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Abstract

Federation is a popular concept in building distributed cyberinfrastructures, whereby computational resources are provided by
multiple organizations through a unified portal, decreasing the complexity of moving data back and forth among multiple organ-
izations. Federation has been used in bioinformatics only to a limited extent, namely, federation of datastores, e.g. SBGrid
Consortium for structural biology and Gene Expression Omnibus (GEO) for functional genomics. Here, we posit that it is import-
ant to federate both computational resources (CPU, GPU, FPGA, etc.) and datastores to support popular bioinformatics portals,
with fast-increasing data volumes and increasing processing requirements. A prime example, and one that we discuss here, is
in genomics and metagenomics. It is critical that the processing of the data be done without having to transport the data across
large network distances. We exemplify our design and development through our experience with metagenomics-RAST (MG-
RAST), the most popular metagenomics analysis pipeline. Currently, it is hosted completely at Argonne National Laboratory.
However, through a recently started collaborative National Institutes of Health project, we are taking steps toward federating
this infrastructure. Being a widely used resource, we have to move toward federation without disrupting 50 K annual users. In
this article, we describe the computational tools that will be useful for federating a bioinformatics infrastructure and the open re-
search challenges that we see in federating such infrastructures. It is hoped that our manuscript can serve to spur greater feder-
ation of bioinformatics infrastructures by showing the steps involved, and thus, allow them to scale to support larger user bases.
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Need for federated systems in computational
genomics

Federation is a popular data-sharing concept in instantiating
distributed cyberinfrastructures, with computational resources

provided by multiple institutions through a common, unified
portal. Clients access these resources without being made
aware of which of the partnering organizations is providing the
resource. Thus, the clients are relieved of much complexity,
such as, negotiating access rights with individual organizations,
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moving data back and forth among multiple sites and portabil-
ity of programs to process the data that are resident at multiple
organizations. This concept has found practical instantiation in
several widely used cyberinfrastructures, such as XSEDE, sup-
ported by the National Science Foundation (NSF) for providing
leading edge compute resources to scientists across the country,
and the Open Science Grid, supported jointly by the NSF and the
Department of Energy, geared toward high energy physicists.
Federation has been used in bioinformatics only to a limited ex-
tent, namely, federation of datastores, e.g. Gene Expression
Omnibus (GEO) for microarray, next-generation sequencing and
other forms of high-throughput functional genomics data. In
this article, we argue for the need to federate a greater number
of bioinformatics cyberinfrastructures. We show what are the
available computational tools that have been used successfully
for federation in other domains and then discuss the open re-
search challenges to adapt them to bioinformatics in general
and genomics in particular.

The field of computational genomics has grown in terms of
the sizes of data that it needs to process, raising the bar signifi-
cantly in terms of the computational and storage infrastructure
that it needs. This has resulted in some popular portals for
providing such resources to the community at large, such as
cBioPortal for Cancer Genomics, originally developed at
Memorial Sloan Kettering Cancer Center [1], the JGI Genome
Portal from the US Department of Energy [2] and the
metagenomics-RAST (MG-RAST) portal at Argonne National
Laboratory for metagenomics data storage and analysis [3]. It is
a metagenomics sequence data analysis platform, which ac-
cepts raw sequence data submission from freely registered
users and has an automated workglow with a series of bioinfor-
matics tools to process, analyze and interpret the data before re-
turning analysis results to users. MG-RAST is popular among a
number of scientific communities, such as microbiology, med-
ical science, pharmacology, environmental science, ecology,
archeology and anthropology. It currently hosts roughly 280 K
data sets and has been highlighted in almost 2000 citations [4].
MG-RAST currently supports roughly 50 K annual users, with
roughly 500 of them actively using the infrastructure on a daily
basis. In terms of data, MG-RAST handles >4 terabase pairs (Tb)
of data per month and typically >300 user submissions per day.
One can readily imagine the significant amount of computa-
tional resources—processing, storage and networking that have
been brought to bear to support a public computational infra-
structure such as MG-RAST.

The model followed in all such portals, so far, has primarily
been for centralized compute and storage resources, provided by
the hosting organization. There are significant efficiencies that
have resulted from such centralization. Notably, there exists a
core well-trained staff, capable of managing the infrastructure
and lowering the costs for procuring and managing the infrastruc-
ture, resulting from the economies of scale. However, increasingly,
this model is being put under strain because of the exponentially
increasing sizes of the data sets and consequent increase in the
processing demands. This in turn is because of the democratiza-
tion of the process of generating genomics data, sparked by the
advances in next-generation sequencing technologies. Now, more
than ever, there are large numbers of domain scientists who can
generate the primary data and wish to perform analysis of the
data using a validated pipeline of mature bioinformatics software
packages, on a remote computation-rich environment.

In addition to this need for remote resources, there is an im-
petus to leverage resources available at the local organization.
First, the volume of data is large such that it is not unusual to

have petabytes of sequencing data being processed regularly at
medium-sized laboratories. Therefore, it may be more efficient
to have a local instantiation of the pipeline, so that data does
not have to leave the premises. Another common use case is
the need to share some specialized software packages that are
locally installed, either with the community at large or with a
select group of remote collaborators. Finally, there are privacy
concerns about genomics data, and because of policies, either
organizational or even national, it may be advisable to keep the
sensitive portion of the data local. These use cases point dir-
ectly to the need for federation of genomics pipelines.

Federation has been defined in the context of clouds [5] and
that definition is useful in our context:

‘Federation is the ability of multiple independent resources to act
like a single resource. Cloud computing itself is a federation of re-
sources, so the many assets, identities, configurations and other
details of a cloud computing solution must be federated to make
cloud computing practical’.

Going further back [6], federation in the context of enterprise
architectures was defined as:

‘Federated architecture describes an approach to enterprise archi-
tecture that allows interoperability and information sharing be-
tween semi-autonomous business units’.

A federation is thus seemingly a simple idea: it allows the
end users to transparently access a set of resources and ser-
vices, distributed among several independent service providers.
However, there are several subtleties and technical design op-
tions in this space, which can be summarized under four or-
thogonal factors:

1. Which resources are to be federated?
2. What degree of access to allow to which end users?
3. What guarantees about reliability, security and privacy are

to be provided to end users?
4. What level of integration is to be achieved among resources at

various organizations contributing resources to the federation?

Achieving federation involves multiple technical and policy
steps, including simple policy definitions for granting privilege
and runtime access and federated identity management (FIM)
for the authentication and authorization of principals in the
federated infrastructure. It also involves definition of simple
privacy policies, specialized to the genomics world, and seam-
less integration of privacy-preserving transforms into the gen-
omics workflow. We describe our vision of federating genomic
workflows, using the existing, widely used metagenomics por-
tal, MG-RAST, as our exemplar. We describe the initial steps we
are taking toward that vision, the broad challenges that we see
moving forward to federating any computational genomics in-
frastructure and the technical solution approaches that can be
adapted to solve these challenges.

Genomic data deluge and federation of
genomics pipelines

Genomics has recently been described as a Big Data domain
that presents itself as a ‘four-headed beast’ [7], given its need
for huge resources for acquisition, storage, distribution and ana-
lysis. Briefly, data acquisition in genomics is both distributed,
given the democratization of next-generation sequencing in-
struments, and highly heterogeneous, stemming from the idio-
syncratic genomic data formats. As per the current data
generation estimates, which records a doubling every 7 months,
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it is estimated that we will reach one zettabase (roughly 1000
exabases) of sequence per year by the year 2025. This has re-
sulted in similar data-wrangling strategies that particle physi-
cists at Conseil Européen pour la Recherche Nucléaire (CERN),
and astronomers have dealt with in the past decades. Further,
although in this article we will focus on genomic and metage-
nomic data, biological data are intrinsically even more diverse,
with proteomic, chemogenomic and clinical data, such as from
medical records [e.g. electronic health record (EHR) data sets],
well within its ambit. Now, narrowing down to just genomic
data, even a single human genome with 3.2 billion DNA base
pairs, is roughly 140 gigabytes in size, which is on the lower end
of the spectrum, considering a lower-than-desired 20� cover-
age. This would also include the information that is stored
about the bases that are sequenced. While there are ways to
compress these data [8] and the storage density continues to in-
crease [9], this is still a pain point. Beyond storage of the data,
consider the computational cost of analyzing the genomic data.
A simple and ubiquitous form of analysis is aligning two gen-
omic sequences to determine similarities and differences. Using
the de facto standard software, BLAST, for local alignment of two
100 Mbp sequences takes >1 h [10] on a 4 node, 64 core cluster,
and the computational time grows exponentially >2 Mbp se-
quences. For reference, a single human chromosome, chromo-
some 1, the largest of the lot, is �250 Mbp. Suffice it to say, the
computational burden of analyzing genomic sequences has be-
come prohibitive for most small- to mid-sized organizations.
Recently, we have come up with a creative way of recognizing
common kernels across a large set of computational genomics
algorithms and combining these kernels using an engineered
compiler—Sarvavid [11], which performs genomic domain-
specific optimizations. This is in stark contrast to existing gen-
omic applications, which are primarily written in a monolithic
manner, and therefore, not easily amenable to automatic opti-
mizations. Along similar lines, use of federated cyberinfrastruc-
tures both for generated data—confronting the small-N
problem, often plaguing genomics data sets—and for computa-
tional resources, given the ready expansion and evolution of
genomics data, is an attractive solution.

General architecture of federated systems

In Figure 1, we show the four aspects of federating a genomics
infrastructure, which has computation and storage assets. We
outline the basic motivation for why, we and others in the
community, are considering federation, the foundational tech-
nologies that are crucial to federation, a possible step-wise de-
ployment strategy to move a current production nonfederated
infrastructure to a federated one and, finally, the technical chal-
lenges, as we see them.

Federation of heterogeneous computing resources and stor-
age systems requires us to address two broad issues in the area
of security and distribution, which are (i) access privilege con-
trols and (ii) use of a distributed set of resources. The access priv-
ilege control becomes necessary because a user is intended to
simultaneously use multiple resources where access privilege to
the user may vary and the user can follow the bring-your-own-
identity (BYOI) paradigm. A federation system must provide an
autonomic way by which a user can access each resource at the
right level of privilege. The distribution issue is fundamental to
federation because the computational resources are distributed
and potentially may belong to different participating organiza-
tions. A sub-issue here is the data exchange with potentially
different data representations across resources. A federation
system is responsible for interconnecting heterogeneous re-
sources and providing an abstraction layer that transforms data
from one format to another. This issue is particularly relevant in
our context because of the presence of multiple data formats in
the area of genomics, all belonging to different standards [12].

To deal with these issues, a federation system is typically
structured as shown in Figure 2. An end user is first authenti-
cated by a single sign-on (SSO) server using login credentials (e.g.
user id and password). Then, the SSO server maintains a session
that authenticates the user for all federated resources. The feder-
ation management middleware is an abstraction that hides inte-
gration complexities, and provides users with unified interfaces
to heterogeneous resources. When a user tries to use a resource,
the middleware layer retrieves the specific authentication cre-
dentials from the SSO server and accesses the resource with the

Figure 1. The quad chart shows the motivation—why we want to explore federation for computational infrastructures for genomics workflows. It then shows the

supporting technologies that federation of genomics pipelines can build on. Next, we show a step-wise deployment strategy to take a current production, nonfederated

infrastructure, and make it federated. Finally, we show the challenges in federating such an infrastructure.
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predefined privileges for that level of user. Resource-specific
communication protocols and data representations are also con-
verted by the middleware, which communicates with the under-
lying resources and transforms the query and response between
users and resources and between heterogeneous resources.

Foundational technologies to establish a
federated infrastructure
Federated identity management

A starting point to accessing the federated system will be the
use of an FIM system, such as InCommon [13], for the local re-
source providers and consumers alike. The workflow pertaining
to such a system would be as follows: first, a user clicks on a
Service Provider’s resource. Using federation SSO software, the
user is authenticated by her Identity Provider, which releases
only enough identity data to allow the Service Provider to make
a decision about whether to allow access to the user. Second,
the Service Provider uses the minimum identity information ne-
cessary to control access to the resource. Challenges would in-
volve negotiation between the service and identity provider and
some understanding of an OASIS Security Assertion Markup
Language (SAML, pronounced SAMeL), such as, Shibboleth [14].

FIM versus SSO
FIM means all the policies, protocols and technologies in place
that enable users of one security domain to seamlessly access
resources in another domain. The SSO is one particular form of
FIM pertaining only to authentication. With SSO, a user is
uniquely recognized by each of the domains enrolled in the fed-
eration system. When the user signs into the gateway system
(i.e. SSO server), the SSO solution replays log-in credentials for
every domain, eliminating further log-in prompts when the
user switches domains. Thus, this approach would be useful
when we federate security domains, each of which has already
has a unique log-in system.

FIM and decentralized identity management
Another form of FIM is what is often referred to as identity fed-
eration. Although identity federation looks like SSO to end

users, it is different in how authentication is made. In the iden-
tity federation system, log-in credentials of each user are only
known to a front-end system, and the federation server passes
on the initial token using one of the standard identity protocols,
such as SAML, OpenID, WS-Trust, WS-Federation or OAuth.
Each security domain joining the federation is not aware of the
user identity. Instead, it trusts and accepts the credential
passed on from the front-end server. Such a solution has an ad-
vantage over SSO in that a user is required to sign up only once
at the front-end server. Thus, it is suitable when we add a newly
established resource into an existing federation, or when many
organizations agree to join a new federation system. Figure 3
summarizes the difference between the SSO and the identity
federation. Use of FIM standards can reduce development cost
and increase security and privacy compliance. FIM platforms
that use formal Internet standards include OAuth [15], OpenID
[16] and InCommon [13].

Software-defined network

Federation systems often require to apply a different policy to
route each individual flow between two end points. This is be-
cause Quality of Service requirements may vary depending on
user privileges. For example, one flow may need a lot higher band-
width than others because of its higher priority or larger volumes
of streaming data. However, with the static architecture of trad-
itional networks, it is hard to change the routing policy dynamic-
ally. This issue can be addressed with an emerging architecture of
networking technology, called software-defined networking (SDN)
[17]. This architecture decouples the network control layer and the
data layer (the traditional routers that forward packets efficiently).
By separating the control logic from forwarding devices, the idea
is that the control of networks can be centralized and simplified.

Figure 4 shows a high-level overview of an SDN framework.
In the figure, the control layer offers a centralized view of the
overall network and enables network administrators to directly
program the underlying forwarding devices (routers and
switches) deciding how to forward each and every network traf-
fic. Southbound application program interfaces (APIs) mean the
interface by which the control layer relays information to for-
warding devices. There exist several software solutions for this

Figure 2. Overview of resource federation. The SSO server authenticates end users, and eliminates further prompts when the users switch between resources.

The federation management middleware provides users with unified interfaces to heterogeneous resources, potentially located at different organizations.
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purpose, which include OpenFlow [18] and Cisco Open Network
Environment [19]. Northbound APIs enable the control layer to
communicate with the application. These help network admin-
istrators to shape traffic and deploy services according to appli-
cation requirement.

With programmable networks that can dynamically provi-
sion resources to address the changing needs of applications,
SDN can resolve some issues that arise with federation systems.
First of all, SDN can enable efficient routing among resources.
Depending on the characteristic of a data flow, we can set up the
fastest route between two resources, or a certain number of
intermediate nodes to provide in-network processing, e.g. to fil-
ter the data, thus reducing the pressure on the network. The
centralized control enabled by SDN will also be able to improve
the security of a federation system. For example, the central con-
troller can redirect specific suspect flows to an intrusion detec-
tion system or a distributed denial-of-service detection system,
allowing us to monitor events in a dynamic environment. In fed-
eration systems, we need to specify which user can access what
resource. This kind of access privilege control is written by ac-
cess control list (ACL) rules that define permissions attached to
objects, which could be programs, processes, files, port numbers
or IP addresses. SDN can provide a convenient way to execute
the ACL rules by making the control layer decide whether a cer-
tain resource request from an application should be forwarded.

Data federation platforms

Data federation platforms (DFPs) include communication proto-
col wrapper and data representation wrapper that provide a

uniform user interface, enabling exchange of data in different
formats across heterogeneous resources. Another important
functionality of DFPs is to create a virtual database and then
map a user query into multiple suboperations, each of which is
redirected to a corresponding federated database. This is akin to
shards of data being kept in different datastores, but here, the
volume is higher for each database, and they may be geographic-
ally distributed (and often will be). Thus, DFPs should be able to
identify which databases are involved in the response to a user
query, and figure out how to transform the heterogeneous repre-
sentations of the sources. To this end, DFPs collect metadata
that describes the structure of the original data and places it into
the virtual database as well. Metadata is critical in genomics and
metagenomics contexts and represents the in-depth, controlled
description of the sample that the submitted sequence was
taken from. Essentially, metadata captures the ‘what, where,
how, and when’ of the user’s study from collection to sequence
generation, plus contextual data such as environmental condi-
tions (latitude, longitude, temperature) or clinical observations.

Resource scheduler

To manage the federated resources efficiently, one will need to
assign the optimal resources required to deliver the job re-
quested by a user. The software package responsible for this is
called a resource scheduler. Formally, resource scheduling can
be said to find the optimal mapping by which user-requested
jobs are assigned to multiple resources available in such a way
that a vector of objectives is maximized in a Pareto-optimal
sense. The objectives considered in the resource scheduler typic-
ally include time to complete a job, energy consumption, cost-ef-
fectiveness and fair use of resources from various institutions.
There are many resource schedulers available for distributed in-
frastructures, such as Portable Batch System and SLURM. The
domain-specific challenge here will be that many bioinformatics
infrastructures are not built to a standard specification that they
can interface with these existing schedulers that were built for
the High Performance Computing domain. Further, because of
privacy concerns (detailed later in ‘Considerations for privacy
with ubiquitous data storage and federation’ section), the sched-
ulers may have an additional constraint, such as data cannot
leave the computational assets of a particular organization.

Experiences from MG-RAST

The field of metagenomics encompasses the sequencing and
analysis of the total microbial DNA, sampled directly from the
environment. This culture-independent analysis of the metage-
nome, i.e. of the genetic material from this microbial potpourri,
has transformed the study of microbial communities, affording
the ability to study >99% of unculturable prokaryotes, present
in various environments. Since 2008, the metagenomics RAST
(MG-RAST) pipeline has served as a de facto repository and ana-
lysis provider for the exponentially increasing amount of meta-
genomic data sets [4]. Today, it is the most widely used
metagenomic analysis resource and data portal. The system
supports computing, informatics and Big Data Science for mi-
crobial communities. On a daily basis, >300 registered users use
the system for complex data analysis. The rapid growth in the
total number of users of the MG-RAST system can be seen from
Figure 5, showing a 230% growth in the past 5 years (April 2012
to April 2017). This historical trend, coupled with the expect-
ation of future growth, is an important driver toward the design
of a federated system for MG-RAST.

(a)

(b)

Figure 3. High-level comparison between SSO and identity federation. Here, the

(red) dot denotes when a user needs to switch from resource 1 to resource 2.

Figure 4. SDN framework.
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Motivation for federation

The success of MG-RAST motivated us to explore the possibility
of federating this resource. In Figure 6, we show the MG-RAST
annotation pipeline, which supports amplicon (‘who is there’),
shotgun data analysis (‘what is the genomic functional poten-
tial of the microbes’) and metatranscriptomics (‘who is doing
what’). The MG-RAST pipeline is composed of three conceptual
steps: quality control, data reduction and analysis. Some ex-
amples of computational tools being used are Bowtie, a se-
quence alignment tool [20]; gene prediction uses FragGeneScan,
a hidden Markov model-based gene prediction tool for short
and error-prone sequences [21]; and clustering uses UCLUST
[22] or CD-HIT [23], a search-based clustering tool. The protein
and RNA identification uses another sequence alignment tool
named BLAT [24], and more recently, being replaced by
DIAMOND [25]. One common characteristic of these tools is that
they are computationally demanding. An approximate measure
of our computational cost for the entire pipeline is 430 000 core
hours per terabase pair of input sequences. The approximate
computation cost, assuming Amazon’s EC2 pricing, would be
$1500 per gigabase pair (Amazon EC2 standard prices for
general-purpose workload m4.16xlarge as of May 2017). As the
volume of user requests for sequencing increases, there is a
need for a greater number of compute cores, and this stresses
the current infrastructure. Currently, the computational re-
sources are provided by the DOE Magellan cloud computing en-
vironment at Argonne National Laboratory. It is a large high-
performance computing platform used to run data-intensive
computing workloads. In raw form, it is made up of 504 general-
purpose Intel Nehalem nodes, 200 ‘active’ compute/storage
nodes and 50 GPU nodes. It has over 42 TB of RAM and almost
2 PB of storage. However, it is used in shared mode by MG-RAST,
and therefore, there is pressure to use more federated comput-
ing resources.

The popularity of MG-RAST is also straining the storage re-
sources. The repository today has grown to 40 696 public and

279 663 total metagenomes, containing >1 trillion sequences
and 131.28 Tb, which translates to roughly 600 Tb of storage
required. Further, the size of the derived data relative to the pri-
mary sequence data uploaded by the user is often an order of
magnitude (or more) larger in size. This happens because of the
additional annotations and metadata generation that happens,
such as the phylogenetic and functional assignments of the
metagenome being analyzed. This has the multiplier effect on
the storage requirements, as more data sets are uploaded by
users for analysis and storage.

To accommodate the increasing demands on compute and
storage resources, we plan to federate the MG-RAST infrastruc-
ture in three stages. These three stages form a template for fed-
erating any Web-based bioinformatics resource, where the
following three conditions need to be satisfied.

1. There is pressure on multiple categories of resources.
2. The resource is a production resource and a downtime be-

cause of federation, either at deployment or during oper-
ation, is not desirable.

3. There is some notion of authoritative results or data set at a
‘master’ site for the purposes of public download. Thus, not
all contributing sites in the federation are peers; the master
site enjoys an elevated status.

Stages in federating a production infrastructure

Federation is best rolled out in stages, to understand the chal-
lenges, in a point-by-point manner, from the stance of the pro-
duction engineers as well as to educate its wide and diverse
userbase, facilitating the usage and value proposition of the
newly minted federated entity. Thus, we propose to move a
centralized infrastructure to a federated one using a progres-
sive, three-stage approach. These stages are in increasing order
of complexity and equivalently, increasing degree of decentral-
ization. The goal is to use resources (compute and storage in
our case) at the participating institutions to support the end-

Figure 5. The growth in the total number of users in the MG-RAST metagenomics system. The continued growth and the resultant pressure on the computational

resources are important motivators for moving toward federating the system.
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user functionality (metagenomic uploads, queries and down-
loads in our case). We refer to the sites as ‘central site’ and ‘par-
ticipant sites’. We summarize the three stages across various
dimensions in Table 1.

Stage 1: Central compute and data, local data access
In this, the compute resources and the data are at the central

site, with some local data staying at the participant sites. These
are data owned by users at the participant site. Some stages of
the computational pipeline (executed at the central site in its en-
tirety) can access local data and store the output at the partici-
pant site. The data at the central site are thus not all inclusive.
This best represents the current stage of the MG-RAST federation
process with Argonne National Lab serving as the central site
and Purdue University serving as the participant site.

Stage 2: Central compute and data, peer data access
In this stage, the compute resources and the data are at the

central site, with some local data staying at the participant
sites. The local data can be accessed by other participant sites,
in a peering relationship. The central site has a directory-like
structure for the data at the local structures that facilitates dis-
covery of the data by the participant sites.

Stage 3: Central compute and data, peer data and compute
access

In this stage, in addition to Stage 2, some parts of the pipe-
line may execute on computational resources at participant
sites. With a more decentralized approach and with less sensi-
tive data, the compute resources at participant site may process
data belonging to a different participant site.

Common to all the three stages is that the central site keeps
some of the authoritative data. This includes the golden data
sets for benchmarking purposes (such as for execution time or
the accuracy of any stage of the pipeline or of the overall

pipeline), the results of the benchmarking, and reference data
sets that are used for similarity computation.

Technologies specific to MG-RAST federation

In addition to the foundational technologies mentioned earlier
(‘Foundational technologies to establish a federated infrastruc-
ture’ section) that can facilitate federation in any genomics
pipeline, we comment on some specific aspects of MG-RAST
that eases the path to federation. For further details of these
MG-RAST elements, the reader is referred to [4].

• Sharded object store: MG-RAST uses SHOCK, a specialized object stor-

age for metagenomic data. Each object has metadata associated

with the data, stored alongside the data and retrievable through a

single query. The fine-grained object store helps in distribution, rela-

tive to a monolithic object store. Different parts of the object store

can be stored in different organizations’ storage infrastructures.
• Workflow engine: MG-RAST uses a workflow management system

called argonne workflow engine (AWE) that has been specialized

to its processing pipeline. It manages and executes workflows

submitted by MG-RAST users. AWE models application-related

concepts into three hierarchical elements: job, task, and work

unit. A job, characterized by its input data, and workflow descrip-

tion (e.g. data dependencies), are parsed into task. A task repre-

sents a certain data analysis operation. A task can be split into

multiple work units running the same command on different

parts of the input data. AWE manages and executes these elem-

ents in a coordinated and automated fashion. With a federated

infrastructure, the identical pipeline in its entirety can be exe-

cuted at different organizations’ compute infrastructure on local

Figure 6. The MG-RAST pipeline showing the various software stages involved with quality control, data reduction and analysis. Each stage of the pipeline may run on

computational resources at participant sites and access data at participant sites, under the full federation model.

Table 1. Characterization of the three stages of federation, as would be applicable to a production bioinformatics computation and data
infrastructure

Stage Degree of
federation

Scalability Complexity
deployment

Complexity
operation

Technology
maturity

Stage 1: Central compute and data, local data access Low Medium Low Medium High
Stage 2: Central compute and data, peer data access Medium Medium Medium Medium High
Stage 3: Central compute and data, peer compute

and data access
High High Medium Hi Medium

Note: Deg. of fed.: degree of federation (i.e. the complement of the degree of centralization). scalability: Ability to scale with increasing number of users. Complexity-d:

Complexity of the deployment. Complexity-o: Complexity of the operation. Technology maturity: Maturity level currently of the technologies needed to support this

stage of federation.
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data sets. Under a more nuanced use case, different parts of the

same pipeline may be executed at different organizations.
• Use of containerization solutions along with orchestration: A container

solution, like Docker or LXC (Linux Containers), helps in packag-

ing up the software, along with its dependencies, and instantiat-

ing it at different organizations’ infrastructures. The necessary

orchestration for the containers—which container goes where,

how to start one, how to terminate one, how to change access

levels to one, how to update one, etc.—can be done by another

software package such as Kubernetes. In its current instanti-

ation, MG-RAST uses Skyport [26], which is built on top of Docker

containers to solve software deployment problems and resource

utilization inefficiencies inherent to all existing scientific work-

flow platforms. Working in concert with AWE/Shock, Skyport re-

duces the complexity associated with providing the

environment necessary to execute complex workflows.
• Use of APIs: The entire end-to-end functionality is implemented

as a Web service so as to make it easy to integrate with other

genomics analysis pipelines, thus enabling automation. API calls

can now be made from multiple organizations. The idea of using

API is important for two reasons: use of existing code and, im-

portantly and somewhat atypically, use of precomputed data

products, e.g. if someone has precomputed high fidelity gene

similarity scores, and my data have a subset of those genes, I do

not need to perform on my infrastructure, the expensive, and

perhaps, lower-quality, gene similarity computation.

Considerations for privacy with ubiquitous
data storage and federation

In the health-care field, we can envision the personalization
pyramid, akin to specializations in consumer services such as
in online marketing over the past decade or so. This trend
started off with the conventional universal services, with indi-
vidualized services next, and finally topping off with personal-
ized services. The difference between individualized and
personalized services is that while individualized services are
primarily context-based, in the latter, one has to combine the
context-based data with the EHRs for the patient. While the
diagnosis that such specific data sets will result in may be pre-
cise, it also means that the access to and update of such EHR
should be seamless, and preferably, amenable to health-care
providers in the network. Imagine a person from Purdue (West
Lafayette, Indiana, USA) travels to Rio (Brazil) and falls sick
there. The greater the flexibility and accessibility we desire in
this scenario, the greater would the risk of adversarial attack be,
making the data sets widely available, of course, in an authenti-
cated manner. Thus, although the economic and reparative po-
tential of personalization seems appealing to general human
health and welfare, the possible leakage of personal health-care
data has been a continuous worry to consumers or patients,
and rightly so, because breaches have occurred and with some
regularity [27, 28]. Thus, with the exponential increase of per-
sonal digital health-care data, propelled by the slashing costs,
and the need for better data security, without marginalizing ac-
cessibility and control, comes the need for sophisticated
privacy-preserving transforms in the area. Interestingly, in the
specific metagenomics case, for example, it has been found that
‘gut print’ or collective microbiomes colonizing a human body
can uniquely identify individuals [29]. Thus, with the micro-
biome’s influence on human health and behavior coming to the
fore, given its health-predictive abilities and publicly available
data from projects, such as National Institutes of Health (NIH)
human microbiome project, privacy concerns are inevitable yet

again. Thus, while an overreaction could slow microbiome re-
search, putting in place privacy-enabling platforms from the
get-go is prudent, rather than removing information after loop-
holes are identified, what some call the whack-a-mole reaction.
To this end, we highlight below some of the privacy guarantees
to propagate our vision of adaptive and seamless privacy, which
may be imperative in the genomics context, albeit, sacrificing
some functionality, access or accuracy.

Configurable data desensitization

While transparent data encryption (TDE) is an important technol-
ogy used to solve the problems of data security, TDE can protect
data but only if the data stay within the approved science work-
flow. The goal here is that data can be accessed when an author-
ized user executes a certified program on an approved science
workflow or program. However, sometimes, it is necessary to
share the data outside the context of the workflow, e.g. with the
scientific public, or with a broad class of recipients who want to
use programs and computing platforms, but whose credentials
have not been verified. In such cases, configurable data desensi-
tization support aims at data protection. For different kinds of
data, different requirements for desensitization exist. For some
data relating to individuals, de-identification in the form of remov-
ing explicit identifiers and generalization of the data to satisfy k-
anonymization might suffice. For other kinds, it may be desirable
to process the data in a way that satisfies differential privacy.

Possible data desensitization approaches

Many data privacy techniques have been developed in the re-
search community. They were designed to achieve different priv-
acy objectives. While it has been recognized that syntactic
privacy properties, such as k-anonymity [30] and l-diversity [31],
have some fundamental limitations, specific anonymization al-
gorithms can nonetheless provide privacy protection [32]. No sin-
gle privacy notion or technique is universally applicable. For
example, if one’s goal is to prevent the adversary from learning
some attribute value in a record, then satisfying differential priv-
acy may be insufficient because of correlation among the differ-
ent attribute values or records. On the other hand, if one’s goal is
to approximate the effect of opting out, then applying differential
privacy, with appropriate parameters, achieves the effect. Below,
we discuss some techniques in the research biosphere.

Anonymization approaches

Several microdata anonymization techniques have been pro-
posed. The most popular ones are generalization [33, 30] for k-
anonymity [30] and bucketization [34, 35, 36] for l-diversity.
Generalization transforms the quasi-identifiers (QI) values in each
bucket into ‘less specific but semantically consistent’ values, so
that tuples in the same bucket cannot be distinguished by their QI
values. In bucketization, one separates the sensitive attributes
(SAs) from the QIs by randomly permuting the SA values in each
bucket. In our prior work [37], we introduced a technique called
slicing, which combines generalization and bucketing and parti-
tions the data set both vertically and horizontally. Vertical parti-
tioning is done by grouping attributes into columns based on the
correlations among the attributes. Each column contains a subset
of attributes that are highly correlated. Horizontal partitioning is
done by grouping tuples into buckets. Finally, within each bucket,
values in each column are randomly permuted (or sorted) to break
the linking among different columns. Integration of such data
anonymization techniques would work well in science workflows.
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Approaches for satisfying differential privacy

Differential privacy is appropriate when one’s goal is to approxi-
mate the effect of individuals ‘opting out’. For a low-dimensional
data set, a standard approach is to publish a histogram of the
data set; this problem has been extensively studied [38–46].

When going beyond data sets with one or two dimensions,
publishing data sets becomes challenging. In [37], we have
studied data sets with binary attributes and introduced the
PriView approach, which selects a number of ‘views’, then pro-
jects the data set onto these different views and publishes noisy
versions of these views. From these noisy views, one can recon-
struct an arbitrary marginal table of the input data. This pro-
vides a useful summary of the data and enables many kinds of
statistical analysis on the data. For genomic data privacy, one
would need to extend this technique to deal with nonbinary at-
tributes, by developing techniques to deal with numerical attri-
butes. We propose to also exploit the exponential mechanism
[47] in the view selection mechanism to select marginal tables
that are not well approximated by existing views.

Future research challenges to federation in
bioinformatics infrastructures

We can discuss the future challenges for federation in bioinfor-
matics infrastructures broadly under four categories.

• Policy issues: This refers to challenges in ironing out policies that

guide access to the resources, and specifically the data sets. The

particular importance of data-sharing policy is because of the

fact that in many cases, the data may be sensitive, e.g. because

of having private genetic information. The policies will have to

spell out the access rights to different classes of users as well as

secondary uses of the data, including policies for sharing of

derived data products.
• Diversity of computational codes and data formats: There is a wide

variety of computational codes that are meant to achieve almost

equivalent functionality. These differ because of various factors,

such as compatibility with some hardware (e.g. sequencing plat-

form), dealing with different error rates, dealing with different

data formats or simply because competitive tools arose in mul-

tiple different organizations. Alongside this, there is a wide var-

iety of data formats for representing similar data. This raises the

challenge that in a federated infrastructure, different software

would have to coexist, exchanging data in one or more from the

varied set of formats.
• Predictable resource utilization: Till date, it has been a challenge to

predict how much computational resource will be required to

satisfy a set of user requests. This arises because the amount of

processing is often dependent on the content of the query [48].

Further, there has not been much work in characterizing the re-

source utilization of bioinformatics software under various oper-

ational environments, such as with parallel software running on

a cluster of machines, or with software running on accelerator-

equipped nodes (such as a CPU equipped with a GPU card). This

means that it is currently a challenge to schedule workflows on

available federated resources, while guaranteeing (even probabil-

istically) properties like minimum job completion time or fair

use of resources.
• Personnel issues: There is the need for specialized in-house com-

puter administration expertise, geared toward handling feder-

ation issues. Such administrators will have to learn the

foundational technologies mentioned above that they may be

unaware of. It has often been observed that the bioinformatics

organizations are chronically understaffed with respect to

computer administrators. The new requirements put in by feder-

ation may exacerbate the situation.

Key Points

• Federation of cyberinfrastructures allows multiple or-
ganizations to contribute resources (computation, stor-
age, data sets, etc.) to a shared pool. Users can use the
cyberinfrastructure without concern for which organ-
ization has contributed which resource.

• Federation in the bioinformatics area has only been
used to a limited context, primarily, to store large biolo-
gical data sets.

• For genomics, because of the large volumes of sequenc-
ing information being made available through sequen-
cers, it is important to federate computational resources,
software and datastores, to keep the throughput of the
analysis pipeline high.

• We lay out the design choices in designing a federated
infrastructure for genomics, using as an example, MG-
RAST, the most popular metagenomics portal and ana-
lysis pipeline.

• We lay out the technological building blocks that are avail-
able today, and the further research challenges needed to
enable a true federated bioinformatics infrastructure.
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