EEEEEEEE
EEEEEEEEE
NNNNNNNN
AAAAAAAAAA

LLNL-TR-781020

Diablo Test Suite: Code
Coverage Analysis

R. K. Ganeriwala

July 11, 2019

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

B Lawrence Livermore

National Laboratory DlablO TeSt Suite: Code
Coverage Analysis

Rishi Ganeriwala

July 3, 2019

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States government or Lawrence
Livermore National Security, LLC. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States government or Lawrence Livermore
National Security, LLC, and shall not be used for advertising or product endorsement purposes.

Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security,
LLC, for the U.S. Department of Energy, National Nuclear Security Administration under
Contract DE-AC52-07NA27344.

Lawrence Livermore National Laboratory Page 2 of 14

Table of Contents

EXECULIVE SUMMQAIY ...vvveeuirvreriiririeiininiiiirisiesinisssississssisisssissmssasssns 4
101 To [7 ot 1 Lo o T 5
1 L2 Lo To [Lo o | 5
Results from Code Coverage ANQIYSiS...........cccevvueeeuiiiriiveenussissnnsesnesisssmmsssssssssssssssssssssssssssssses 7
Code CoOVErage StatisStiCsiiiieuuuiiiiiiiiiiiiienuiiiiiiniiiiiessiiiiiniiineesseiiiieiiimesssssssssssstsssssssssssssssssssssssanes 7
Untested features not expected to be covered........ccccvvviiiiiiiiiiiinniiiiiiniiiieiessees 8
Untested features that have Niche USeciiiiiiiiiiiiiiiniiiiin s sesseees 9
Untested features that may be used by the general analyst community......ccccccooviiireeiniiiiiininineennnen. 9
Conclusions and RecommeNndationscceeeevvevererrerieeeeeeeeeeeesussisissississssssssssnssessessessens 11
2= (= (=2 Lo = 12
Appendix A: Developer Instructions for Determining Code Coveragecccueueereeeneenn... 13
Steps for running code coverage analysiscveeciiiiiiiiiieenuniiiiiiiiiesess 13
EXclude file KeYWOIrdS......ccciiiiiiimimiiiiiiiiiiiiiiniiiiiiiiinininsiieiiiieismmsseeiimeessmmsssssiieesssmssssssesssesnss 13

Lawrence Livermore National Laboratory Page 3 of 14

Executive Summary

An analysis of the Diablo source code covered by its Software Quality Assurance test suite was
performed. Intel’s code coverage tool was used to determine the percentage of covered files,
blocks, and functions. Excluding non-functional legacy files and single use developer-only files,
the code coverage tool showed that 55% of blocks, the most applicable metric and closest to
lines of code, are covered. For a large software code, 70-80% coverage is generally considered a
reasonable target.

A significant percentage of the uncovered code can be categorized as features that are not
practical to test, duplicate/unused legacy code, and niche features only used by select individuals.
Additionally, large segments of code dedicated to debugging and error handling are untested, as
the test problems do not error out. The remaining untested code can be considered general
purpose for use by the analyst/user community. These untested general purpose features are
identified in the document and should be prioritized when new testing is added. Suggestions for
additional test problems that would have the biggest impact on increasing the code coverage
metric are presented.

Finally, it is important to note that the single biggest way to increase the overall coverage metric
is to delete old and unused code. While admittedly tedious to perform, future code development
would also benefit markedly from this. Deleting unused code would likely push the coverage
metric north of 60%, which is not too far off the 70-80% target. Overall, the current test suite
covers the majority of commonly used features in Diablo, but there remains significant room for
improvement. These areas for improvement have been identified.

Lawrence Livermore National Laboratory Page 4 of 14

Introduction

For Software Quality Assurance, it is important to test all aspects of an existing piece of
software. These tests should be designed to run quickly and in parallel. Ideally these tests would
cover 100% of the code to ensure every line was functioning as desired. However, this is often
not practically feasible. Instead, code coverage of 70-80% is a reasonable goal for most system
scale test suites [1]. Code coverage above this percentage offers diminishing returns and can
hinder development if too much effort is being put into designing tests for every niche scenario.
Additionally, it is important to realize that even code coverage of 100% does not mean the
software is bug free, as sometimes a particular combination of features may cause an issue even
if all those features function fine individually. Thus, the 70-80% metric is a reasonable goal to
set for a relatively large finite element code such as Diablo [2].

This document describes the analysis performed to determine how much of the existing Diablo
finite element code is covered by its test suite. First, a description of the methodology used to
perform this analysis using Intel’s Code Coverage Tool [3] is presented. After compiling Diablo
with code coverage options enabled and running the test suite using this special executable, an
overview of the code covered by the entire test suite is created. File-by-file analysis of the code
coverage is performed and areas where the Diablo test suite is lacking are identified. Note that
the Intel tool provides information at the block, function, and file level. A block is defined as a
loop or logical statement within the code, i.e. an “if” statement or “do” loop. A function is a self-
encompassing set of commands, i.e. a Fortran subroutine or function. A file is just that, an
individual file within the code.

This purpose of this document is to:

1. Describe the methodology used to perform the code coverage analysis,

2. Perform an in-depth analysis and summary to identify areas that are not adequately
tested within the existing test suite,

3. Recommend additional tests that will have the biggest impact on improving the
current code coverage,

4. Place a historical time stamp on the coverage statistics of the Diablo code as of the
date of this document.

Ideally the overall coverage of Diablo will increase as time goes on. Areas identified as not
covered by the test suite because they are no longer used may be stripped out of the code in the
future. Test problems that can have the most impact on increasing the overall code coverage
percentage should be prioritized.

Methodology

The Intel Code Coverage Tool was used to identify how much of the Diablo source code is
covered by the existing Diablo developers’ test suite. This tool uses the profile guided
optimization compilation options provided by the ifort (Fortran) and icc (C) Intel compilers. Use
of this tool requires adding some compile flags when building the Diablo executable. While the
vast majority of Diablo is written in Fortran, some high level files are written in C. In fact the
main driver function is in C, which then calls Fortran. For this reason, the necessary compile

Lawrence Livermore National Laboratory Page 5 of 14

flags were added to both the C and Fortran compiler specifications. As Diablo uses Python’s
SCons format to build the executable, the following flags were added when compiling with code
coverage enabled:

Fortran:
-prof-gen=srcpos -prof-dir=<build_directory>

C:
-prof-gen:srcpos -prof-dir=<build_directory>

Note the slight syntax difference in the Fortran vs. C flags. The “-prof-gen” flag creates the
profile guided optimization data which is used to determine code coverage. The “-prof-dir” flag
is used to specify the directory where all the profiling information is output to when the
executable is run. This is explicitly specified to be the build directory so it is easy to combine
them all later.

During compilation, a static profile information file “pgopt.spi” is created in the build directory.
Next we execute a script that runs the entire test suite. After execution of each test problem, a
dynamic profile information file, “*.dyn”, is created. Two “*.dyn” files are created for each test
problem since Diablo first partitions the problem, and then runs the simulation, requiring two
separate executable calls. A third one will be generated for restart tests.

Running the test suite with these extra compilation flags slows down execution, but not overly
so. The run-time increases by a factor of roughly 1.5x across the entire test suite, though this
varies from problem to problem. After all the tests have completed, the test directory is now
populated with hundreds of “*.dyn” files. These are combined into a single dynamic profile
information file using the “profmerge” command. This command automatically searches the
current working directory for all “*.dyn” files and combines them into a single file with the
default name “pgopt.dpi”, which contains all the dynamic profile information.

Finally, we run the code coverage tool using the command “codecov”. This will automatically
search the current working directory for the static profile information, “pgopt.spi”, and dynamic
profile information, “pgopt.dpi”, files. Using this information it will output HTML files
containing statistics and details about the code covered by the problems which were run.
Included in these files are both (1) high level details regarding the overall coverage statistics of
blocks, functions, and files in the entire code; and (2) information regarding the blocks and
functions covered within each file. The user can click on an individual file to see a line by line
coverage analysis, where uncovered sections of code are highlighted. The next section details
specifics about the code coverage in Diablo using the existing test suite.

Remark: Certain files are not expected to be tested, but are still present in the code due to legacy
reasons. These can be excluded via the use of the “-comp” flag when executing the “codecov”
command. This requires the creation of a text file identifying which files to include/exclude. An
example of this file, along with a summarized set of commands to run for Diablo developers, is
included in Appendix A.

Lawrence Livermore National Laboratory Page 6 of 14

Results from Code Coverage Analysis

Code coverage statistics
Table 1 summarizes the code coverage statistics for the entire Diablo source code. However, the
results in Table 1 include files in Diablo that are legacy and completely unused or unfunctional.
Thus, for the purpose of identifying a more applicable current code coverage metric, a second
coverage analysis was performed. In this second analysis (summarized in Table 2) any files
solely dedicated to the following categories were excluded, as they are not currently used and
there are no near-term plans to begin re-using these features:

e FElectrostatics,

e Magnetics,

e Thermal ablation (includes smooth analysis/mesh smoothing),

e Corrosion and surface kinetics Neumann BCs for thermal and advection/diffusion.

A couple other features are currently unused but may eventually be re-enabled in the future.
However, as these features are not considered functional at present, they were also excluded
from the second analysis:

e Residual based error estimation for adaptive mesh refinement (AMR),

¢ AMR in conjunction with contact.

Finally, a few special purpose features only used by select developers and not intended for use
by the general analyst community are also excluded from the second analysis:

e MatPro material models for Nuclear Energy Advanced Modeling and Simulation

(NEAMS) project,

e ITAPS code coupling for NEAMS,

e Lysmer viscous boundary condition for earthquake simulations,

e Bielak stress calculation routines for earthquake simulations,

e Exascale computing project (ECP) related code coupling.

Excluding files associated with the above categories, the more applicable code coverage statistics
are provided in Table 2. 85% of files within Diablo, 66% of functions/subroutines, and 55% of
blocks are at least partially covered by the test suite.

Remark: This number is still skewed to be lower than the actual code coverage since there was
no easy way to exclude blocks or functions dedicated to the above features within larger files.

Rather, it was only possible to exclude files solely dedicated to the above features by searching
over keywords in the filename. The excluded filename keywords are provided in Appendix A.

Table 1: Coverage statistics for entire Diablo source code

Files Functions Blocks

Total | Cvrd | Uncvrd | Cvrg% | Total | Cvrd | Uncvrd | Cvrg% Total Cvrd Uncvrd | Cvrg%

628 | 453 175 7213 | 4,928 | 2,860 | 2,068 58.04 | 269,000 | 137,776 | 131,224 | 51.22

Lawrence Livermore National Laboratory Page 7 of 14

Table 2: Coverage statistics for reduced Diablo source code (excludes unused and single

purpose developer-only files)

Files Functions Blocks
Total | Cvrd | Uncvrd | Cvrg% | Total | Cvrd | Uncvrd | Cvrg% Total Cvrd Uncvrd | Cvrg%
534 | 452 82 84.64 | 4,303 | 2,858 1,445 66.42 | 249,464 | 137,732 | 111,732 | 55.21

Regarding the remaining uncovered functions and blocks within the source code, we can

categorize these broadly into three categories:
Features not expected to be covered,
2. Features that have niche use,

1.

3. Features that may used by the general analyst community.

We will now go into more depth regarding each of these three categories.

Untested features not expected to be covered
A significant percentage of the remaining uncovered files, functions, and blocks relate to various
features we would not expect to be covered by the test suite, namely:

1.

NN RN

Blocks that generate error messages,

Situations that the code should not be able to enter (barring a memory leak),
Duplicate routines,

Types that merely define variables/parameters,
Old/unused NIKE functions and files,
Legacy code no longer used,

Debug print code,
Library interface routines which are defined in Diablo, but never actually called.

It is not reasonable to test for every bit of error checking placed in the code, and it is not possible
to test for error trapping put in place to ensure the code doesn’t go into places that are not
allowed (barring a memory leak). Additionally, in some files multiple subroutines were created

which have the same functionality. However, the old subroutine was left in place and never

deleted, presumably as a back-up in case there was a bug with the new subroutine. The largest

incidence of this bit of “double code” has to do with memory destructor routines. In older
sections of code, there is often one destructor routine that was manually put in place by the

developer of that file, and a second that was later automatically generated by running the
“DIABLO-RESTART” script. Obviously, only one of these two memory destructor routines

will ever be called in those files where two are present.

The fourth category the code coverage tool flags as uncovered are user-defined Fortran type

definitions which simply define a number of variables or parameters. As these bits of code never
actually get executed within a block (rather they act as always being defined), the code coverage
tool sees them as being uncovered. The fifth and sixth categories relate to unused functions and
files never actually called within Diablo. This includes a number of interpolation routines and
some stress material models ported over from NIKE, but never used as equivalent ones were
created in Diablo. Additionally, there are a number of write subroutines in material models that
never get called from within the code (presumably these are legacy of an old/outdated method of

Lawrence Livermore National Laboratory

Page 8 of 14

handling restart or code coupling). These legacy write subroutines are still present in nearly
every material model and contain a large number of unused blocks.

The seventh category is debug print code, which is placed in individual subroutines by
developers when trying to debug a feature, but never intended to be seen by the general user
community once that feature has been correctly implemented. The final category of untested
features that we wouldn’t expect to be covered relates to external libraries that Diablo links to
(e.g. linear solvers, exodus reader, MPI, Lua, etc.). Interface functions are created within Diablo
to map to the equivalent command in the library. However, some of these commands are
advanced features of the library never actually called within Diablo, even though the interface
function is defined.

Untested features that have niche use
Another category of features not covered by our current test suite may be classified as features
which have niche use. Some examples of this include:
1. Error estimation routines in material models not currently functional with AMR,
METIS advanced partitioning options,
Exodus mesh advanced read-in options,
HYPRE, WSMP, and PASTIX advanced solver options,
AM specific features,
Eulerian body load (EBL) options,
Lua functions for PID feedback control,
AMR by geometric refinement or material indicator,
Advection/diffusion related features (currently under active development/modification by
S. Castonguay),
10. LIS iterative linear solver (not commonly used).

A S ATl ol

As the above features are currently only used by developers and/or select other analysts, there is
less priority on increasing code coverage for them. This is not meant to justify these features
remaining untested, but rather is simply meant to state that increased testing of these features
would not have as much benefit on ensuring proper Software Quality Assurance for the general
analyst/user community.

Untested features that may be used by the general analyst community

The remainder of untested code in Diablo is applicable to the general analyst/user community; as
such these features should be assigned the highest priority for increased testing. The following
features in Diablo are either completely untested or only partially tested by the current test suite.

Outline 1: Untested features in use by the general analyst community
1. Material models
a. Stress materials
i. Stress 02 — orthotropic elastic
ii. Stress 08 — thermo-elastic-creep
iii. Stress 09 — power law plasticity
iv. Stress 11 — transient thermal creep
v. Stress 12 — Ramberg-Osgood elastic-plastic

Lawrence Livermore National Laboratory Page 9 of 14

vi. Nonlinear hardening options of Stress 27 (hyperelastic-plastic)
vii. Stress 63 — Ogden visco-hyperelastic
viii. Various viscosity options of Stress 67 (hyperelastic elastomeric foam with
viscoelasticity)
ix. Stress 70 — elastomeric foam
b. Thermal materials
i. Various options of Thermal 02 (orthotropic conduction) and Thermal 04
(temperature dependent orthotropic)
(1) User frame of reference for specifying axes
(2) Temperature functions via Lua
2. Boundary conditions
a. Thermal Neumann BCs
i. Bulk node enclosure
ii. Sublimation
b. Stress point BCs
c. Constraint BCs
Overlink Silo database writing for code coupling
Select Lua options
5. Certain HYPRE solvers and precoditioners
a. Solvers not tested: BoomerAMG, LGMRES
b. Preconditioners not tested: PILUT, EUCLID
6. Contact
a. Thermal contact
i. Augmented Lagrange
ii. Many Thermal 01 Contact material properties
iii. Node on segment thermal contact
b. Various mortar contact options
7. Element types
a. Beams
i. Stiffness and/or mass damping
ii. Various beam parameters
iii. Thermal (Topaz) beams
b. Shells
i. Thermal shells
ii. Stress 03 shells
iii. Stress 04 shells
iv. Various shell parameters
c. Hex elements with single point Gaussian integration
d. Degenerate tet elements
8. NEFC and element print block options
9. Basemotion rotation options
10. Diablo-Paradyn coupling
11. Initial acceleration for thermal mechanics
12. AMR with restart (many test problems in AMR suite don’t include restart)
13. Ragged (non-continuous) element and NEFC labeling

P

Lawrence Livermore National Laboratory Page 10 of 14

Conclusions and Recommendations

Intel’s code coverage tool was used to determine the percentage of covered files, blocks, and
functions in the Diablo source code by the developers’ Software Quality Assurance test suite.
Excluding non-functional legacy files and single use developer-only files, the code coverage tool
showed that 55% of blocks are covered. For thorough system scale code coverage of a large
FEA code such as Diablo, 70-80% coverage is seen as reasonable target.

However, even this 55% coverage metric is a bit misleading, as this includes many features that
are not practical to test and niche features only used by select individuals/developers. It also
includes a significant amount of duplicate and old/unused code that was not easily possible to
remove from the analysis. While it is difficult to quantify the effect of all these areas on the
exact code coverage metric, it is reasonable to assume that the overall coverage would increase
to slightly above 60% of blocks if all of these above mentioned areas could be excluded. This is
not too far away from the 70-80% target, and may be considered acceptable according to some
sources [4].

On the other hand, there remain a number of general purpose features which do not have
adequate coverage in the test suite. The highest priority for increasing code coverage should be
assigned to these features, presented in Outline 1. A few suggestions for ways to most increase
code coverage with the least effort are to either add or modify test problems to test for the
following features (in approximate order):

1. Hex 8 elements with single point integration,
LIS linear solver,
Overlink,
Contact (especially various mortar and thermal options),
Stress material models (often completely untested, e.g. stress 70 has over 1000 uncovered
blocks),
6. Shell elements for thermal, stress 03, and stress 04

Nk W

Finally, it is important to mention that the single biggest way to increase the overall coverage
metric is to delete old and unused code. For instance, the files “restart 10 HDF.F90” and
“restart 10 Interface.F90” have over 10,000 (!!) blocks combined, but appear to have been
completely replaced by “restart IO _HDF v2.F90”. Another example is the file
“pad_init_acc.F90” which has been completely replaced by new subroutines located in
“diablo_init.F90”. Since Diablo uses Git to track code changes, such legacy files and functions
can safely be deleted as the complete version history is saved. Doing this would require some
tedious editing throughout Diablo, but would significantly clean up the code and make future
development easier. Obviously, this would have the added benefit of making it easier to identify
the true code coverage metric for the Diablo test suite. Overall, it appears that the majority of
commonly used features within Diablo have adequate coverage by the existing test suite.
However, significant room for improvement remains.

Lawrence Livermore National Laboratory Page 11 of 14

References

[1] Cornett, Steve. Minimum Acceptable Code Coverage. Bullseye Testing Technology,
www.bullseye.com/minimum.html. Accessed 16 June 2019.

[2] Solberg, J. M., Hodge, N. E., Puso, M. A., Castonguay, S. T., Ganeriwala, R. K., and
Ferencz, R. M. Diablo: A Parallel, Implicit Multi-physics Finite Element Code for
Engineering Analysis User Manual, LLNL-SM-757180, Lawrence Livermore National
Laboratory, 2018.

[3] “Code Coverage Tool.” Intel® Fortran Compiler 19.0 Developer Guide and Reference, Intel,
29 Apr. 2019, software.intel.com/en-us/fortran-compiler-developer-guide-and-reference-

code-coverage-tool. Accessed 16 June 2019.

[4] Oloso, Hamid, and Kouatchou, Jules. “Code Coverage Tools.” Modeling Guru, NASA, 5
Mar. 2010, modelingguru.nasa.gov/docs/DOC-1828. Accessed 16 June 2019.

Lawrence Livermore National Laboratory Page 12 of 14

Appendix A: Developer Instructions for Determining Code Coverage

Steps for running code coverage analysis

The following steps summarize the commands a developer should use to perform a code

coverage analysis of the Diablo test suite.

1. Run “Buildcodecov.sh” in the Build directory to compile with code coverage options

enabled.

2. Run full test suite using “multi_test driver.sh” in the “* test codecov” directory that is

created.

3. Execute the command “profmerge” in your terminal window from within the
“* test codecov” directory.

4. Execute the command “codecov -comp MyExcludeFiles.txt” in your terminal window

from that same directory.
5. Open up the file “CODE_COVERAGE.HTML” in Firefox.

Exclude file keywords

The following keywords were added to a separate document called “MyExcludeFiles.txt” when
running the code coverage analysis to generate the results shown in Table 2 of this report. The

contents of this file are copied below. Note that the keywords preceded by a
get excluded if contained within a filename.

Contents of “MyExcludeFiles.txt”:

£

.F

190

.F90

.c

.C
~ElecStat
~elecstat
~Magnetic
~magnetic
~Smooth
~smooth
~thermal HW
~ablat
~matpro
~MATPRO
~ITAPS
~itaps
~lysmer
~Lysmer
~Bielak
~bielak

Lawrence Livermore National Laboratory

are those that

Page 13 of 14

~ 1b

~ecp
~ECP
~Corro
~COITO
~Kinet
~kinet
~EdgeOn

Lawrence Livermore National Laboratory Page 14 of 14

