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Negative differential conductivity in liquid aluminum from real-time quantum
simulations

Xavier Andrade, Sébastien Hamel, and Alfredo A. Correa
Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA

The conduction of electricity in materials is usually described by Ohm’s law, which is a first
order approximation to a more complex and non-linear behavior. It is well known that in some
semiconductors, the conductivity, the constant that relates voltage and current, changes for high
enough currents. In this work we predict for the first time that a metal, liquid aluminum, exhibits
negative-differential conductivity, a non-linear effect where the current decreases as the applied
voltage is increased. We observe this change in the conductivity for very high current densities of
the order of 1012 − 1013 A/cm2. Our predictions are based on a computational approach that can
atomistically model, for the first time, non-linear effects in the conductivity from first principles
by following in real-time the quantum dynamics of the electrons. From our simulations, we find
that the change in the non-linear conductivity emerges from a competition between the current-
induced accumulation of charge around the nuclei, which increases the scattering of the conduction
electrons, and a decreasing ion-scattering cross-section at high currents. Our results illustrate how
normal matter behaves under extreme fields that will become available from free electron lasers and
other future experiments.

I. INTRODUCTION

In 1827, Georg Ohm discovered that when a voltage is
applied over a piece of a certain material, it will carry a
current proportional to that voltage. The proportionality
constant depends on the geometry of the conductor, and
an intrinsic property of the material, the conductivity.
Since then, the conductivity has become one of the basic
quantities that characterize a material.

Ohm’s law is, in fact, a first order approximation to a
more complex behavior: many materials, diodes for ex-
ample, do not follow Ohm’s law. Even for those that
do, we can expect that for large enough voltages the
conductivity will change. In some materials the cur-
rent decreases as the voltage is increased, leading to the
phenomenon of negative differential conductivity (also
known as negative differential resistance) [1–3]. Negative
differential conductivity has been observed in semicon-
ductors, like GaAs or GaN, where it is used for technolog-
ical applications [4, 5]. It has also been reported in molec-
ular electronic devices [6–9] and nano-structures [10–16].
As experimental facilities become capable of delivering
electric fields close to the atomic fields the electrons feel
in an atom [17, 18], even normal metals could potentially
exhibit anomalous electrical properties under these con-
ditions. However, little is known on how matter behaves
under these extreme fields, because most theories and
experiments only probe the linear response to external
fields.

In this work we study the non-linear conductivity of
pure liquid aluminum, and predict that it presents neg-
ative differential conductivity. As far as we know, this
is the first time this phenomenon has been reported in a
bulk metal. Our simulations indicate that the currents
needed to observe this effect are in excess of 1012 A/cm2,
larger than what is currently possible in experiments.

The non-linear behavior at those large currents ap-

pears when the associated drift velocity is close to the
Fermi velocity of the conduction electron in the material.
In this regime, our computational simulations show that
the electron scattering increases due to the accumulation
of electron density around atoms, lowering the effective
conductivity. For even higher currents, the effective con-
ductivity increases rapidly due to the ballistic reduction
of the scattering cross section. To interpret the results of
our simulations, we develop a model for the conductivity
by recasting the problem into one of fast ions moving in
an electron gas. This simple model captures the main
aspects of the non-linear conduction.

Our breakthrough prediction is made possible by a new
method to simulate conduction of electric current in met-
als based on real-time dynamics. We directly simulate
the process of electrons moving across the material; we
apply an external electric field, and we follow the re-
sponse of the material by following the quantum dynam-
ics of the electrons in real-time. By controlling the inten-
sity of the applied field, we gain access to the non-linear
regime that was until now out of reach to computational
methods.

From a first-principles perspective, the electrical con-
ductivity of condensed matter is usually calculated us-
ing perturbation theory, by combining density-functional
theory (DFT) and the Kubo-Greenwood formula [19, 20].
This method only yields the conductivity in the low cur-
rent regime, so it is not suitable to predict non-linear
effects in the conductivity.

It would be tempting to calculate non-linear conduc-
tivity by getting higher order response coefficients. How-
ever, it is generally accepted that a systematic power ex-
pansion of the transport coefficients, of which the Kubo-
Greenwood/Green-Kubo is the first term, is not reliable
to obtain non-linear effects, as these coefficients are non-
analytic functions of the driving thermodynamic forces,
the voltage difference in this case [21]. This is the rea-
son for using a method like real-time electron dynamics
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that can directly model the response to strong fields to
all orders.

II. THEORY

We start by briefly introducing our simulation ap-
proach. We base our calculations on time-dependent
density functional theory (TDDFT) [22], as its compu-
tational cost allows us to simulate systems with enough
atoms to capture the effect of disorder, which is crucial
to describe conduction accurately. The method is appli-
cable for any theoretical framework that can model the
dynamics of the electrons in a material.

The conductivity is defined by Ohm’s law [23, 24]
J(ω) = σ(ω)E(ω), which relates a monochromatic ex-
ternal electric field, at a frequency ω, and the current
density it generates. In a real-time simulation, instead
of a frequency-resolved perturbation, we apply a time-
resolved field E(t) and then follow the current density
evolution J(t). While we can select any temporal de-
pendency for the electric field, it is convenient to per-
turb the system using a kick [25]: a field of the form
E(t) = E0δ(t), where E0 determines the intensity and
direction of the field. By inserting this kick into Ohm’s
law, the conductivity can be calculated from the time-
dependent current density obtained from the simulation
as [26]

σ(ω) =
1

E0

∫ ∞
0

dt e−iωtJ(t) . (1)

There are several advantages in applying the external
perturbation as a kick. First, this external pertubation
containts all the frequencies with the same intensity and
the response at individual frequencies can be obtained
by a Fourier analysis. Second, conductivity must be ex-
pressed to the response to external fields, as opposed to
induced fields. This way of perturbing the system natu-
rally separates the external and the induced field in the
time domain. The external macroscopic (controlled) field
only exists at t = 0, while at t > 0 all fields (macroscopic
and microscopic) are induced.

A key aspect of our simulation is the ability to in-
clude an electric field E of finite intensity, in order to
induce a current in the system. Usually, the electric field
enters into the TDDFT equations through an external
scalar potential; however, the scalar potential associated
to a uniform electric field does not satisfy the periodic
boundary conditions used to describe an extended sys-
tem. Instead, we use a gauge where the uniform electric
field is generated by a uniform, but time-dependent, vec-
tor potential A as [27] (Gaussian atomic units are used
throughout)

E(t) = −1

c

∂A(t)

∂t
. (2)

The fundamental observable in our approach is the
time-dependent macroscopic current density J, which in

TDDFT can be readily calculated from the time-evolving
orbitals of Kohn-Sham formalism. However, care must
be taken into making the current properly gauge invari-
ant, by including the diamagnetic contribution and the
additional terms [27] that come from non-local pseudopo-
tentials [28] that represent the ions.
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Figure 1. Current density vs. time after a kick of 0.1 a.u.
(continuous blue line) for a specific ionic configuration of a
supercell with 256 aluminum atoms in the liquid phase. The
inset shows in detail the current fluctuations around zero for
long times. The red segment line shows an exponential fit
to the current, based on the range 0 < t < 0.5 fs. The
dotted black line shows the spatial average of the absolute
value of the local current density, which illustrates how the
macroscopic current density decays due to a randomization
of the microscopic local current density, which retains a finite
intensity.

III. RESULTS

For our study, we consider liquid aluminum, as a pro-
totypical metal, at high temperature (0.5 eV ∼ 5802 K)
and near solid density (2.7 g/cm3). The liquid state is
chosen to simplify the problem as in this state, the intrin-
sic disorder avoids pathologies that can arise in a crys-
talline system and its associated translation symmetries.
In a perfect crystalline solid, an initial current would pro-
duce Bloch waves that support persistent (non-decaying)
currents.[30]

Our simulation supercell contains 256 atoms and we
use the gamma point for Brillouin zone sampling. The
TDDFT scheme is implemented in the real-space code
Octopus [31, 32]. For the real-time TDDFT simulations
in this article we use the adiabatic local density approx-
imation (ALDA), a grid spacing of 0.425 a.u., and an
electronic time step of 0.1 a.u. = 0.00242 fs.

We start by showing the results for a single simulation
using one snapshot of a molecular dynamics (MD) run.
In Fig. 1 we plot the current density evolving in time
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Figure 2. Stream lines of the microscopic current density
for different times for a kick of 0.1 a.u. in liquid aluminum.
Initially the lines are parallel and follow the direction of the
current (from left to right), as time passes the current density
becomes more disordered and isotropic. This disorder in the
direction of the local current density is partially responsible
for making the average current density vanish. The stream
lines represent the trajectories of fictitious particles under the
microscopic current density as a velocity field. They are gen-
erated by the VisIt program [29].

after a kick of 0.1 a.u. (∼ 2.1 × 1027 V/ms). As seen
in the figure, the current steadily decays towards zero.
Still, small fluctuations of the current are observed after
it has decayed (as seen on the inset of Fig. 1). Through
a function fit (for t < 0.5 fs) we can see that the current
decay is very close to exponential.

The real-time simulation allows us to get insight into
the nature of the decay process. Since the macroscopic
current density is the spatial average of the microscopic
current density, the current density might decay because
the microscopic local current density is decaying to zero
at each point, which is to be expected of a final time-
reversible quantum state. Alternatively, it is possible
that the local current density becomes disordered, mak-
ing the average zero while retaining a finite value at each
point.

To differentiate between those two scenarios we con-
sider the microscopic current density of the system. In
Fig. 1 we include the average value of the norm of the
microscopic current density, and in Fig. 2 we plot the
streamlines of the current density for different times.

Initially, both the current density and its average norm
decay in a similar fashion. However, after some time the
average norm remains constant while the average current

continues decaying. This tells us that both decay mecha-
nisms are at play: initially (t < 1 fs) there is a local decay
of the magnitude of the current, but later (t > 1 fs) the di-
rectional disorder and spatial randomness of the current
are responsible for nullifying the average current. Inter-
estingly, these results show a fundamentally irreversible
process in the simulation of a quantum system of many
electrons from microscopically reversible equations.

Therefore, we find several effects. First, the average
current density (which we identify with the macroscopic
current) decays to zero. This behavior is not surprising
and it is compatible with the concept of resistivity by ion
scattering, in which the macroscopic current eventually
ceases if no new external field is applied. Second, we also
note that for this finite system there is a residual fluc-
tuating current. Third, there are persistent microscopic
local currents that fluctuate spatially and temporally.

These last two effects are not obvious and require some
discussion, as one may expect that for long times all the
currents, macroscopic and microscopic, would cease. To
find an explanation, we have to take into account that
this simulated system is closed, and the energy is con-
served. As such, the electronic system can never reach a
ground state, or any eigenstate of the many-body quan-
tum system for that matter. Instead, we find that the
system dynamics reaches a macroscopic steady state by
a rich, persistently evolving microscopic state. This is
analogous to the result we would expect from a classi-
cal simulation of particles under molecular dynamics of
a closed system. There is no principle that will prevent
the electrons to keep dynamically evolving at long times,
given that there is no energy sink applied to our sys-
tem of electrons; yet we find the expected relaxation in
a macroscopic description. We believe that this is not an
artifact of the approximations utilized for TDDFT, and
that in spite of the approximations of TDDFT the overall
mechanism is correct.

To obtain the frequency-dependent conductivity we
Fourier-transform the time-dependent current density,
according to Eq. 1. We can do a numerical Fourier
transform of the current, or analytically transform the
exponential fit, which gives us a Drude-like form for
the conductivity. Both results are shown in Fig. 3,
where we compare them with the results from Kubo-
Greenwood [19, 20] for the same snapshot of the ionic
configuration. It can be observed that there is a
good agreement between real-time TDDFT and Kubo-
Greenwood, where the conductivity is a sum over discrete
transitions between orbitals, so a broadening of 0.03 eV is
applied to produce a continuous curve. Still, the conduc-
tivity is rougher than the real-time approach. The small
differences in the results can be attributed to the ad-
ditional approximations introduced in Kubo-Greenwood:
the truncation of the sum over unoccupied states, and the
lack of a full self-consistent response. The approximate
agreement with Kubo-Greenwood in the linear regime
validates the method.

The results we have shown so far correspond to a single
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Figure 3. Frequency-dependent conductivity in the low fre-
quency regime (blue segmented line), calculated as a Fourier
transform of the time-dependent current density (Eq. 1). We
compare it with the frequency-dependent conductivity cal-
culated by the Kubo-Greenwood method (black continuous
line), for the same ionic snapshot. 3000 bands are used, which
allows for vertical excitation energies of up to 40 eV. Addi-
tionally, a Drude fit, obtained from the Fourier transform of
the exponential fit of the real time current, is presented for
comparison (red dotted line). These results are for a single
ion configuration (snapshot) for a fair comparison between
the two methods.

snapshot, which serves to illustrate the detailed proper-
ties of our simulations. However, if we want to make
predictions, we need to average the results over mul-
tiple ionic configurations obtained from MD. We took
200 ionic snapshots from a 12 ps equilibrated MD run at
5802 K using VASP [33] at the LDA level of approxima-
tion to the exchange-correlation functional, and a 2x2x2
Monkhorst-Pack grid (MD time step of 2 fs). For each
snapshot we calculated the evolution of the current for
different kick intensities, from 0.001 to 2.6 a.u., which al-
lows us to access linear and non-linear effects. As before,
the only role of MD is to generate snapshots.

We first check how the initial current depends on the
kick by calculating the ratio of the initial current density
over the kick intensity, which we plot in Fig. 4. Since
the current corresponds to the momentum of the elec-
trons, it can be shown that this ratio is essentially the
amount of charge that participates in the conduction. In
a disordered metallic system this value, when normalized
per atom, should be close to the valence charge. We see
that for small kicks below 0.5 a.u., a constant fraction
of around 2.81 electrons per atom are excited, while for
higher intensity kicks this value starts to grow and satu-
rates towards 3 for the kicks considered, which coincides
with the valence charge for aluminum.

We now consider the decay behavior to determine the
linearity of the response with respect to the intensity of
the perturbation. For each kick intensity we obtain the
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Figure 4. Ratio of the initial current per atom with re-
spect to the applied kick. This number is equivalent to the
fraction of the electrons per atom that participate in the cur-
rent near time zero. The value grows as the intensity of the
kick increases and approaches 3, coinciding with the valence
electrons in aluminum.
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Figure 5. Time-evolution of the current density for a family
of initial conditions with different intensities of electric kick,
and therefore initial current densities, averaged over ionic con-
figurations. For initial current below 1012 A/cm2 we observe a
decay with the same time constant, as expected from a linear
response. For larger perturbations we enter into a non-linear
regime that is evidenced by the changing slopes of the graphs.

current density, averaged over configurations, as a func-
tion of time. The values are shown, in logarithmic scale,
in Fig. 5. If we consider that the slope of the current
decay gives us an idea of the value of the conductivity,
we can clearly see that there is a non-linear behavior.

For each curve of Fig. 5, we determine the zero-
frequency conductivity by an exponential fit to the initial
part of the time-dependent current (t < 0.5 fs) that we
insert into Eq. 1. The resulting conductivity vs. initial
current is shown in Fig. 6. The figure shows that the
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conductivity exhibits a clear dependency with the cur-
rent density. For low currents, we obtain a conductivity
of 3.0× 104 (Ω cm)−1 that is close to the ω → 0 extrapo-
lated Kubo-Greenwood value of 2.8×104 (Ω cm)−1, which
we calculated from the same set of snapshots (Fig. 3).
These values are also consistent with previous theoret-
ical results [34–38]. For higher intensities, the conduc-
tivity is not constant and exhibits a minimum value of
∼ 1.7× 104 (Ω cm)−1 for ∼ 7.2× 1012 A/cm2 which cor-
responds to a kick, or electronic velocity, of ∼ 1.2 a.u.,
comparable to the effective Fermi velocity for this system:
0.92 a.u.. For larger currents the conductivity increases
rapidly.

10
10

10
11

10
12

10
13

Initial current density [A/cm
2
]

0

1

2

3

4

5

6

D
C

 c
o

n
d

u
ct

iv
it

y
 [

1
0

4
/Ω

cm
] Real time

Kubo-Greenwood
Lindhard model

Figure 6. Zero-frequency conductivity as a function of the
current density. For low currents the value of the conductivity
agrees with Kubo-Greenwood, and at large currents there is a
minimum of conductivity at ∼ 7×1012 A/cm2. At even larger
currents the conductivity increases as the electrons become
less affected by scattering processes. The points encased in
a black circle indicate the values of the current in the cases
shown in Fig. 7. Dotter red curve is the result of a simple
model 3 built to understand the origin of the minimum of
conductivity.

To elucidate the origin of the non-linearity in the con-
ductivity, we plot in Fig. 7 the change in the electronic
density for different initial currents for a particular snap-
shot and a fixed time. It can be seen that there is a clear
change in regime depending on the initial currents. For
low currents there is some small accumulation of charge,
mainly in the interatomic regions. For larger currents
the charge starts to accumulate close to the nuclei. For
∼ 7.2 × 1012 A/cm2, which is close to the conductivity
minimum, the accumulation of the charge occurs in front
of the atoms. As the current is increased, the charge ac-
cumulation regions are centered around the atoms, and
appendices form behind some of the atoms. Finally, for
large currents these regions of charge accumulation start
to disappear, matching the rapid increase in conductiv-
ity.

J = 9.7x1012 A/cm2J = 7.2x1012 A/cm2

J = 1.2x1012 A/cm2 J = 4.8x1012 A/cm2

J = 1.7x1013 A/cm2J = 1.2x1013 A/cm2

current

Figure 7. Regions of accumulation of electronic charge for
different values of the initial current, for a single snapshot.
The red surfaces represent isosurfaces of the difference of the
density at time 0.242 fs with respect to the ground state den-
sity. The corresponding values of the conductivity for each
current are shown encased in a black circle in Fig. 6. The
values of the isosurfaces are proportional to the perturbation
intensity and are 0.0025, 0.01, 0.015, 0.02, 0.025 and 0.03 a.u.,
respectively.

We theorize that the generation of these regions of
charge accumulation increase the amount of scattering
that the electrons are subject to, reducing the conduc-
tivity. At the same time, for larger currents we expect
the conductivity to increase, as the electrons become bal-
listic and are less affected by scattering processes. The
combination of these two effects explain the shape of the
conductivity curve that we see in Fig. 6.

The theory used for the simulations, TDDFT in the
ALDA approximation, constitutes the simplest form of
the KS equations, where electrons interact through a
mean field potential and dynamical many-body effects
are neglected. Other many-body theories of TDDFT [39]
and classical corrections [40] have been proposed, at ad-
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ditional computational cost, as corrections for the linear
residual resistivity of metals and non-degenerate plasmas.
However, the explanation based on charge accumulation
for the minimum of the conductivity would hold even in
the presence of many-body effects.

In order to further understand our results and show
that this is a physical pheonomenon, in this section we
provide a simple semi-analytic formulation of the prob-
lem of non-linear conductivity based on the high-energy
Lindhard ion-in-jellium scattering theory [41] that we
compare with our first principles results.

The formula we propose is derived from electronic stop-
ping power theory [42], where the collective force on the
ions is reinterpreted, by a change of the frame of ref-
erence, as a deacceleration of the electronic stream. In
this interpretation, we have an electronic stopping power
problem of several ions moving with effective charge Z
through an electron gas with a certain effective valence
electron density.

In the linear-response theory of Lindhard (linear in Z),
the approximated drag force on the moving ion is a dou-
ble integral in the wavenumber and frequency of the elec-
tron energy loss function associated with the dielectric
function.

F drag = 2Z2 e
2

πv2

∫ ∞
0

dk

k

∫ kv

0

dω ω Im

(
−1

ε(k, ω)

)
In the frame of reference of the electrons, the total drag

force on the ions is exactly opposite to the force applied to
the electrons that constitute the electric current. Taking
into account that there are Z free electrons per ion and
that a current J has an associated drift velocity v = J/n,
the electrical conductivity due to scattering results to be
approximated by

σ(J) =
π

2

J2

Zn

(∫ ∞
1/Rs

dk

k

∫ kJ/n

0

dω ω Im

[
−1

ε(ω, k)

])−1
(3)

where Z is the number of valence participating electrons
per ion, ε(ω, k) is some appropriate model of the dielec-
tric response and n is the valence density. In the model,
Z is assumed to be 3, based on the valence electrons in
aluminum. Rs is an adjustable spatial cutoff introduced
to capture a finite radius of action for each individual
scatterer. The main effect of adjusting Rs is to control
the vertical scale of the model curve. In our results, Rs

is set to one fourth of the average interatomic distance,
so that the model prediction adjusts to the high current
portion of the results.

The model is formally justified at large currents as
it is perturbative in Z/J ; however as we can see from
Fig. 6, it replicates qualitatively well the shape of the
simulated conductivity, reproducing the main features of
the curve: a constant value for low currents, a minimum
close to the current corresponding to the Fermi veloc-
ity, and a conductivity that increases rapidly for large
values. This divergence behaves as ∼ J2/ log J , as one

would expect from the Born [43] and Coulomb-logarithm
scattering theory [44]. The charge accumulation found
here is analogous, in the problem of electronic stopping
power, to the electronic trailing wakes produced by fast
moving ions [45].
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Figure 8. Current density vs. electric field curve for liq-
uid aluminum calculated from the current dependency of the
conductivity. It represent the relation E = σ(J)J where the
independent variable is J . This curve predicts that aluminum
is an S -shape negative-differential conductor[1] for very high
currents and fields.

Based on the conductivity results for each current den-
sity, we can obtain the electric field vs. current den-
sity curve shown in Fig. 8. It shows that our simula-
tions predict a negative differential conductivity in liq-
uid aluminum at 5800 K for electric fields of the or-
der of 108 V/cm. The induced current density in this
regime is of the order of 1012 − 1013 A/cm2. We have
not found an indication that this predicted effect has
been directly measured before, as such regimes do not
seem to be experimentally reachable today. The nega-
tive differential conductivity that we find is of S -type, or
current-controlled [1]. In practice, a multi-valued current
density for a given field, as we see in the figure, would
cause the system to separate in different spatial domains
with different conductivities [2]. We expect the curve to
swing again to the right for higher currents, as semi-core
electrons become involved in the conduction, recovering
positive differential conductivity and completing the S
shape.

IV. CONCLUSIONS

In conclusion, based on a new method to calculate the
non-linear conductivity of bulk metals, we have stud-
ied the conductivity of liquid aluminum for very-high
current densities (> 1010A/cm2). We find that in our
simulations the conductivity changes under these con-
ditions, leading us to predict that eventually aluminum
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presents negative differential conductivity. While these
results are currently outside of the range of experiments,
the extreme field necessary to observe this effect will be
reachable by the next generation of free electron lasers
(FEL) [17, 46, 47].

We find this effect by first principles simulations in
aluminum as a prototypical material, but the simplified
model shows that this is an ubiquitous effect, likely to be
found when drift velocity current approaches the natural
velocities of the degenerate electron gas. It is also pos-
sible that the effect becomes accessible, in other metal-
lic systems also tractable by this first principles simula-
tion method, under extreme conditions of temperature or
pressure that change the conduction electron density and
the Fermi velocity. For example, an analogous effect, the
‘two-stream instability’, is known to develop in classical
plasmas [48]. In fact, our results allow us to predict the
onset of the non-linearity from the Fermi velocity and the
valence charge of the material.

Our real-time method is certainly not restricted to elec-
trical conductivity in metals, which is one of the sim-
plest applications of modeling currents in materials. This
first application opens the path for studying other phe-
nomena that up to now have been beyond the reach of
atomistic quantum simulations. For example, an inter-
esting extension of our approach would be to study elec-

tronic thermal conductivity and mixed electrical-thermal
transport properties, so that we can simulate, understand
and predict non-linear effects in heat transport, includ-
ing negative-differential heat conduction [49–51]. In our
framework, it will require the introduction of recent de-
velopments of the description of thermal properties in
TDDFT [52–54]. Our ultimate goal is to build a general
theoretical and computational tool that can combine dif-
ferent types of perturbations and observables into time-
resolved simulations. By accessing combined responses
and non-linear effects, this tool would give us an unprece-
dented capacity to study different phenomena that are of
interest in condensed matter physics, material science,
and plasma physics.
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