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ABSTRACT

This study investigates the excitation of decadal variability and predictability of the ocean climate state in

the North Atlantic. Specifically, initial linear optimal perturbations (LOPs) in temperature and salinity that

vary with depth, longitude, and latitude are computed, and the maximum impact on the ocean of these

perturbations is evaluated in a realistic ocean general circulation model. The computations of the LOPs

involve a maximization procedure based on Lagrange multipliers in a nonautonomous context. To assess the

impact of these perturbations four different measures of the North Atlantic Ocean state are used: meridional

volume and heat transports (MVT and MHT) and spatially averaged sea surface temperature (SST) and

ocean heat content (OHC). It is shown that these metrics are dramatically different with regard to pre-

dictability.WhereasOHC and SST can be efficiently modified only by basin-scale anomalies,MVT andMHT

are also strongly affected by smaller-scale perturbations. This suggests that instantaneous or even annual-

mean values of MVT and MHT are less predictable than SST and OHC. Only when averaged over several

decades do the former twometrics have predictability comparable to the latter two, which highlights the need

for long-term observations of the Atlantic meridional overturning circulation in order to accumulate cli-

matically relevant data. This study also suggests that initial errors in ocean temperature of a few millikelvins,

encompassing both the upper and deep ocean, can lead to;0.1-K errors in the predictions of North Atlantic

sea surface temperature on interannual time scales. This transient error growth peaks for SST and OHC after

about 6 and 10 years, respectively, implying a potential predictability barrier.

1. Introduction

Climate prediction on a range of time scales is pro-

gressing rapidly, with the ultimate goals extending from

seasonal to decadal and centennial prediction (IPCC

2013). In the context of the ongoing climate change, it has

been argued that on seasonal to decadal time scales un-

certainty in climate prediction is related to the internal

variability but on longer time scales (century) to the fu-

ture scenario of CO2 emissions (Hawkins and Sutton

2009b). Thus, the latter uncertainty is linked to societal

choices, whereas the former is related to the adjustment

of the climate system, which in numerical climate

simulations depends, to a large extent, on the evolu-

tion of small errors in the initial conditions. In the

present study we will focus on this particular un-

certainty in decadal prediction, which presumably sets

the limits on the predictability of the climate system at

these time scales.

Despite notable improvements, our ability to predict

climate for the next decade or so remains an open

question in the scientific community, even though

potentially it could have large societal implications.

For example, predicting the Atlantic multidecadal

oscillation/variability (Kushnir 1994; Delworth and

Mann 2000) would be highly desirable as it influences

hurricane activity (Goldenberg et al. 2001) and pre-

cipitation over North America and Europe (Sutton

and Hodson 2005).

There are two main reasons why errors or offsets in

the model initial conditions result in uncertainty. First,

Corresponding author address: Florian Sévellec, Ocean and Earth

Science, University of Southampton, Waterfront campus, European

Way, Southampton, SO14 3ZH, United Kingdom.

E-mail: florian.sevellec@noc.soton.ac.uk

15 JANUARY 2017 SÉVELLEC AND FEDOROV 477

DOI: 10.1175/JCLI-D-16-0323.1

� 2017 American Meteorological Society

mailto:florian.sevellec@noc.soton.ac.uk


they can induce a phase shift in the simulated climate

variability. For instance, two identical, perfectly peri-

odic oscillators initialized at different phases would

evolve conserving their initial phase difference, leading

to uncertainty. However, this uncertainty remains rela-

tively constant in time and can be reduced, or even re-

moved, by a good initial phasing of the climate system

(i.e., by using more accurate initial conditions). There-

fore, efforts have been directed to improve the accuracy

of the initialization of numerical models used for climate

prediction, and so to limit any phase shift in the simu-

lations. This is done both by increasing the coverage and

number of in situmeasurements [e.g., theArray for Real-

time Geostrophic Oceanography (ARGO) program],

and by developing different state-estimate methods (e.g.,

variational assimilation; Weaver et al. 2003).

The second and perhaps more challenging problem is

related to the growth of small errors in nonlinear sys-

tems such as climate. This concept, popularized as the

‘‘butterfly effect,’’ follows the pioneering work of

Lorenz (1963) on atmospheric dynamics. The error

growth sets a theoretical limit on prediction, which for

weather forecasting is estimated at about two weeks

(Epstein 1988). For the climate system, wherein the

short-term weather uncertainty averages out, this time

scale remains largely unknown.

To address this problem, the scientific community has

followed two main approaches. One approach involves

ensemble experiments with slightly different initial con-

ditions representing inherent errors in the model initial-

ization. This pragmatic approach often concentrates on

atmospheric errors, while the ocean is kept unperturbed

initially. A more rigorous approach relies on computing

small initial disturbances that can induce the maximum

change in the system after a specified time, which is done

by using generalized stability analysis (GSA; Farrell and

Ioannou 1996a,b).Unlike linear stability analysis (Strogatz

1994), which only considers the system’s asymptotic be-

havior, GSA accounts for transient phenomena, making it

perfectly suitable for predictability studies. The main

drawback of GSA against ensemble experiments is the

assumption that the evolving perturbations remain

small. Such an assumption, allowing the linearization of

the system’s equations around the climatological basic

state, is valid for decadal variability of the Atlantic

meridional overturning circulation (AMOC), which is

typically weak compared to the mean AMOC intensity

[e.g., 1 Sv vs 10 Sv in the IPSL-CM5 climate model

(1 Sv [ 106m3 s21); Mignot and Bony 2013], in par-

ticular during the Holocene period (Tziperman 1997).

Despite being less rigorous than GSA, studies using

ensemble experiments have substantially improved our

understanding of climate predictability. In an early paper,

Griffies and Bryan (1997) suggested that the AMOC in-

tensity had a predictability time scale on the order of

10–20 yr, whereas sea surface temperature was pre-

dictable at 5–7yr. However, during intervals when mul-

tidecadal oscillatory variations were less prominent,

predictability was strongly reduced because oceanic re-

sponse to atmospheric noise dominated (Hasselmann

1976). More recently, Collins and Sinha (2003) argued

that AMOC variations are potentially predictable one to

two decades into the future, and this decadal pre-

dictability may lead to climate predictability for western

Europe. This result, however, contradicts the study of

Pohlmann et al. (2004), who suggest that although ocean

surface temperatures over the North Atlantic (as well as

the Southern Ocean) exhibit predictability on multi-

decadal time scales, surface air temperatures are only

predictable over the ocean and maritime-influenced re-

gions of Europe. Along the same lines, a series of studies

suggest that AMOC variations, surface temperature, sub-

surface temperature, and upper ocean heat content are

potentially predictable on decadal time scales (Collins et al.

2006; Msadek et al. 2010; Teng et al. 2011; Zanna 2012).

Overall, all these studies agree on a possible decadal

predictability for the ocean; however, the quantitative

details of this predictability remain contradictory. For

example, whereas Persechino et al. (2013) suggest than

the AMOC averaged over 5 to 10 years has a higher

predictability than ocean heat content, Branstator and

Teng (2014) argue that in the far north, Atlantic Ocean

surface temperatures have predictability higher than

that of the AMOC (up to 2 decades vs 8 years, re-

spectively). Note that some of these studies use either

experiments with a small number of ensemble members

or truncated principal component analyses, known to

underestimate error growth (Farrell and Ioannou 2001).

In recent years the use of GSA in the context of ocean

circulation and climate dynamics on decadal time scales

has seen an increase in popularity (e.g., Tziperman and

Ioannou 2002; Zanna and Tziperman 2005; Sévellec
et al. 2007; Tziperman et al. 2008; Zanna and Tziperman

2008; Sévellec et al. 2008; Hawkins and Sutton 2009a;

Sévellec et al. 2009; Hawkins and Sutton 2011; Zanna

et al. 2011; Sévellec and Fedorov 2015). In these studies

two different methods are typically used: singular value

decomposition (SVD; e.g., Tziperman and Ioannou

2002) and linear optimal perturbation(s) [LOP(s); e.g.,

Sévellec et al. 2007]. Whereas both methods deal with

the transient growth of small perturbations, they have

subtle differences in the way predictability is defined

and estimated. The SVD method uses standard tools of

linear algebra and requires solving an eigenvalue prob-

lem. The LOPmethod is derived from amore pragmatic

approach that relies on an optimization problem whose
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solutions describe the maximum linear growth of a cho-

sen climatic variable over a given time. Schematically, in

the context of predictability, SVD yields error growth

evaluated via a quadratic norm (Lorenz 1965), whereas

LOPs yield the full error bar (the upper bound) on

a chosen climatic variable (Taylor et al. 2012). LOPs can

also incorporate different additional constraints im-

posed in the process of optimization. Note that the two

methods are not mutually exclusive, and for further

comparison we refer the readers to Sévellec et al. (2007).
LOPs can be more efficiently computed since they are

given by explicit solutions of the optimization problem

(rather than solutions of an eigenvalues problem for

SVD). Because of this efficiency and the physical sig-

nificance of the full error bar for a practical estimation of

predictability, here we use the LOP method.

There exists a long history of perturbation studies

based on similar methodological principles as the LOP

approach described here. Indeed, since the pioneering

work of Lorenz (1965), singular vectors have been

broadly used to estimate error growth. Lorenz’s work

has been followed by a long series of other studies, es-

pecially in the context of predictability in atmospheric

sciences. To name a few relevant approaches, we could

cite Lyapunov vectors (e.g., Yoden and Nomura 1993)

and finite time normal modes (e.g., Frederiksen 2000)

used in a linear framework, or bred vectors (e.g., Baehr

and Piontek 2014) and conditional nonlinear optimal

perturbations applicable in a nonlinear framework (e.g.,

Mu and Zhang 2006; Zu et al. 2016).

In the current study, we will compute and apply LOPs

to diagnose the predictability of several major metrics of

the ocean state in the North Atlantic. Hence, pre-

dictability is assessed here by estimating the upper

bound of the impact on the system of small disturbances.

Wewill show that this predictability strongly depends on

the metric used to measure the ocean state. Sea surface

temperature and ocean heat content are predictable up

to 6 and 10 years, respectively, whereas instantaneous

values of ocean meridional volume and heat transports

appear to be unpredictable. The predictability of the

latter two metrics is improved by applying decadal av-

eraging to the metrics; thus, averaged meridional vol-

ume and heat transport might be predictable on decadal

time scales. Note that the above numbers describe the

worst-case scenario based on the upper bound of error

growth. Whether in practical cases a particular metric

can be predicted for longer lead times will depend on

how strongly model initialization errors project on the

optimal perturbations.

The structure of the paper is as follows. In section 2, the

ocean model, configuration, and seasonal cycle are de-

scribed. The results of the analysis are given in section 3.

An idealized model is used in section 4 to confirm ana-

lytically and further rationalize the main findings of the

study. In section 5, implications of the results for ocean

predictability will be given. Finally, section 6 includes

discussions, conclusions, and directions for future work.

2. The ocean model, configuration, and
seasonal cycle

The ocean GCM we use in this study, as well as its

tangent linear and adjoint versions, has been employed in

several previous studies by the same authors. In particu-

lar, they studied ocean sensitivity to initial perturbations

in surface temperature and salinity (Sévellec et al. 2010;
Sévellec and Fedorov 2013a,b, 2015) and to constant-in-

time surface buoyancy fluxes (Sévellec and Fedorov

2016). While the model and the seasonal cycle it gener-

ates have been described in those studies, in this section

we reproduce these descriptions for completeness.

a. The model configuration

In this study we use the ocean general circulation

model (GCM) OPA 8.2 (Océan Parallélisé; Madec et al.

1998) in its 28 global configuration (ORCA2;Madec and

Imbard 1996). There are 31 levels in the vertical, with

the layer thickness varying from 10m at the surface to

500m at depth. The rigid-lid approximation is used. The

primitive equations are discretized using an Arakawa C

grid and the z coordinates.

Although a number of models participating in the last

IPCC report [the Fifth Assessment Report (AR5)] used

a 0.258 resolution in the ocean, our study takes advan-

tage of a model with a lower resolution of 28 (note that

the IPSL climate model uses the OPA as its oceanic

component with the same 28 resolution, IPSL-CM5;

Marti et al. 2010). The main reason for having the rel-

atively coarse resolution is to avoid the small-scale

baroclinic instability existing in eddy-permitting or

eddy-resolving models. Within the linear framework of

this study, such instability would not saturate, and as we

are interested in large-scale basin adjustment this would

contaminate the solutions of our experiments.

The present model configuration uses the following

parameterizations: convection is parameterized by an

increase in vertical diffusion when ocean stratification

becomes unstable; double diffusion is taken into account

by two different terms for mixing temperature and sa-

linity; eddy-induced velocities are described by the Gent

and McWilliams (1990) expression; viscosity coefficients

follow the turbulent closure scheme of Blanke and

Delecluse (1993) and are functions of longitude, latitude,

and depth; and diffusion for temperature and salinity acts

along isopycnal and diapycnal coordinates (Redi 1982).
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The linear and adjoint models are provided by the

OPATAMcode (OPATangentAdjointModel;Weaver

et al. 2003). The tangent linearmodel is a linearization of

the OPA’s primitive equations of motions with respect

to the ocean seasonally varying basic state.

In the present study, we use either the flux boundary

conditions (with surface heat and freshwater fluxes

specified) or mixed boundary conditions (with an SST

restoring term is used in addition to specified freshwater

fluxes). The restoring coefficient for SST is set to

40Wm22K21 and 27.7mmday21 psu21 (following stan-

dard values; Madec et al. 1998). The time-mean ocean

fluxes were computed by running the full nonlinear

model forced with a combination of the prescribed cli-

matological fluxes and restoring terms (restoring to the

climatological seasonal cycle). This latter approach pro-

duces a realistic seasonal cycle used by the linear and

adjoint models, while reducing the damping and allowing

SST anomalies to develop more easily (Huck and Vallis

2001; Arzel et al. 2006; Sévellec et al. 2009); for details,

see below.

Several additional approximations have been intro-

duced for the tangent-linear and adjoint models: vis-

cosity coefficients in the momentum equations, tracer

diffusivities, and eddy-induced advection are calculated

only for the basic ocean state, and further variations in

those coefficients are neglected.

b. The model seasonal cycle

The seasonally varying basic state of the ocean, also

referred to as the annual model ‘‘trajectory,’’ is obtained

by the direct integration of the OPA model subject to the

climatological surface boundary forcing (varying with the

annual cycle). In particular, we used the ECMWF heat

fluxes averaged in the interval from 1979 to 1993, the ERS

wind stress blended with the TAO data between 1993 and

1996, and an estimate of the climatological river runoff. In

addition, we applied a surface temperature restoring to the

Reynolds climatological values averaged from 1982 to

1989, together with a surface salinity restoring to the

Levitus (1989) climatology (we emphasize that the re-

storing term can be switched off in the experiments with

the linear and adjoint models). A mass restoring term to

the Levitus climatological values of temperature and sa-

linity was applied in the Red and Mediterranean Seas.

Starting with the Levitus climatology as the initial condi-

tions, the model produces a quasi-stationary annual cycle

of the ocean basic state after 200 years of integration.

The Atlantic meridional overturning circulation in the

full ocean GCM (Fig. 1) is characterized by a northward

mass transport above the thermocline, a southward re-

turn flow below 1000–1500m and extending to about

3000m, and a recirculation cell 3000m associated with

the Antarctic Bottom Water. The maximum volume

transport of the AMOC is around 14Sv, which is slightly

below but still within the error bars of the observations

(e.g., 186 5Sv; Talley et al. 2003). The AMOC poleward

heat transport reaches 0.8PW at 258N, whereas estimates

from inverse calculations and hydrographic sections give

1.3PW at 248N (Ganachaud and Wunsch 2000).

As expected, the SST field develops a strong meridio-

nal gradient in the northern Atlantic (Fig. 1), especially

across the North Atlantic Current (NAC); it also de-

velops a salinity maximum at about 208N. The barotropic

streamfunction shows an intense subtropical gyre and

a weaker subpolar gyre centered at about 608N. The two

gyres are separated by the Gulf Stream and the NAC.

Overall, the full nonlinear model produces a realistic

(seasonally varying) basic state of the ocean.Next, wewill

conduct a generalized stability analysis of this ocean state,

focusing on the ocean response to three-dimensional

initial perturbations in temperature and salinity.

3. Optimal initial perturbations

a. Mathematical approach

The goal of these calculations is to obtain initial

thermohaline (temperature and salinity) perturbations

that will induce the largest change in the North Atlantic

Ocean state after a given time within a linear frame-

work. Here, we apply and extend the methodology

originally proposed by Sévellec et al. (2007) and Sévellec
et al. (2008). The text below follows from the derivation

of Sévellec and Fedorov (2015) with a numbers of

modifications pertinent to the present study.

The prognostic equations of the full nonlinear model can

be written as a general nonautonomous dynamical system:

d
t
jUi5N (jUi, t), (1)

where N is a time-dependent nonlinear operator, jUi is
a state vector consisting of all prognostic variables, and

t is time. The state vector comprises the three-dimensional

fields of temperature, salinity, and meridional and zonal

velocity, together with the two-dimensional field of baro-

tropic streamfunction. Since we study a finite-dimensional

vector space, we can also define a dual vector hUj through
the Euclidian scalar product hU jUi.
We decompose the state vector as jUi 5 jUi 1 jui,

where jUi is the nonlinear annual trajectory (i.e., the

climatological background state) and jui is a perturba-

tion. The temporal evolution of the perturbation follows

a linear equation:

d
t
jui5A(t)jui,A(t)5 ›N

›jUijjUi
, (2)
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whereA(t) is a Jacobianmatrix (a function of the trajectory

jUi). We also define an adjoint to the Jacobian matrix as

hajAjbi 5 hbjAyjai, where jai and jbi are two anomalous

state vectors, and y denotes the adjoint defined through the

Euclidian scalar product ha j bi 5 hbj ai.
After assuming that perturbations are and remain

small, we can integrate (3.1) to obtain an explicit ex-

pression for the perturbation as a function of time (Farrell

and Ioannou 1996b):

ju(t
2
)i5M(t

2
, t

1
)ju(t

1
)i , (3)

whereM(t2, t1) is called the propagator of the linearized

dynamics from time t1 to time t2. Following the study of

Sévellec and Fedorov (2013a), using the exact same

numerical model, we know that the propagator does

not commute with its adjoint, that is, My(t2, t1)
M(t2, t1) 6¼ M(t2, t1)M

y(t2, t1). This defines the non-

normality of the dynamics.

FIG. 1. The climatological basic state of the ocean in the Atlantic as reproduced by the full

GCM. (top) Zonally averaged streamfunction of the Atlantic meridional overturning circu-

lation; contour intervals (CI) are 1 Sv; plain, dashed, and dotted lines indicate positive, nega-

tive, and zero values. (middle) Zonally averaged temperature; CI are 28C, the thick solid line

corresponds to 08C. (bottom left) SST (colors) and ocean mixed layer depth (contours); CI are

250m. (bottom right) TheAtlanticOceanmeridional heat transport as a function of latitude. In

the top and bottom-right panels, the thick dashed horizontal and vertical lines indicate the

latitudes and depth where MVT and MHT are estimated. These two variables along with

spatially averagedOHCand SST in theNorthAtlantic are used asmeasures in the optimization

problem. The figure is modified from Sévellec and Fedorov (2015).
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To evaluate the ocean state, we will compare four

different measures (metrics) of the North Atlantic Ocean

state:

1) meridional volume transport (MVT),

2) meridional heat transport (MHT),

3) spatially averaged sea surface temperature (SST), and

4) spatially averaged ocean heat content (OHC).

In general, the first two measures are nonlinear since

the location of the measurements depends on the state

of the system. However, they can still be used within the

linear framework as long as MVT and MHT perturba-

tions are evaluated at fixed locations where their climato-

logical values are maximum (at zmax(MVT)51500m deep

and ymax(MVT) 5 508N for MVT and at ymax(MHT) 5 258N
for MHT).

Thus, we can express anomalies in all of these four mea-

sures as linear functions of the state vector anomaly, hF j ui,
where hFj is an appropriate linear operator. Subsequently,

hF j ui will be the cost function of the optimization

procedure:

hF j ui5

MVT5

ð0
z
max(MVT)

ðxE
xW

yj
y
max(MVT)

dx dz ,

MHT5

ðð
S
(yT1 yT)j

y
max(MHT)

ds ,

SST5
1

S
NA

ðð
NA

Tj
z50

ds ,

OHC5
1

V
NA

ððð
NA

T dy ,

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(4)

where T and T are the trajectory and anomalous tem-

perature and y and y the trajectory and anomalous me-

ridional component of velocity, respectively; x, y, and

z are the zonal, meridional, and vertical coordinates, xW
and xE are the specified zonal coordinates of the western

and eastern basin boundaries, dy is a volume element,

ds is a surface element of the ocean surface, ds is

a surface element of a meridional section. SNA is the

total surface area of the North Atlantic, VNA is the

total volume of the North Atlantic basin, and S is

the total area of a meridional section; NA indicates

that the integral is restricted to the northern North

Atlantic (i.e., from 308 to 708N).

To analyze initial perturbations in temperature and

salinity (rather than velocity), we need to reduce our

parameter space. To that end, we define a projector P

that connects the subspace of temperature and salinity

to the full state vector as jui5Pjvi, where jvi represents
a thermohaline vector. We also define two norms for

these vectors in terms of their effect on density:

hujSjui5 hvjPySPjvi5 hvjNjvi

5
1

V

ððð
(a2T2 1b2S2) dy , (5)

where V is the ocean basin volume, T and S are tem-

perature and salinity components of the full state vector,

a is the thermal expansion coefficient, b is the haline

contraction coefficient, S is a norm operator defined in

the full state vector space, and N is the corresponding

norm operator defined in the subspaces of temperature

and salinity. These norms describe the model departure

from the mean annual trajectory in terms of density

(averaged over the basin).

Finally, we define a Lagrangian function as

L(t
i
, t

m
)5 hF j u(t

m
)i2 g[hu(t

i
)jSju(t

i
)i2 �2] , (6)

where ti is the initial time (when the optimal initial

perturbation is applied), tm is the maximization time

(when the cost function reaches its maximum), and g is

a Lagrange multiplier. Also, « is a parameter associated

with the normalization constraint:

hu(t
i
)jSju(t

i
)i5 �2 . (7)

That is, « measures the magnitude of the initial pertur-

bation (set to «/a 5 1mK). Thus, the goal here is to

maximize the cost function subject to this normalization

constraint.

From expression (6) and the optimization condition

dL5 0 the optimal initial perturbations are computed as

juopt

fti,tmg(ti)i56�
PN21PyMy(t

i
, t

m
)jFiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hFjM(t
m
, t

i
)PN21PyMy(t

i
, t

m
)jFi

q . (8)

This expression gives a full explicit solution of the

optimization problem, here referred to as the linear

optimal perturbation. In general, LOPs depend both on

the initial time ti and the maximization time tm. In this

study we set tm to the end of the year (31 December) and

vary ti. It turns out that the seasonal dependence of this

solution is rather weak, which allows us to concentrate

solely on decadal time scales. Consequently, we can

define the time delay t 5 ti 2 tm (,0) as one of the key

parameters of the problem (which by definition of the

LOP gives the duration of the transient growth in the

system). Note that the seasonal cycle in the model is still

important since it ensures an accurate representation of

the mean state of the ocean.

To test the impacts of the model surface boundary

conditions, two types of surface conditions are used to

compute the LOPs: the mixed boundary conditions

(MBC) and the flux boundary conditions (FBC). The
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former apply surface temperature restoring and constant-

in-time freshwater fluxes for salinity. The latter maintain

constant surface heat and freshwater fluxes. MBC allow

a feedback between oceanic and atmospheric tempera-

tures, but assumes that the atmospheric heat reservoir is

infinite. FBC neglect any feedbacks.

Realistic ocean–atmosphere interactions generate sur-

face forcing for the ocean that lies probably somewhere in

between these two extreme boundary conditions. Note

that the annual trajectory remains identical for both set of

experiments, and modifying surface boundary conditions

affects only the tangent and adjoint simulations. We also

remind the reader that using constant or even time-varying

surface fluxes in the linearized problem means surface

fluxes that are identically zero as long as the surface forcing

is independent of ocean state variables.

As mentioned in the introduction, another common

method to obtain optimal perturbations is based on the

SVD (e.g., Farrell and Ioannou 1996a). Applying our

approach (an optimization procedure using Lagrange

multipliers) but maximizing a quadratic norm instead of

a linear measure of the AMOC would lead to an ei-

genvalue problem whose solutions are singular vectors

of the problem as shown in Sévellec et al. (2007). [A

similar result has been independently obtained in the

context of atmospheric modes of variability by Vimont

(2010) and Martinez-Villalobos and Vimont (2016).] In

the present and previous studies we choose to maximize

linear measures for two main reasons. First, as discussed

before, in a linear framework changes in MVT, MHT,

SST, and OHC are conveniently expressed by linear

functions of the state vector. Second, using linear mea-

sures yields an explicit solution of the problem, (8),

which eliminates the necessity to solve an eigenvalue

problem with much higher computational costs. A more

extensive discussion of this point can be found in

Sévellec et al. (2007).

b. Results

To check the existence of the most optimal (i.e., most

effective) delay we have compared the impacts of the

optimal perturbations of each measure in a range of

t from 0 to 1000 yr. Following (8), we have

hF j uopt
t (0)i5 hFjM(2t)juopt

t (t)i

56�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hFjM(2t)PN21PyMy(t)jFi

q
.

(9)

Using this diagnostic reveals striking differences in the

system sensitivity of different measures (Fig. 2). Whereas

OHC has an optimal transient time scale of one decade

(more exactly 29.9yr), MVT and MHT do not. The al-

most monotonically decreasing sensitivity of MVT and

MHT to optimal initial perturbations as a function of time

delay (Figs. 2a,b) suggests that MVT and MHT can be

modified by nearly instantaneous perturbations (with just

a few weeks or months delay) much more efficiently than

by perturbations in the distant past. In contrast, OHC

shows the highest sensitivity to perturbations applied

a decade earlier (Fig. 2d).

Examining the SST sensitivity to optimal perturba-

tions reveals two local maxima (Fig. 2c), one for zero

FIG. 2. (a)–(d) The impact of the optimal thermohaline per-

turbations of MVT, MHT, SST, and OHC on the respective

variables as a function of the time delay t. The impact is defined

as themaximummagnitude that a particular variable would reach at

the peak of the transient growth. Solid and dashed lines represent

that MVT and MHT are affected most efficiently by near in-

stantaneous perturbations (t ’ 0), whereas OHC and SST are most

sensitive to past perturbations. The choice of the boundary condi-

tions is most important for SST.Hereafter, in Figs. 2–7 and 9–12, the

magnitude of the initial perturbations given by the norm is scaled to

the order of 1mK (i.e.,a21
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihu(0)jSju(0)ip

5 1023K). In the context

of ocean predictability, the error bound is defined as the maximum

impact of a particular initial perturbation with this magnitude across

all tested delays for FBC (instantaneous values are disregarded for

SST; see the text).
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delay and another for a delay in the interannual range

(25.8 yr). The zero-delay maximum in sensitivity cor-

responds to the trivial result of a spatially uniform sur-

face temperature anomaly in the North Atlantic with no

subsurface signature. Such sensitivity disappears for

delays longer than one month is disregarded here.

Consequently, in the rest of this study we will consider

only the ;6-yr maximum in the SST sensitivity.

For all four measures used, the impacts of initial per-

turbations are greater under fixed boundary conditions

than under mixed boundary conditions as the surface

temperature restoring limits the impact of surface tem-

perature anomalies (solid vs dashed lines in Fig. 2).

Indeed, since by construction LOPs avoid inefficient

contributions, the temperature signature of LOPs for

MBC is close to zero at the ocean surface, which weakens

the overall impacts of optimal perturbations for this type

of boundary conditions. The differences between FBC

and MBC become more pronounced when the spatially

averaged SST is used as the measure, because this par-

ticular variable is directly affected by the choice of sur-

face boundary conditions for temperature (Fig. 2c). In

contrast, for measures such as to MVT and MHT, the

results corresponding to different boundary conditions

start diverging only after one decade. This suggests that

the impacts of initial perturbations (except for SST) are

relatively insensitive to the choice of surface boundary

conditions, especially since themaximumsensitivity emerges

within the first decade.

Considering the spatial structure of the optimal initial

perturbations with the most efficient delay reveals

striking differences in the horizontal length scale of the

perturbations, especially in the zonal direction.Whereas

the optimal perturbations of OHC and SST are basin-

scale anomalies (Figs. 3 and 4), the perturbations of

MVT and MHT (e.g., with a 3-month delay) are coast-

ally trapped anomalies extending along the eastern and

western boundaries of the North Atlantic and positioned

close to the latitudes where these two variables are

measured in the model (i.e., 508 and 258N; Figs. 5 and 6).

To understand these differences we will now focus on

MVT and OHC (since MHT and SST behave qualita-

tively similar to the former and the latter, respectively).

For MVT, the optimal perturbations combine temper-

ature and salinity anomalies that constructivelymodify the

density field (i.e., cold anomalies are accompanied by

higher salinity). The induced density pattern is positive in

the west of the basin and negative in the east, with virtually

no signature in the interior (Fig. 5). The resulting density

contrast across the basin induces an east–west baroclinic

pressure difference that has to be balanced by a zonally

averaged meridional geostrophic flow. Following Hirschi

et al. (2003), y} ›xP, we have y }(PWest 2Pst), where y (y)

is the (zonally averaged)meridional velocity,P is pressure,

x is the zonal direction, and PEast and PWest indicate pres-

sure at the eastern and western boundaries of the basin,

respectively. This flow alters MVT and MHT, which cor-

responds to the strengthening of the meridional over-

turning circulation. Since coastal ocean adjustment occurs

significantly faster than the decadal time scale, this per-

turbation induces MVT and MHT changes almost

instantaneously.

In contrast, the optimal perturbations of OHC com-

bine temperature and salinity anomalies localized in the

northwestern part of the North Atlantic basin adjacent

to Canada, Greenland, and Iceland. These anomalies

penetrate below the thermocline, reaching the maxi-

mum slightly below the thermocline (at ;1200m) and

persisting in the deep ocean (Fig. 3). These initial per-

turbations, when scaled to 1mK, lead after 9.9 yr to an

OHC anomaly of 112.6mK. Stronger perturbations

would lead to a proportionally stronger change in

OHC.

The mechanism of the transient growth allowing such

amplification of initial anomalies in the North Atlantic

on decadal time scales has been previously identified by

Sévellec and Fedorov (2015). They demonstrated that

a positive surface density anomaly along the northwest-

ern boundary of theNorthAtlantic, either a cooling or an

increase of salinity or both, should lead to the strength-

ening of the AMOC after ;9yr. They also showed that

the density anomaly has to reach the deep ocean, pene-

trating below the thermocline, to be particularly efficient

(Sévellec and Fedorov 2013b, 2015). The resulting

strengthening of the AMOC is due to the efficient stim-

ulation of large-scale baroclinic (thermal) Rossby waves,

which induce an oscillation between MVT and OHC.

This oscillation has a roughly 24-yr period and involves

changes inMVT andOHC that are in quadrature (MVT.
0 / OHC. 0 / MVT, 0 / OHC, 0. . . ; Sévellec
and Fedorov 2013a).

Because of the different spatial scales of the optimal

perturbations for OHC and MVT, the ocean response

to these initial disturbances differs with time as well.

Following (8), one can obtain a simple expression

that describes the temporal evolution of any of the

four variables after the initial disturbance is applied

(at t 5 0):

hF j uopt
t (t)i5 hFjM(t)juopt

t (0)i . (10)

As expected, we find that each climate variable experi-

ences the strongest increase when the system is per-

turbed by the LOPs computed for this particular

variable (Fig. 7). However, MVT changes caused by its

optimal perturbations are strongly damped just after
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a few years, whereas OHC variations caused by its re-

spective perturbations are only weakly damped (Figs. 7a,d).

LOPs computed for one variable still perturb other

variables. For example, the optimal perturbations of

OHC lead to variations in MVT. These variations

occur as a result of the excitation of the interdecadal

oscillatory mode discussed in above (Sévellec and

Fedorov 2013a). Because of their large spatial scales,

FIG. 3. The structure of the optimal initial thermohaline perturbation having the strongest impact on OHC after an

optimal delay of 9.9 yr (i.e., themost efficient delay in Fig. 2d). This perturbation has an initial OHCanomaly on the order

of 21mK, but induces an anomaly of 115.6mK after 9.9 yr. Note that temperature and salinity have a constructive

(additive) effects on the initial density perturbation. The results are for the flux boundary conditions (FBC).
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the optimal perturbations of OHC are more efficient

for stimulating this mode.

The ocean response to the optimal perturbations of

SST is generally similar to that ofOHC, but the transient

growth lasts a shorter time, and the oscillatory nature of

the response is perhaps more noticeable (Fig. 7c). Like

MVT, MHT shows a strongly damped response to its

optimal perturbations (Fig. 7b), as the initial density

anomalies have virtually no signature in the ocean in-

terior that could support the signal on longer time scales.

FIG. 4. As in Fig. 3, but for the optimal perturbation of spatially averaged SST and for an optimal delay of 5.8 yr

(i.e., the most efficient delay in Fig. 2c). This perturbation has an initial anomaly in SST on the order of11mK, but

induces an anomaly of 156mK after 5.8 yr. The results are for the flux boundary conditions.
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4. Idealized model

a. Idealized model formulation

So far we have demonstrated that MVT and OHC (or

MHT and SST) exhibit dramatic differences in terms of

sensitivity to the initial perturbations: meridional vol-

ume and heat transports are most sensitive to shorter

time scales associated with smaller spatial-scale anom-

alies located near the basin western and eastern bound-

aries, whereas the two spatially averaged temperature

variables are most sensitive to basin-scale anomalies

which can induce transient growth up to a decade long.

To further investigate the role of the horizontal length

scale of the anomalies, specifically in controlling the time

scale and maximum sensitivity for each of the four cli-

matic variables, we use an idealizedmodel of linear ocean

dynamics formulated for the North Atlantic. The setting

of the model (Fig. 8) is similar to that of Sévellec and

Fedorov (2013a), Sévellec and Fedorov (2015), and

Sévellec and Huck (2015), and the text below follows

these studies with minor modifications.

The idealized model describes the linear dynamics of

the ocean GCM with several approximations applied.

For simplicity, we neglect the seasonal cycle and consider

the system autonomous. Also, the large spatial scale of

the problem allows us to reduce the momentum equa-

tions to geostrophic balance on a b plane (the planetary-

geostrophic regime or the geostrophic regime of type 2;

see Phillips 1963; Colin de Verdière 1988; Salmon 1998).

The model treats anomalies in temperature T 0 and
salinity S0 on two ocean levels, the top level (of depth h)

and the deep level (of depth ~h). These anomalies are

chosen to be functions of time t and the zonal coordinate

x, and their evolution follows a set of advection–diffusion

equations. To simplify themathematical procedure of the

analysis, meridional variations in T 0 and S0 are neglected.

FIG. 5. The upper-ocean structure of the optimal thermohaline perturbation that has the largest impact on MVT

after a delay of 3.3months. Temperature and salinity are averaged between 0 and 1209m. The light gray dashed line

indicates the latitude at which MVT is estimated. Note the two coastally trapped waves located on the opposite

sides of the basin; at time zero they will cross this latitude, leading to a large east–west density gradient and hence

a net meridional geostrophic flow. The results are for the flux boundary conditions.

FIG. 6. As in Fig. 5, but for the optimal perturbation of MHT, also corresponding to a 3.3-month delay. The light

gray dashed line indicates the latitude at which MHT is estimated. Note the coastally trapped wave on the western

side of the basin that will cross this latitude at time zero. The results are for the flux boundary conditions.
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The zonal extent of the model basin isW; its full depth is

H (numerical values of these and other parameters are

given in Table 1).

The equations are linearized with respect to the mean

state of the ocean. In particular, at the upper level we im-

pose the mean zonal flow u and the mean temperature

and salinity gradients. These gradients havemeridional and

vertical components: ›yfT, Sg and ›zfT, Sg, where y

and z are the meridional and vertical coordinates, and T

and S are mean temperature and salinity, respectively.

These gradients in the equations are approximated by

simple constants obtained from the GCM output. In the

deep ocean those constants are set to zero. Mean zonal

gradients of temperature and salinity are neglected.

For the prognostic variables of the model, we choose

T 0
u and S0

u, and T 0
d and S0

d, which are temperature and

salinity anomalies in the upper and deep oceans, re-

spectively. These variables evolve according to the lin-

earized advective–diffusion equations with horizontal

diffusivity k (see the appendix). The system is closed

using thermal wind balance with a baroclinicity condi-

tion for the meridional velocity, a linear equation of

state for seawater, a continuity equation, and the rigid-

lid approximation.

The last step is to apply the Fourier transform along

the zonal direction to T 0
u, T

0
d, S

0
u, and S0

d, which yields,

after some algebra, equations for the corresponding

Fourier coefficients T 0u
cn, T

0d
sn, T

0u
cn, T

0d
sn, S

0u
cn, S

0d
sn, S

0u
cn, and

S0d
sn, where n indicates the wavenumber, u and d stand for

the upper and deep model levels, and c and s for cosine

and sine. These equations are summarized in the ap-

pendix and used in the analysis below. As shown by

Sévellec and Fedorov (2013a) and Sévellec and Fedorov

(2015), this idealized model is able to reproduce the

dynamical behavior of the linear tangent and adjoint

versions of the ocean GCM with the flux boundary

FIG. 7. The evolution of (a) MVT, (b) MHT, (c) SST, and

(d) OHC in response to the optimal initial thermohaline pertur-

bations specifically calculated for MVT (black solid line), MHT

(black dashed line), SST (gray solid line), or OHC (gray dashed

line). The spatial structure of the imposed initial temperature and

salinity fields was shown in Figs. 5, 6, 4, and 3, respectively. Note the

strongly damped oscillatory-like behavior with periodicity of about

24 years that occurs in many of these computations; it is related to

the leading, interdecadal eigenmode of the system (Sévellec and

Fedorov 2013a).

FIG. 8. A schematic of the idealized model. The two levels of the

model represent the upper and deep ocean. The prognostic vari-

ables are temperature and salinity at each level (T 0
u, S

0
u, T

0
d, and S0

d,

respectively). The four diagnostic variables are meridional and

vertical velocities, also at each level (y0u,w
0
u, y

0
d, andw0

d). The model

free parameters are the upper-ocean thickness h, the total ocean

depth H, the zonal extent of the Atlantic basin W, the mean meridi-

onal flow u, and the mean temperature and salinity fields (T and S).

For T and S we choose linear functions of y at the top level (both

fields decreasing with latitude) and constants at the deeper level.

Those constants are equal to the values of temperature and salinity

in the upper ocean at the northern boundary of the basin. We also

assume a nonzero vertical stratification in the upper layer that can

support baroclinic Rossby waves due to the b effect. The de-

pendence of the model variables on spatial coordinates (zonal—x,

meridional—y, and vertical—z) and time t is shown in brackets.

Color (blue to red) representsmean temperature variations (colder

to warmer). A similar idealized model was used in Sévellec and

Fedorov (2013a), Sévellec and Fedorov (2015), and Sévellec and

Huck (2015).
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conditions. Those authors have also discussed the

boundary conditions at the basin western and eastern

boundaries required for such a model (restricting n to

odd numbers).

Using this idealized spectral model we apply a similar

optimization procedure as applied in section 3. For

simplicity, here we will focus only on MVT and OHC,

which show the highest sensitivity to small-scale in-

stantaneous anomalies and basin-scale decadal anoma-

lies, respectively.

b. Idealized model results

To investigate the role of the horizontal length scale of

the optimal perturbations, especially their zonal scale, we

have computed the LOPs of the idealized model for dif-

ferent values ofN (from 1 to 20, whereN is the number of

the retained Fourier terms). Decreasing N is equivalent

to applying a low-pass filter along the zonal direction,

filtering smaller-scale anomalies. A Fourier series trun-

cated at N 5 20 would resolve roughly 38 of longitude
(approaching the resolution of the ocean GCM).

First, let us consider the impacts of the optimal pertur-

bations when we retain these first 20 Fourier terms in the

expansion. In this case, the idealizedmodel reproduces the

delayed sensitivity of the full GCM very closely; OHC is

most sensitive to initial perturbations after a roughly 10-yr

delay, while MVT is sensitive to instantaneous perturba-

tions (Fig. 9). Next, we compute LOPs but retain only the

first Fourier term (N5 1, corresponding to the basin zonal

length scale). Our computations reveal a striking dif-

ference: whereas the optimal perturbations of OHC are

almost not affected by the filtering, the optimal per-

turbations of MVT show a much reduced sensitivity for

instantaneous perturbations. In fact, the largest sensi-

tivity is now for a 10-yr delay (Fig. 9, dashed line). This

comparison of the filtered versus unfiltered computa-

tions confirms that OHC is primarily affected by large-

scale anomalies whereas MVT is affected by all scales,

including the smallest zonal scale in the model.

This particular behavior can be further analyzed by

looking at the formulation of the cost function in the

spectral model:

MVT5 �
2N11

n51

gh ~h

fH
[h(2aT 0u

cn 1bS0u
cn)1

~h(2aT 0d
cn 1bS0d

cn)],

OHC5 �
2N11

n51

2

npH
(hT 0u

sn 1
~hT 0d

sn) .

Whereas MVT is independent of the wavenumber n,

OHC is inversely proportional to it. This means that

potentially each Fourier mode has similar impacts on

MVT, increasing its overall sensitivity to perturbations.

At short times, when smaller-scale anomalies are not yet

damped by horizontal diffusion, it is the cumulative ef-

fect of all spatial scales that controls MVT anomalies,

which makes instantaneous values of MVT virtually

unpredictable. On the other hand, OHC is inversely pro-

portional to the wavenumber, with smaller sensitivity to

high wavenumbers (i.e., small-scale anomalies). This

TABLE 1. Parameters of the idealized model.

h 1200m Model top level thickness

H 4500m Total ocean depth

W 608 Basin zonal size

L 608 Basin meridional size

k 2 3 103m2 s21 Horizontal tracer diffusivity

g 9.8m s22 Acceleration due to gravity

f 1024 s21 Coriolis parameter

bf 1.5 3 10211 m21 s21 Latitudinal gradient of

the Coriolis parameter

(i.e., planetary vorticity gradient)

a 2 3 1024 K21 Thermal expansion coefficient

b 7 3 1024 psu21 Haline contraction coefficient

DT 215K Mean meridional temperature

contrast

DS 21.5 psu Mean meridional salinity contrast

u 2.5 3 1022 m s21 Mean zonal velocity in the

upper ocean

FIG. 9. The impact of the optimal initial perturbations of MVT

andOHCon the respective variables as a function of the time delay

t, as obtained from the idealized model (cf. Fig. 2 for the ocean

GCM). The impact is defined as the maximum magnitude that

a particular variable would reach at the peak of the transient

growth. Solid and dashed lines show results retaining 20 Fourier

modes (N5 20; equivalent to a 38 zonal resolution) or just one (N5 1;

the basin scale). Note that MVT is affected most efficiently by near-

instantaneous perturbations (t ’ 0); however, to capture this feature,

one has to retain a sufficient number of Fourier modes. In contrast,

OHC is most sensitive to past perturbations (t ’210 yr), which re-

mains true even if one severely truncates the Fourier expansion.
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fundamental difference between MVT and OHC

comes from the fact that the former depends of the

east–west temperature difference (assuming geostrophic

balance, MVT }
ÐWest

East
y0 dx } rWest2 rEast, where y

0 is the
anomalousmeridional flow, x is the zonal coordinate, and

rEast and rWest are density anomalies at the eastern and

western boundaries, respectively). In contrast, the latter

is an integral of temperature (OHC }
ÐWest

East
T 0 dx), which

filters out small-scale sensitivity. Thus, MVT is more

sensitive to smaller scales than OHC.

Thus, only if one restricts consideration to basin-scale

anomalies, MVT and OHC behave similarly (dashed

gray lines in Fig. 9). In that case, LOPs of both variables

induce optimal transient change on a decadal time scale,

following the mechanism discussed in Sévellec and

Fedorov (2013b) and Sévellec and Fedorov (2015). This

transient change corresponds to the nonnormal stimu-

lation of a 24-yr oscillatory eigenmode (Sévellec and

Fedorov 2013a), whose signature is evident for example

in the oscillatory-like variations in sensitivity in Fig. 9.

5. Implications for predictability of the ocean state

We now return to the results of the ocean GCM and

examine their implications for the predictability of the

ocean state in the North Atlantic described in terms of

the four climate variables under consideration. In fact,

whether an optimal delay exists or not has direct con-

sequences for the predictability of the system. Since

optimal initial anomalies with an average magnitude of

just a few mK (in the norm sense) are able to signifi-

cantly modify the chosen ocean statemetrics, the optimal

time delays for each particular metric sets a potential

time limit on its predictability. Note that the maximum

values of these initial anomalies remain below 1022K, far

below the accuracy of oceanmeasurements. In this sense,

SST and OHC are predictable up to 6 and 10yr, re-

spectively, but instantaneous values of MVT and

MHT are unpredictable (as errors projecting on the

optimal perturbations can impact the latter variables

almost immediately).

To further quantify the system predictability, we

compare themaximum impact of the initial perturbations

(scaled to 1mK) to the typical magnitude of variability of

each metric in a full climate GCM. Accordingly, we de-

fine the normalized error bound as the ratio between the

former and the latter. The coupled model we use is IPSL-

CM5, which employs the same ocean model with the same

configuration (Marti et al. 2010) as the present study.

Following (9), the error bound (i.e., the maximum im-

pact of an optimal perturbation on a particular measure)

can be computed as maxt½� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hFjM(2t)PN21PyMy(t)jFi

q �,
with «/a5 1023K (Table 2). The magnitude of variability

of each measure can be estimated as the standard de-

viation of its annual-mean value from a 1000-yr-long pre-

industrial simulation of the IPSL model (Dufresne et al.

2013; Mignot and Bony 2013). The ratio of the error

bound to the standard deviation yields the normalized

error bound.

We obtain that the normalized error bound exceeds

100% for MVT and MHT but stays below 40% for SST

and OHC. Such strong relative impacts of small distur-

bances (1mK) compared to the overall variability con-

firm lower predictability of MVT and MHT. For OHC

the normalized error bound reaches only 34%, sug-

gesting higher predictability. The effect on these results

of changing the type of surface boundary conditions is

small (Table 2). However, one should keep in mind that

these numbers are important only in a relative sense,

since the initial disturbances could be scaled by an ar-

bitrary factor. Another critical factor relevant to these

results is the extent to which the spatial structure of the

noise actually present in the ocean model or in nature

would project onto the optimal perturbations.

For SST, variability in the climate model is strongly

affected by atmospheric processes, absent in the forced

context, which could artificially reduce the normalized

TABLE 2. Characteristics of themost efficient transient change for optimal initial perturbations corresponding to differentmeasures and

scaled to the order of 1mK (i.e., a21
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihu(0)jSju(0)ip

5 1023 K). Values in bold indicate experiments with the strongest impact. Climatic

error bounds are defined after applying a 30-yr averaging to the relevant variables.

Optimization

measure

Boundary

conditions

Most efficient

time delay

Absolute

error bound

Normalized

error bound

Absolute climatic

error bound

Normalized

climatic error bound

MVT FBC $ 20.1 yr 62.2 Sv 128% 60.36 Sv 61%

MBC $ 20.1 yr 62.2 Sv 128% 60.30 Sv 51%

MHT FBC $ 20.1 yr 69.8 3 1022 PW 144% 61.5 3 1022 PW 71%

MBC $ 20.1 yr 69.8 3 1022 PW 144% 61.4 3 1022 PW 64%

SST FBC 25.8 yr 65.6 3 1022 K 24% 64.4 3 1022 K 45%

MBC $ 20.1 yr 61.5 3 1022 K 6.4% 61.0 3 1022 K 9%

OHC FBC 29.9 yr 615.6mK 34% 612.6mK 42%

MBC 29.4 yr 612.2mK 26% 610.4mK 35%
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error bound. Keeping in mind this limitation, our result

suggest that small disturbances in the ocean model can

lead to an SST change comparable to the overall SST

variability in the climate model (i.e., a 4-mK anomaly

leading to a normalized error bound of nearly 100% for

the flux boundary conditions).

Thus far, the cost function has been defined using in-

stantaneous measurements. However, for climatic pur-

poses one would like to predict a time average of each

metric rather than its instantaneous value. To test how

time averaging would modify the system sensitivity to

small disturbances and hence its predictability, we now

compute the error bound for a time-averaged cost

function:

hFjui5

hMVTi
P
5

ðtm
tm2P

ð0
z
max(MVT)

ðxE
xW

yj
y
max(MVT)

dxdzdt,

hMHTi
P
5

ðtm
tm2P

ðð
S
yTj

y
max(MHT)

dsdt ,

hSSTi
P
5

ðtm
tm2P

1

S
NA

ðð
NA

Tj
z50

dsdt ,

hOHCi
P
5

ðtm
tm2P

1

V
NA

ððð
NA

Tdydt ,

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(11)

where P is the length of the time averaging interval (we

useP in the range 1 to 40 yr). As in the previous analysis,

the effect of averaging strongly differs for MVT and

MHT versus SST and OHC (Fig. 10). For the former

metrics, as the length of the time averaging increases the

influence of LOPs decreases, suggesting a better pre-

dictability. However, for the latter metrics, the time

averaging does not affect the impacts of LOPs much, so

that their predictability does not change.

We now define the climatic error bound as the maxi-

mum impact of a LOP on a 30-yr average of a particular

metric. The choice of P 5 30 yr is somewhat arbitrary,

corresponding to a traditional definition of ‘‘climate.’’

Going from the error bound to the climatic error bound

shows a dramatic decrease in the impact of LOPs by

a factor of 5 for MVT and MHT, but no significant

change for SST and OHC (Table 2).

To further assess the relative impact of small distur-

bances, for each metric we compare the error bound

computed for different time averages with their stan-

dard deviation in the IPSL model also computed using

different durations of the running average. As pre-

viously, we estimate the ratio of the two and define the

normalized climatic error bound (Fig. 11). ForMVT and

MHT, the normalized error bound shows an overall

decrease for longer averaging intervals, leading to the

values of the normalized climatic error bound (defined

for P 5 30 yr) at 60% and 70%, respectively. For MVT

there exists a best averaging interval of about 10 yr with

a normalized climatic error bound of 50%, suggesting

a ‘‘sweet spot’’ for MVT predictability. For MHT, the

longer the averaging interval is, the better.

For OHC, the results are only weakly dependent on

the duration of the averaging, except for a weak local

maximum (i.e., a worst case in terms of prediction)

around 20 yr. The normalized climatic error bound is

about 40%. Overall, both MVT and MHT seem to be-

come more predictable when a long time average is

used, whereas OHC predictability changes very little

(Fig. 11d). For SST, different types of surface boundary

FIG. 10. (a)–(d) Error bound (i.e., the maximum impact of the

respective optimal initial perturbation) as a function of the aver-

aging time P applied to MVT, MHT, SST, and OHC. These av-

eraged variables are denoted as hMVTiP, for example. Solid and

dashed lines represent different boundary conditions (FBC and

MBC, respectively). ForP5 0 the values of the error bound would

be the same as themaximumvalues inFig. 2. The climatic error bound

is defined as the error bound for time averages with P 5 30 yr.
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conditions produce rather different results (Fig. 11c),

suggesting that this issue should be considered in a fully

coupled model.

6. Discussion and conclusions

The climate system exhibits variability on time scales

ranging from synoptic to interannual and decadal to

centennial andmuch longer (Ghil 2002). These different

time scales modulate one another; for example, the ac-

tivity of tropical cyclones is modulated on decadal time

scales by the Atlantic multidecadal variability (Goldenberg

et al. 2001; Delworth and Mann 2000). Thus, to predict

changes in weather pattern or the occurrence of extreme

events, we need to improve our ability to predict decadal

climate variations.

On such decadal time scales, model initial conditions

are critical for prediction (as opposed to a particular

CO2 emission scenariomore relevant on centennial time

scale; Hawkins and Sutton 2009b). However, since the

climate system is chaotic, any errors in the estimate of

these initial can lead in time to significant errors in both

the phase and amplitude of the signal, following the

same principle as the well-known ‘‘butterfly effect’’ for

the atmosphere (Lorenz 1963).

To that end, here we have determined the time scale

and intensity of the transient growth of initial distur-

bances of the NorthAtlantic Ocean state within a forced

ocean model framework. The next question is how fast

and how strongly these initial errors can modify the

ocean state, thus setting a limit on ocean predictability.

Answering this question, we have assessed the sensitivity

to initial conditions of four metrics of the North Atlantic

Ocean state: meridional volume transport (MVT at 508N
and 1500-m depth), meridional heat transport (MHT at

258N), sea surface temperature (SST averaged between

308 and 708N), and ocean heat content (OHC averaged

between 308 and 708Nandwith depths).We have followed

the generalized stability analysis (Farrell and Ioannou

1996a,b) but have reshaped it for the purpose of looking at

linearmeasures of the ocean state, as suggested by Sévellec
et al. (2007). This method involves the computation of

LOPs (linear optimal perturbations) obtained by maxi-

mizing a Lagrangian function, which requires the use of an

adjoint to the ocean GCM (Sévellec and Fedorov 2015).

We have demonstrated that ocean predictability

strongly depends on the metrics chosen to evaluate the

ocean state. For instance, metrics corresponding to large

spatial scales, such as the spatially averaged ocean heat

content and SST, have predictability of 10 and 6 yr, re-

spectively. On the other hand, instantaneous values of

meridional volume and heat transports, which can be

strongly influenced by processes at the boundaries of the

basin, do not show any predictability. We have ratio-

nalized this result using an idealized ocean model.

These findings are generally consistent with the 7.5-yr

optimal transient growth for the AMOC intensity ob-

tained by Zanna et al. (2011) in an ocean model using an

idealized configuration (a rectangular basin with flat

bottom). However, those authors applied a different

metric for the AMOC volume transport by averaging

the streamfunction meridionally and vertically. Such

spatial averaging filters out the effect of small-scale

disturbances. Hence, their metric becomes more com-

parable to our SST and OHC metrics (also based on

spatial averages). As discussed in our study, the aver-

aging leads to a higher sensitivity to past disturbances

than to instantaneous disturbances.

In our study, we have shown that the ocean pre-

dictability is indeed controlled by the transient growth

of small perturbations. These perturbations can grow

FIG. 11. As in Fig. 10, but normalized with the standard deviation

of time averages of each variable in a fully coupled model (IPSL-

CM5). The climatic normalized error bound is defined as the nor-

malized error bound for time averages with P 5 30 yr.
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significantly, so that the characteristic time scale of the

transient growth sets the limit of predictability of the

system.A complementary analysis (Sévellec and Fedorov
2013b) demonstrated that the transient growth time scale

is given by the damping time scale due to horizontal

diffusion limiting the residence time scale of deep ocean

perturbations. This damping affects differently pertur-

bations having small and large spatial scales, as expected

from the Laplace operator of diffusion (t} l2, where t is

the diffusive time scale and l is the spatial scale of the

perturbation). Thus, the metrics influenced by perturba-

tions with smaller spatial scales (e.g., MVT and MHT)

have a shorter predictability, whereas metrics pre-

dominantly influenced by large-scale anomalies (e.g., SST

and OHC) can have longer predictability. Since small

spatial scales in the ocean are given by the internal

Rossby radius of deformation, in principle this makes

instantaneous values of MVT and MHT unpredictable.

In contrast, the largest spatial scale being the basin size

implies longer predictability for SST andOHC limited by

a potential predictability barrier at roughly 6 and 10yr,

respectively. For SST, however, this result might change

in a coupled ocean–atmosphere context due to the com-

peting effects of active ocean–atmosphere coupling, if

any is present, and atmospheric stochastic noise.

In general, applying time averaging to the metrics

enhances their predictability in comparison to their in-

stantaneous values. It is especially true for MVT and

MHT, for which time averaging filters out dependency

on small-scale perturbations and increases predictability

by more than a factor of 4 (in terms of error growth)

when these two metrics are averaged over 30 yr.

FIG. 12. The vertical structure and magnitude of the optimal initial perturbations for OHC under FBC (thick

black lines; full structure shown in Fig. 3) and MBC (thick gray lines) as a function of depth. Crosses indicate the

maximum values of (left) temperature and (right) salinity anomalies at each level of the ocean GCM and are

connected by a cubic spline interpolation. The horizontal dashed line indicates the typical depth limit of Argo floats

(2000m). In effect, this plot shows the sensitivity of North Atlantic Ocean heat content to past disturbances at

different depths. The strongest sensitivity develops for disturbances located at a depth between 1000 and 2000m.

The net system sensitivity associated with the deep ocean (below 2000m) is comparable to if not greater than that

associated with the upper ocean (above 2000m). Note that the relative differences in sensitivity for different surface

boundary conditions (FBC and MBC) become small below several hundred meters.
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Nevertheless, when compared to variability in a cli-

mate model (i.e., IPSL-CM5; Dufresne et al. 2013;

Mignot and Bony 2013), all 30-yr averaged metrics

show a relatively weak predictability (despite a local

optimal for MVT for the averaging interval of 10 years).

Indeed, initial perturbations of only 1mK can lead on

decadal time scale to anomalies reaching roughly 60%

and 40% of the MVT and OHC standard deviation,

respectively. Whether this result makes these variables

unpredictable in practice, in view of the typical uncer-

tainty of temperature measurements, depends on the

extent to which errors in the initial conditions would

project onto the optimal perturbations.

In addition, we find that, regardless of the surface

boundary conditions used, the four climate metrics

under consideration have sensitivity to initial per-

turbations in the deep ocean (below 2000m) as large

as that to initial perturbations in the upper ocean (in

the top 2000m) (see Fig. 12). This finding, consistent

with the previous results of Sévellec and Fedorov

(2013b), stresses the need for accurate measurements

in the deep ocean below the normal depth limit of

ARGO floats.

To test the robustness of our results we have com-

pared the impacts of two different types of surface

boundary conditions for the oceanmodel: themixed and

flux boundary conditions (the former use a restoring

term for temperature). We find that, except for the SST

metric, the results are only weakly modified by the

choice of the boundary conditions. This gives us more

confidence in our results for the MVT, MHT, and OHC

metrics. However, the results for SST do depend on the

boundary conditions, which implies that ocean–atmosphere

coupling can become a defining factor for this metric.

The SST metric is arguably the most important for

climate prediction, since it directly influences surface

air temperature.

By construction, our forced ocean framework disre-

gards potential effects of large-scale active ocean–

atmosphere coupling (passive coupling is included in

the mixed boundary conditions) and stochastic noise

linked to atmospheric synoptic variability. Whereas the

former can be a source of predictability, the latter con-

tributes to error growth. Thus, in the future we intend to

extend our analysis to a fully coupled ocean–atmosphere

context. Note, however, that the results of our ongoing

work on testing the LOPs of North Atlantic Ocean heat

content in a coupled GCM do suggest that the general

development in the first two decades still follows closely

the predictions of the linear, ocean-only computations

with a modified surface temperature damping co-

efficient as long as the imposed initial perturbations

are relatively small (e.g., comparable to the coupled

model internal variability; A. Germe et al. 2016, un-

published manuscript).

Finally, while the results of this study have been ob-

tained by linearizing the primitive equations of motion

around the model climatological basic state, it could be

useful to test their robustness using a more variable

model background state. This can be done by computing

the model trajectory using surface boundary conditions

based on historical observations (as opposed to the cli-

matological forcing in the present study). Also, the re-

sults of this study could be extended to a fully nonlinear

framework. Specifically, conditional nonlinear optimal

perturbations (Mu and Zhang 2006; Zu et al. 2013; Li

et al. 2014) provide a natural extension of the LOPs.

Together with considering the effects of ocean–atmosphere

coupling, these ideas will offer directions for future work.
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APPENDIX

Details of the Idealized Model

a. Equations

Wedescribe here the idealizedmodel used in section 4

in more detail. The setting of the model follows that of

Sévellec and Fedorov (2013a), Sévellec and Fedorov

(2015), and Sévellec and Huck (2015) and is provided

here for completeness. However, whereas Sévellec and

Fedorov (2013a) investigated the existence and properties

of the least-damped, interdecadalAMOCeigenmode and

how this mode can be excited most efficiently, here we

focus on how initial disturbances can affect different

measures of the North Atlantic Ocean state, following

more closely Sévellec and Fedorov (2015). This problem

deals with transient behavior of the system and requires

a specific approach in view of the system nonnormality.

As discussed in section 4, for the prognostic variables

of the two-layer model, we choose T 0
u and S0

u, and T 0
d and

S0
d, which are temperature and salinity anomalies in the

upper and deep oceans, respectively. These variables

evolve according to linearized advective–diffusion

equations with horizontal diffusivity k:
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where y0u and w0
u are the meridional and vertical veloc-

ities in the upper ocean.

The system is closed using thermal wind balance with

a baroclinicity condition for the meridional velocity,

a linear equation of state for seawater, a continuity

equation, and the rigid-lid approximation:

›
z
y0 5

g

f
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x
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2H
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›
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z
w0 5 0, with w0j

z50
5 0, (A2c)

where y 0 and w0 are the meridional and vertical veloci-

ties; both are functions of x, y and z. Also, f is the

Coriolis parameter, g is the acceleration of gravity, a is

the thermal expansion coefficient, and b is the haline

contraction coefficient (the numerical values of these

parameters are given in Table 1). To obtain the merid-

ional and vertical velocity at the upper level, we verti-

cally discretize the latter set of equations on the upper

and deep levels using the Arakawa C grid (together with

simple linear interpolations between the missing values,

if needed).

Using the Fourier coefficients with respect to x, we

express temperature and salinity anomalies as
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We apply this Fourier transform with respect to x to the

set of (A1a)–(A1d); using (A2) reduces the idealized

model to
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where T 0u
cn, T 0u

sn, T 0d
cn, T 0d

sn, S0u
cn, S0u

sn, S0d
cn, and S0d

sn

are the Fourier coefficients, juidi is the state vector,

and Aid is the Jacobian matrix of the idealized model.

Here, n (51, 3, 5. . .) indicates the wavenumber, u and

d stand for the upper and deep levels, and c and s for

cosine and sine. The nonzero terms in this matrix cor-

respond to diffusion, advection by the mean flow, geo-

strophic self-advection, and the baroclinic Rossby wave

propagation. The terms describing the two latter effects

are calculated as
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where ~h5H2 h is the thickness of the deep level, and

bf 5 dyf is the meridional gradient of the Coriolis pa-

rameter estimated for the northern Atlantic (between

308 and 608N).

b. Optimization

To understand the transient behavior of the idealized

model, we now perform a generalized stability analysis

following the procedure outlined in section 3a. To that

end, we need to define (i) the measure of the optimiza-

tion problem or the cost function and (ii) an appropriate

norm for the initial anomalies, both in the context of the

idealized model.

Accordingly, we define the operator hFidj for MVT

and OHC as

hF
id
j5

8>>>><
>>>>:
�

2N11

n51

gh ~h

fH
(2ah, 0,2a ~h, 0,bh, 0,b ~h, 0) for MVT, and

�
2N11

n51

2

npH
(0,h, 0, ~h, 0, 0, 0, 0) for OHC.

The norm, Sid, is chosen as
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cn 1b2Su2
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1
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H
(a2Td2

cn 1a2Td2
sn 1b2Sd2

sn 1b2Sd2
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(A4)

To test the role of the horizontal scales for the solu-

tion, we solve the optimization problem truncating the

Fourier expansion using different total number of waves

(N 5 1, and N 5 20). Note that N 5 20 corresponds to

a 38 resolution, close to the GCM resolution used in this

study; N 5 1 can describe only the basin scale. The re-

sults of the optimization analysis are discussed in

section 4.
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