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Abstract: This paper presents an analysis of a decentralized coordination strategy for organizing and controlling a
team of mobile robots performing collective search. The alpha-beta coordination strategy is a family of collective
search algorithms that allow teams of communicating robots to implicitly coordinate their search activities through a
division of labor based on self-selected roles. In an alpha-beta team. alpha agents are motivated to improve their
status by exploring new regions of the search space. Beta agents are conservative, and rely on the alpha agents to
provide advanced information on favorable regions of the search space. An agent selects its current role dynamically
based on its current status value relative to the current status values of the other team members. Status is determined
by some function of the agent’s sensor readings, and is generally a measurement of source intensity at the agent's
current location. Variations on the decision rules determining alpha and beta behavior produce different versions of
the algorithm that lead to different global properties. The alpha-beta strategy is based on a simple finite-state
machine that implements a form of Variable Structure Control (VSC). The VSC system changes the dynamics of
the collective system by abruptly switching at defined states to alternative control laws . In VSC, Lyapunov's direct
method is often used to design control surfaces which guide the system to a given goal. We introduce the alpha-beta
algorithm and present an analysis of the equilibrium point and the global stability of the alpha-beta algorithm based
on Lyapunov’s method.
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I. Introduction
The problem of coordinating the actions of distributed robot teams is an active area of research (Cao, Fukunaga,
Kahng, and Meng 1995). Strategies for cooperative action encompass theories from such diverse disciplines as
artificial intelligence, game theory/economics, theoretical biology, distributed computing/control, animal ethology,
and artificial life. For instance, Reynolds (1987) simulated the formation of flocks, herds, and schools in which
multiple autonomous agents were driven away from obstacles and each other by inverse square law repulsive forces.
Part of the motivation behind Reynold's work is the impression of centralized control exhibited by actual bird flocks,
animal herds, and fish schools, despite the fact that each agent (bird, animal, or fish) is responding only to its
limited-range local perception of the world.

Most of these works do not include a formal development of the system dynamics. Consequently, important system
properties such as stability, reachability, observability, and robustness cannot be characterized. Many of the schemes
such as the Subsumption Architecture (Brooks 1986; Brooks 1991) approach rely on stable controls at a lower level
while providing coordination at a higher level. This coordination is often heuristic and ad hoc.

We have shown how to use phase-plane analysis to describe the overall behavior of single and multiple autonomous
robotic vehicles with finite state machine rules (Feddema, Robinett, and Dreissen 1998). Each finite state has a
trajectory on the phase plane whose initial conditions are determined from the final conditions of the previous finite
state. This interpretation of finite state machine behavior lends itself nicely to Variable Structure Control (VSC)
design tools. A VSC system changes the dynamics of a system by switching at defined states (in the controls sense
of the word) to an alternative function of a set of possible continuous functions of the state (Utkin, 1977; Utkin
1981; DeCarlo, Zak, and Matthews 1988). This switching may be realized with mechanical relays or simple changes
of state in a computer program. In VSC, Lyapunov's direct method is often used to design control surfaces that guide
the system to a given goal. The importance of this result is that we can design provably asymptotically stable group
behaviors from a set of simple control laws and appropriate switching points with decentralized variable structure
control techniques. The ability to prove asymptotically stable group behavior is especially important for applications
such as locating military targets or land mines, where proof of convergence and an estimate of time to convergence is
required.

As shown in (Feddema et al 1998), each individual finite state does not have to be convergent. However. when the
transitions between states are correctly designed, a convergent stable global behavior results. This can be a powerful
tool that can be used to overcome many sensing and actuation limitations and external forces. For example. consider
the following analogy. Suppose you wanted to make a U-turn with your car, but the turning radius of the car was
greater than the width of the street. You would start the turn, but have to stop and back up before continuing with
the turn. This action involves two states: forward and backward. The forward state is convergent to the goal, while
the backward state is not. You would have continued the forward state except that you were limited by an external
force (the curb); you had to go into the non-convergent state to get onto a trajectory that was within the sensing and
actuator limitations.

This work is an extension of new results reported by Feddema et al (1998) and Goldsmith & Robinett (1998). Work
in discrete-time sliding mode control (DSMC) reported recently (Misawa 1997) is related to this proposal. The alpha-
beta algorithm was developed for robotic collectives but may be extended to general adaptive state-space control
algorithms for collectives of autonomous control elements. Multiple modes (sliding mode control has two, alpha-
beta has three) of control corresponding to states of a finite-state automata has not been addressed in general terms for
sampled-data or discrete-time control.

In this paper we focus on the alpha-beta coordination algorithm described in (Goldsmith and Robinett 1998). This
algorithm features alpha agents that seek to increase their status by venturing out of local minima, and the beta
agents that follow the average location of the alpha agents. This algorithm has the unique characteristic that the beta
agents will group together at a local minimum, while alpha agents try to locate a gradient that leads to a global
minimum. If an alpha agent finds trajectory to the global minimum, the other members will follow. It appears that
the beta agents have only convergent finite states, while the alpha members may contain non-convergent finite




states. In simulation, it has been shown that this algorithm can lead to global minimum. Preliminary results of a
similar approach applied to chemical plume tracking have identified important communications issues (Hurtado,
Robinett, Dohrmann, and Goldsmith 1998).

I1. Alpha-Beta Coordination
We are concerned with solving the source localization problem by means of a robot team featuring a decentralized
coordination strategy we call alpha-beta coordinatrion’ . The alpha-beta coordination strategy is a family of collective
search algorithms that allow teams of communicating agents to implicitly coordinate their search activities through a
division of labor based on self-selected roles and social status. In an alpha-beta team, an agent plays one of two
complementary roles. Agents in the alpha role are motivated to improve their status by exploring new regions of the
search space. Agents in the bera role are also motivated to improve, but are conservative and tend to remain
aggregated and stationary until the alpha agents have clearly identified and communicated better regions of the search
space. An agent selects its role dynamically based on its current status value relative to the current status values of
the other team members. Status is determined by a function of the agent’s sensor readings, and is generally a
measurement of source intensity at the agent’s current location. An agent’s decision cycle comprises three sequential
decision rules: (1) selection of the current role based on the evaluation of the current status data; (2) selection of a
specific subset of the current data: and (3) computation of the next heading using the selected data. Variations of
these decision rules produce different versions of alpha and beta behaviors that lead to different global properties.

Partitioning the robot team into alpha and beta roles produces a balance between exploration and exploitation. Alpha
agents waste energy exploring low-status regions of the search space, but communicate valuable state information to
team members that prevents costly reexploration of low-status regions. Alpha agents by nature seek to emulate and
ultimately surpass the highest-performing team members and are therefore more sensitive to the effects of transient
noise and are more susceptibie to the influence of defectors reporting false status values. Beta agents use energy
wisely by resisting transient influences and moving in a direct path to high-status regions of the search space
identified by alpha agents. Beta agents resist noise and defectors by selective re-sampling and averaging of status data.
but must rely on alpha robots 10 improve their performance. Consequently, beta agents can be misled by noise and
defectors under some circumstances through second order effects if many of the the alpha agents are misled.

The success of alpha-beta coordination relies on the following assumptions:

1. Team members have a reliable communications mechanism.

(3]

The team is positioned in the (noisy) sensate region surrounding a target source.
3. The terminal goal of the team is to converge on the source target.
4, A higher status value impiies a higher probability that the source is located near the corresponding coordinates.

The alpha-beta strategy is a behavior-based control strategy related to the approach of Mataric (1992;1994:1995).
Alpha-beta teams behave in a manner similar to that of simple insect societies (Kube and Zhang 1993). Alpha-beta
agents search without centralized leadership or hierarchical coordination. The primary collective mode of an alpha-
beta team is to aggregate in a region of high intensity, without any other objectives. Alpha-beta teams are robust to
single-point fail-stop failures in team members; agents simply use the latest data transmitted by other team members
without regard to the identity of the sender. Alpha-beta coordination requires a minimum of knowledge about the
search environment. Agents have no prior assumptions about the nature of the intensity surface, its spatial
coherence, gradient field. or any other analytical information. As such, the alpha-beta strategy is intended to be as
general-purpose and as assumption-free as possible.

A simple social metaphor provides an intuitively satisfying but imprecise description of the basis for alpha-beta
coordination algorithms. The cohesion of an alpha-beta society is based on a common normative goal: each agent is
motivated to improve its social status by associating with other agents of higher status. Social status is determined
by a scalar function of the shared sensor data communicated by other agents. The only assumption underlying alpha-

? The source localization problem entails a single source phenomenon located within a bounded geographic region.




beta algorithms is that the status function orders points in the search space according to the probability that a source
is located at the point. On each decision cycle, each agent broadcasts its current social status as a scalar value, s;,

along with a location vector, vj, to all other agents, and receives their status values in return. An agent attempts to

improve its standing through emulation by moving to a region occupied by agents reporting superior status. This
simple goal pressures agents to: (1) aggregate into groups; and (2) to aggregate in the region of highest known
status. To determine its next destination, each agent first computes the common ordered set V={v;}. i.e. the set of
all location vectors, according to the linear ordering (<) of agents provided by the status function.' The agent then
partitions V to divide its fellow agents into two relative castes. The alpha caste is the set Ag of all agents that have

a social standing superior to agent a(: Ag = {vkIsk > sg}. The bera casre By is the set of all agents with lower
social standing than agent ag: Bg = {vk!sk < sg}. The beta set Bg includes agents of equal status because an agent

always seeks to improve its current status. There are a variety of approaches to using the alpha and beta sets to
generate the agent’s next heading. The vectors in the set Ag can be used to influence the agent to move toward its

members, creating a social pressure to improve called alpha-pull. The vectors in the set Bg can be used to influence

the agent to move away from its members, creating a second social pressure to improve called beta-push. Either set
or V itself can be used in a variety of ways to provide pressure to aggregate. Alpha-pull and beta push are heuristic
in nature and do not necessarily lead to average improvement in arbitrary environments. Designing and testing
different decision rules based on the data vectors in V, Ag. and By. or subsets thereof. is the means for investigating

the different global behaviors of alpha-beta teams.

A special case of importance is when V=A;=B;. In this case every agent has identical status, corresponding to the

zero-information (maximum information entropy ) state previously mentioned. When a zero-information state is
detected. the team can disperse to broaden the search area by using beta-push (all members are in the beta sets of all
other members) to compute a trajectory that leads the agents on the outer edges of the cohort region away from the
team’s centroid. As the density of the team decreases, more agents are free to move away from the centroid,
eventually resulting in a dispersed team. A minimum limit on team density prevents the ultimate loss of team
coherence. If the team members cannot find the sensate region, they must resort to an exhaustive coilaborative search
mode such as Hilbert search (Spires & Goldsmith 1998).

If V=g, the agent is alone. For the purposes of this research, agents that lose contact with the team remain
immobilized. This “hug a tree” philosophy saves energy but may not lead to a reunion with the team and to eventual
arrival at the target source. A variety of possible solo behaviors will be investigated later, including random search,
gradient search. and using the last known heading to determine the agent’s trajectory.

The general form of the alpha-beta update rule uses a linear combination of the vector datain V:
vi(k+1) = vi(k) + aT(k){vj(k) - vj(k)] M

where aT(k) is a transposed weighting vector derived from the application of some scalar function to the current
status measurements corresponding to the vectors in V. The nature of the function applied to the status measurement
vector and the specific subset of vectors selected from V determine the group behavior exhibited by this version of
alpha-beta teaming.

The alpha set A contains a distinguished subset of elements: the agent or agents with the highest status value. An
agent with the highest status in the cohort has no alpha caste; A=g. These agents are the g-alpha agents and cannot
experience alpha-pull. The choice of a decision rule for a g-alpha agent is limited two possibilities:

1. Don’t move.

2. Move away from the team along a vector derived from the B-vectors (beta-push).

" The unordered set of of readings can be used to compute the obvious non-uniform gradient estimates. We have investigated
gradient search algorithms and use them as a baseline for comparison of alpha-beta performance. Some forms of alpha -beta
algorithms currently under investigation use gradient estimates for alpha decisions.




In the first option, the g-alpha’ identifies the location of highest known status and acts as a stationary beacon for the
rest of the team. This is a conservative strategy that saves energy and ensures that the agent remains at the top of the
heap. but does not immediately explore the region of highest intensity. The second option uses some form of beta-
push to move the g-alpha away from the team. This is a risky strategy because the status of the g-alpha may
decrease, but it provides more information to the team and can possibly shorten convergence time.

The beta set Bg also contains a distinguished subset of elements: the agent or agents with the lowest status value.

These g-bera agents represent the social floor of the teamn, and always use some form of alpha-pull to improve their
status.

The remaining members of the cohort have non-empty alpha and beta sets. Such an agent can experience the effects
of both alpha-pull and beta-push. There are many possible decision rules for determining the next heading based on
the partition {Ag, Bg}. In general. an agent must decide whether to be radical or conservative in its attempt to

improve its status. The approach taken here is to provide three classes of behavior. For an agent team with N agents
the update rules are:

1. The o-alpha agents use the conservative decision mode and remain immobile: vi(k+1) = ¥i(k).

2. The m agents in V with the highest status values self-select alpha behavior and use the following update rule:
vitk+1) = vitk) + u{v*(k) - vi(k)}. where v*(k) is the location of a @-alpha agent, selected at random, and yt is a

factor that provides pressure to move beyond the alpha agent along a line passing through the points v*(k) and
vi(k).

3. The remaining N-m agents in V self-select beta behavior and use the following update rule: vi(k+1) = vj(k) +
at(k)[va(k) - vi(k)}, where va(k) are all members of Aj. and a(k) is the corresponding vector with elements
aj(k) = sj(ky/S(k), and S=X sj(k), j=1.N.

Under this regime, self-selected alpha agents attempt to exceed the performance of the stationary g-alpha agent by
attempting to move to a region near the g-alpha along the vector connecting it and the g-alpha. Self-selected beta
agents compute a weighted average of the alpha vectors based on normalized status values and move towards the
resultant. A conservative beta agent seeks to improve its status to the average status of its corresponding alpha set
by moving to the point of the center-of-mass of the alpha set. This “safety in numbers™ approach provides a tendency
to aggregate in the current region of highest known performance, but averages many alpha status positions to reduce
noise and the influence of outliers. This behavior provides the beta population with some inertia, but still retains the
tendency to improve the status of the population on average.

The important parameters in an alpha-beta regime are y. the search factor that determines the amount by which an
alpha will attempt to move beyond a g-alpha agent, and the alpha ratio, defined as nvN, that determines the
proportion of alpha agents exploring the search space. This parameter measures the degree of diversity in the
population. When nvN is unity, the population comprises only alpha agents. When nvN is zero, the population
comprises only beta agents.

IIL. Collective Dynamics
The current state-space formulation comprises a system of linear, homogenous, time-varying difference equations of
order N, where N is the instantaneous number of agents:

v(k) = F(X)v(k-1) )

Let C be the set of all agents, {a]. a3, ... aN }, whose states are described by the data pairs {[(zj(k). vi(k)] }. where

* Although there may be more than one o-alpha , we use the singular hereafter.




zj(k) is the status measurement vector and vi(k) is the position vector of the ith agent. Generally, z(k) = s(k) +

w(k), where s(k) is the signal and w(k) is measurement noise and other uncertainties, We will ignore w(k) in the
discussions that follow and focus instead on stability under noiseless operation.

At a given step k. an agent is in one of three states: g-alpha, alpha, or beta. After sensing its local environment and
obtaining remote sensor readings from other agents, the agent may transition to another state or remain the same
state. Figure 2 shows the state transition map of an alpha-beta agent. Transition excitations are decision functions
that determine the switching points along an agent’s trajectory in state space.
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Figure 2: Alpha-Beta State Transition Diagram
The excitation equations for one form of alpha-beta coordination are:

g-alpha rule:
Excitation eqo , €Bo : IF zj( k) = z'(k) THEN ISA(aj, e-alpha)

where z* (k) is max {zj(k)}
System Equation: Vo(k+1) = vo(k) : vo(k) = maxpz(k) {[2(k). v(K)]}

alpha rule:
Excitation egq , €ga: IF zp(k) < zj(k) < 2% (k) THEN ISA(aj, alpha)
where zp(k) is the maximum beta measurement

System Equation: vilk+1) =vi(k) + p(vg(k) - vi(k))}

beta- rule:

Excitation egp , egh: IF zj(k) < zg THEN ISA(aj, beta)
System Equation: vi(k+1) =vi(k) + 2, Pjjk)(vjk) - vi(k))
vj(k) € Aj
where P; j(k) = zj(k)/2zp(k): normalized sensor readings
and Aj= {Vj(k), i¢j| zJ'(k) >zik)x ith alpha-cohort

The rows of the system matrix at step k reflect the independent decisions of the N agents. At step k the system state
in terms of the transition matrix and initial state is

v(k) = W(k.ko) v(ko) (3)




The behavior of W(k ko) as k—« determines the stability of the system. The rows of W(k ko) represent the transition
function of the ith agent at step k. An agent’s behavior will be stable if its corresponding transition function is

bounded for all time. The g-alpha and beta subsystems are asymptotically stable. The transition function of an g-
alpha agent at step k is given by:

Yo(k, k-1) = 1, for initial state condition vg(k-1) 4

Thus xg(k-1) is a stable node of the system at step k. The transition function a 8-alpha agent is given by:
wa(k. k-1) = [pjK | vje Ag] for initial state condition vj(k-1) 5)

Equation 5 represents a stable system iff all p; < I, the case that holds in a conventional alpha-beta regime. The alpha
subystem that performs exploration may or may not be stable, depending on the value of the convergence parameter
. The transition function of an alpha agent is given by:

Yok, k-1) = [00...(1 - (1-p)k) ... (1- pk ...0 0] (6)

For exploration beyond the g-alpha node at vg(k-1), p>1.0 must hold. An asymptotically stable transition function
occurs when 1.0 < 1 < 2.0, and vg4ik-1) is the equilibrium point of the subsystem. The alpha subsystem is stable in
the sense of Lyapunov when 1.0 < p < 2.0, with an undamped oscillation about vg(k-1) occurring for u=2.0.

Widespread exploration to escape a local extremum or plateaus may require that p > 2.0. resulting in a temporarily
unstable alpha subsystem. We now give give a heuristic proof of alpha subsystem stability based on Lyapunov
stability. The sufficient condition for Lyapunov stability of the time-varying alpha subsystem is:

Wk, ko) <M for k 2ko @)

where [W(k.ko)| is the norm (largest eigenvalue) of the transition matrix and M is a finite constant. Eigenvalues with
exponential growth are associated with alpha and e-alpha points in the state space as described by (6). If p>2.0 and
(6) holds for a specific alpha agent for all k, then the alpha trajectory will be oscillatory and will increase without
bound along the line L determined by L = v(k-1) - va(k-1). Assuming the intensity Z(v, t) is a Lyapunov
function. i.e., Z'< O (the total derivitive of Z is negative semidefinite) holds in the region of interest, and if vy(k-1)

is not the maximum intensity point along L. the alpha agent will eventually become a g-alpha agent upon
discovering a point of higher intensity than v(k-1) along L. The agent will then be governed by (4) and will remain

a stable node until surpassed by a higher intensity value.
Equation (6) will govern the agent’s behavior as k approaches infinity if vg(k-1) represents the point of maximum

intensity (global maximum) in the region of interest. Thus instability is possible only when the global maximum
has been captured by at least one agent. Adaptive gain-scheduling techniques have been evaluated that reduce 1t at
convergence to stabilize the collective, but are beyond the scope of this paper.

IV. Conclusions
We have analyzed the stability of the alpha-beta coordination regime and we identified the conditions under which the
system is unstable. Specifically, the alpha-beta regime has an unstable mode when p > 2.0 and the global
equilibrium point has been discovered by at least one agent. The analysis has lead to a better understanding of the
limitations of alpha-beta with respect to the intensity surface being searched and the parameters of the search
components (alpha agents). Generalization of the alpha-beta algorithm to other forms of variable structure control
based on finite-state automata (VSC/FA) is currently being investigated.
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