energy pathways are explored for 𝜎𝐷𝐶 , whereas 

NMR simultaneously probes the dynamics of all sodium ions, whether they jump or not. Fig. 

12 (a) shows that for the five compositions for which Eact data exist for both methods, 

three  yielded Eact values that were within 3 standard deviations of one another.  One 

possible explanation may be seen from Fig. 13 (c) and (d). From Eqns. (17)  and (18) one 

finds that for z=3, 0.042p act EE E     where Eact  and E  are the mean and standard 

deviation of the NMR-determined activation energy distribution.  Taking Ep as an estimate 
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of the expected average activation energy from DC conductivity, this model predicts a 

smaller Ep.  As z gets larger, the difference between NMR- and DC conductivity-

determined values becomes more pronounced.  The difference is within 1 error bar. For 

z=4 the same analysis yields 0.35p act EE E     and the difference is within 3 error bars. 

The percolation model therefore accounts for the DC conductivity values and the small 

differences between the NMR- and conducitivity determined activation energies, and is 

consistent with z=3-4. 

In Fig. 13(a) we show the same model applied to the y = 0.50 system, and assume a 

similar coordianation of the cation.  The solid lines indicate calculated DC conductivity 

values for z=3 and z=4 based on the NMR-determined DAE, and indicate a downward trend 

with increasing x.  This is consistent with a Ge analog of this system for which z=4 [30]. The 

estimates here represent the first determination of conductivity for these samples.    

  

D.  Length scales from M2 measurements 

The length scale of the sodium-sodium separation was probed in two ways.  From 

Eqn. (11), the molar volume Vm data and the stoichiometry of the glass, one can calculate a 

separation distance that reflects an average cation separation across the sample.  A more 

refined method is obtained from M2, which measures the strength of the homonuclear 23Na 

magnetic dipole-dipole interaction. Assuming all the radii of the sodium coordination shells 

scale by the same factor α so that '

ij ijr r , Eqn. (4) gives 
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Figure 14 shows the 23Na second moments M2 for y = 0.50 and 0.67 glass series 

across the SiS2 composition range x.   
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FIGURE 14.   Second moment of 23Na central line for yNa2S+(1-y)[xSiS2+(1-x)PS5/2] glasses 
for y = 0.50, 0.67.  Solid lines are guides for the eye. 

 

Both data sets suggest a trend to larger M2 with larger x, indicating the sodium-sodium 

distances are decreasing. Figure 15 shows the ratio of sodium-sodium distances estimated 

using these two methods.   
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FIGURE 15. Ratios of sodium-sodium distances for yNa2S+(1-y)[xSiS2+(1-x)PS5/2] glasses.  
The values are estimated two ways:  using the M2 values of Fig. 14 and ratio calculated from 
Eqn. (21), and using molar volume data and Eqn. (11).  (a)  For y=0.67, the ratio 0.1/x xr r   

was calculated, the ratio relative to the sodium-sodium distance value for the x=0.1 sample.  
(b)  The ratio 0.67 0.50/y yr r   was calculated for each x value, comparing sodium-sodium 

distance values for the 0.67 sample to the 0.50 sample. 

 

Figure 15 (a) plots 0.1/x xr r    for the y = 0.67 series of glasses as a function of x, comparing 

distances for each composition x to that obtained for the x=0.1 sample.  Both M2 and Vm 

methods show a trend to shorter sodium-sodium distances with increasing x.  At x = 0.9, 

the M2 data reveal that the sodium-sodium distance is smaller than that at x = 0.1 by (6.5 ± 

0.5) %, as compared with the Vm method which shows a reduction by (2.7 ± 0.7) %.  Since 

the distance obtain from Vm represents an average over the entire sample, and that from M2 
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from a probe of local sodium interactions, the discrepancy between the two is not 

surprising.  Figure 15 (b) shows 0.67 0.50/r r  as a function of x, comparing the y = 0.67 with the 

y = 0.50 series of sodium-sodium distances for each composition x.  At each x, the increased 

sodium concentration should result in a change in sodium distance.  From the graph, one 

sees that the volumetric data show a nearly constant ratio of  0.67

0.50

r

r
 = (91 ± 1)% when taken 

across all compositions x.  The smaller 
0.67yr 

  distances are consistent with the higher 

sodium concentration y.  There is no significant difference between this value and those 

obtained from M2 for the data available, suggesting that volume changes appear to account 

for the changes in sodium-sodium distances with changing y.  
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FIGURE 16. Second moment of 23Na central line versus sodium number density for 
yNa2S+(1-y)[xSiS2+(1-x)PS5/2] glasses, y = 0.50, 0.67.  Solid line is a fit proportional to N2. 

 



40 
 

 Fig. 16 shows M2 versus sodium number density N.  If the increase in number 

density is associated with a homogeneous change in the Na-Na coordination shells '

ij ijr r  

thoughout the structure, one expects from Eqn. (4) that 2

2M N [41]. A fit proportional to 

N2 in Fig. 16 shows that the data is consistent with a homogeneous distribution.  Only the 

y=0.67, x=0.9 value shows a significant deviation above this line, suggesting that at higher 

concentrations in this system there may be a tendency for sodium aggregation.    

Conclusions 

We performed a 23Na NMR study of the yNa2S + (1-y)[xSiS2+(1-x)PS5/2] for y = 0.5 

and 0.67, and x = 0.1, 0.3, 0.5, 0.7, and 0.9.  Using 23Na central line widths as a function of 

temperature, and 23Na central line relaxation as a function of temperature, a Gaussian DAEs 

was found consistent with experimental data, and mean barrier values were extracted.   

Though no pronounced MGFE was observed within experimental error for either sample, 

for increasing SiS2 concentration x the mean barrier height, Eact, decreased across the 

composition range for the y = 0.67 series, and an increased for the y = 0.50 series. The DC 

conductivity values calculated using NMR-derived correlation times, a sodium coordination 

number z = 3, and energy cutoff determined from the critical percolation threshold, were in 

agreement with experimental values in the y = 0.67 series of glasses.  Using the same model, 

values were calculated for the y = 0.50 sample, and these revealed a decreasing 

conductivity as x increased.  Energy barriers to sodium motion were analyzed using the 

Anderson-Stuart model for the y = 0.67 series, and this analysis suggested that the energy 

barriers as a function of composition are strongly influenced by the dielectric constant of 

these materials.  Sodium clustering becomes more pronounced with increasing x in the y = 
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0.67 sample, as seen by NMR second moment measurements that show sodium-sodium 

separation distances decreasing by 6.5% across the full composition range sample. 
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