Smooth horizonless geometries deep inside the black-hole regime

Tosif Bena,' Stefano Giusto,? Emil J. Martinec,> Rodolfo Russo,*
Masaki Shigemori,® David Turton,! and Nicholas P. Warner®

! Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS, F-91191 Gif sur Ywvette, France
2 Dipartimento di Fisica ed Astronomia, Universita di Padova & INFN Sezione di Padova, Via Marzolo 8, 35181 Padova, Italy

3Enrico Fermi Inst. and Dept.

of Physics, University of Chicago,

5640 S. Ellis Ave., Chicago, IL 60637-1433, USA
4 Centre for Research in String Theory, School of Physics and Astronomy,
Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom
°Yukawa Institute for Theoretical Physics, Kyoto University,
Kitashirakawa- Oiwakecho, Sakyo-ku, Kyoto 606-8502 Japan
% Department of Physics and Astronomy and Department of Mathematics,
University of Southern California, Los Angeles, CA 90089, USA

iosif.bena@cea.fr, stefano.giusto@pd.infn.it, ejmartin@uchicago.edu,
r.russo@gmul.ac.uk, shige@yukawa.kyoto-u.ac.jp, david.turton@cea.fr, warner@usc.edu

We construct the first family of horizonless supergravity solutions that have the same mass, charges
and angular momenta as general supersymmetric rotating D1-D5-P black holes in five dimensions.
This family includes solutions with arbitrarily small angular momenta, deep within the regime of
quantum numbers and couplings for which a large classical black hole exists. These geometries
are well-approximated by the black-hole solution, and in particular exhibit the same near-horizon
throat. Deep in this throat, the black-hole singularity is resolved into a smooth cap. We also identify
the holographically-dual states in the N = (4,4) D1-D5 orbifold CFT. Our solutions are among the
states counted by the CFT elliptic genus, and provide examples of smooth microstate geometries
within the ensemble of supersymmetric black-hole microstates.

1. INTRODUCTION

The black-hole information paradox reveals a profound
conflict between Quantum Mechanics and General Rel-
ativity [1]. Quantum mechanically, a black hole has
an entropy given by the horizon area in Planck units,
while in General Relativity the black hole is unique for
a given mass, charge and angular momentum. Unitar-
ity is violated because the enormous black-hole entropy
is not visible at the black-hole horizon and so the in-
formation about the black-hole state cannot be encoded
in the Hawking radiation. Thus, unitarity can only be
preserved if there is new physics at the scale of the hori-
zon [2]. However, constructing structure at the scale of
the horizon is no easy task: The horizon is a null surface,
and any classical matter or wave that can carry informa-
tion will either fall in or dilute very fast.

One of the great successes of string theory has been
a precise accounting of the entropy of certain black
holes [3], and the identification of the microstates that
give rise to this entropy, albeit in a regime of coupling
where the classical black-hole solution is not valid. How-
ever, this is not enough to solve the information paradox.
In order to create the required structure at the horizon,
all the typical microstates of the black hole must become
horizon-sized bound states that have the same mass and
conserved charges as the black hole, and that exist in the
same regime of parameters in which the classical black-
hole solution is valid. Furthermore, microstates that are
describable in supergravity should be horizonless.

For supersymmetric black holes it has been possible
to construct large classes of supergravity solutions cor-

responding to such horizonless bound states, and these
are known as “fuzzball” or microstate geometries [4, 5].
These solutions correspond to some of the microstates of
the black hole, but have limitations, as we now discuss.

The microstate geometries constructed in [6-9], al-
though carrying the same charges and angular momenta
as a large black hole, have the following issues: (i) In all
examples, these solutions carry an angular momentum
that is a large fraction of the maximally allowed value
for the black hole; (ii) Their CFT dual is not known and
so their role in the ensemble of black-hole microstates
remains unclear; (iii) It is not clear whether these config-
urations are generic and represent typical microstates of
a black hole [10], nor whether the states of the black hole
will continue to be described by such geometries when
the black hole becomes non-extremal.

Another class of microstate geometries relevant for
large supersymmetric black holes in five dimensions is
discussed in [11-14]. While these solutions have known
CFT duals, they also carry macroscopic five-dimensional
angular momenta j, j.

The purpose of this Letter is to simultaneously resolve
the first two issues described above by (i) constructing
the first microstate geometries of rotating, supersymmet-
ric D1-D5-P (BMPV) black holes in string theory [15] in
which the angular momenta take arbitrary finite values,
in particular including arbitrarily small values; and by
(ii) identifying the dual CFT states. In doing so we also
demonstrate, via an explicit example, that adding mo-
mentum to a two-charge solution describing a microstate
of a string-size black hole can result in a large-scale, low-
curvature supergravity solution.



2. BLACK-HOLE MICROSTATE GEOMETRIES

We work in type IIB string theory on R*!xS! x M,
where M is T* or K3. We take the size of M to be mi-
croscopic, and that of S to be macroscopic. The S is pa-
rameterized by the coordinate y. We wrap n; D1-branes
on the S' and ng D5-branes on S! x M, and consider mo-
mentum charge, P, along the y direction. We work in the
low-energy, six-dimensional supergravity theory obtained
by reduction on M.

The near-horizon geometry of a six-dimensional ro-
tating, supersymmetric black string with the forego-
ing charges is S® fibered over the extremal BTZ black
hole [16], whose metric is:

d 2
dngz = Eids pz(_dt2 + dyz) + TPQ + Pf(dt + dy)2 - (1)

This metric is locally AdS3 and it asymptotes to the stan-
dard AdSs form for p > p.. It can be written as a circle
of radius p, fibered over AdS, in the near-horizon region
p < p. (see, for example, [17]). Dimensional reduction
on this circle yields the AdSs of the near-horizon BMPV
solution. Following the usual abuse of terminology, we
will refer to this region as the AdS, throat.

The BTZ parameters are related to the supergravity
D1, D5, and P charges @1 5,p and the radial coordinate r
(to be used later) via p = 7/v/Q1Q5 and 2 . = /Q1Q5.
The horizon radius, p,, of the BTZ solution (1) deter-
mines the onset of the AdS; throat (and thus the ra-
dius of the fibered S') and is given by p? = Qp/(Q1Q5).
This value is determined by a competition between the
momentum charge that exerts pressure on the geometry,
and the D1 and D5 charges that exert tension.

Typical black-hole microstates should be very well-
approximated by the black-hole solution until very close
to the horizon. This requires a long, large, BTZ-like
AdS, throat. To obtain such a throat, prior work has
used bubbling solutions with multiple Gibbons-Hawking
(GH) centers [6, 7]; the moduli space of these solutions
includes “scaling” regions [8, 9, 18] in which the GH cen-
ters approach each other arbitrarily closely, whereupon
the solution develops an arbitrarily long AdSs throat. It
has been argued that quantum effects set an upper bound
on the depth of such throats [9, 19], and a correspond-
ing lower bound on the energy gap, which matches the
lowest energy excitations of the (typical sector of the)
dual CFT. This suggests that microstate geometries are
capable of sampling typical sectors of the dual CFT.

Unfortunately, all the previously-known scaling mi-
crostate geometries involve at least three GH centers,
whose dual CFT states are currently unknown. The holo-
graphic dictionary between supergravity solutions and
CFT states has been constructed only for two-centered
solutions [20]; we therefore construct new black-hole mi-
crostate solutions by adding momentum excitations to a
certain two-charge seed solution. We do this using “su-
perstratum” technology [13, 14, 21] to introduce deforma-
tions, with specific angular dependence, so as to modify

the momentum and the angular momenta of the solution.
A particular sub-class of our deformations has the ef-
fect of reducing the angular momenta of the two-charge
seed solution, while introducing no additional angular
momentum. These deformations therefore allow us to
obtain solutions that have arbitrarily small angular mo-
menta and describe microstates of the non-rotating D1-
D5-P (Strominger-Vafa) black hole. The solutions have
an AdSy throat, which becomes longer and longer as the
angular momenta j,7 — 0, thus classically approximat-
ing the non-rotating black hole to arbitrary precision.

3. THE NEW CLASS OF SOLUTIONS

The metric, axion and dilaton of our %—BPS solutions
are determined by four functions, 7, Zs, Z4, F and two

vector fields 3, w [22]:

dst = —% (dv+B)(du+w+ 1 F(dv+B) + VPds,
(2)

where ds? is the flat metric on R* written in spherical
bipolar coordinates,

S dr?

dsj =
4T 22

+XdO? +(r* +a?) sin” O dp? +r? cos? 0 do)?,

3)
with 0 <0 < 7/2 and 0 < ¢,9 < 2m. The coordinates u
and v are light-cone variables related to the asymptotic
time ¢ and the S! coordinate y via:

u=(t-y)/V2, v=(t+y)/V2, yZy+2R,. (4)

The functions ¥ and P are defined by:
Y=r2+a’cos’d, P=27,Zy— 737, (5)

and the dilaton and axion are given by:
et =77 P,

Co= 2477, (6)

The tensor gauge fields are also related to these functions
but we will not discuss their explicit form here.
We consider solutions that have a simple v-fibration:

B =2"Y2a2R, ¥ (sin? O de — cos®Odyp) . (7)

We begin with the background of a maximally-rotating
D1-D5 supertube [23, 24] and add deformations that de-
pend upon the angles (v, ¢, 1) via the phase dependence:

Bk = V2R (m+n)v+ (k—m)p—mip, (8)

where k € Z~ and m,n € Z>g. These fluctuations mod-
ify the angular momenta 7, j and the momentum number
np = py Ry with p, the momentum along the y circle. In
order to obtain smooth solutions whose holographic duals



we can identify, we add a fluctuating mode with strength
bk,m,n using the “coiffuring” technique of [12-14, 25]:

7, = % + ;ZibimwA%}]Ml €0S Dok, 2m,2n 5 9)

Zy = %, Zy = bk,m,nRyM €08 Og,mn,  (10)
where

A = a ™ (r? +a?)~ B2 cos™ 0 sin* ™ 0. (11)

This coiffuring ensures that, while the tensor fields de-
pend on gy, n, the metric does not. The remaining parts
of the solution are given by

F= bi,m,n Fremmn, w=wo+ bi,m,n Wk,m,n (12)
where wg is the value that w takes in the undeformed
supertube solution:

wo = 27262 R, 2 (sin® 0 dop + cos? 0dip) . (13)

The general expressions for Fy, , », and wg m, , are given
in Appendix A and we leave the expressions of the tensor
gauge fields to a subsequent publication.

Regularity and absence of closed timelike curves
(CTCs) requires

Q1Q5/R12/ =a’+ 52/2, v = Tk,m,n bi,m,n ) (14)

k) (k-l—n—l

: —1 _
with xk,m,n = (m n

solution are

» (a2+ﬂb2>’ i= MGQ, Np :Mm+n62
2 k
(15)
where N = n1n5R§/(Q1Q5), with ni,ns the numbers of
D1 and D5 branes.

Rotating D1-D5-P black holes with regular horizons
exist when ninsne — j2 > 0 and this cosmic censorship
bound defines the “black-hole regime” for these parame-
ters. Our solutions lie within this bound for

2 k
a® " n4/(k—m+n)(m+n)

). The conserved charges of the

(16)

Hence, in this regime of parameters, these solutions cor-
respond to horizonless microstates of large-horizon-area
BMPYV black holes. They span the whole range of angular
momenta that these black holes can have. This is a dra-
matic improvement over the earlier solutions [8, 9], which
only have j 2 0.88,/ninsne. The solutions with m =0
are also remarkable because, as a — 0, they give the first
family of microstate geometries of the non-rotating D1-
D5-P black hole. An explicit example (with k =1,m =0
and general n) is given by:

Fiom=—a?2 (1 —rn(r? 4 a2)_”)

wiom =2"Y2 Ry ST (1 — (1% +a®) ™) sin? 0 dg.
(17)

One can easily show that the corresponding metrics are
regular and have no CTCs. For our more general class of
solutions, this proof becomes increasingly complicated,
however our construction explicitly removes CTCs in the
most dangerous regions (near r = 0 and 6 = 0 or 7/2),
and there is little reason to expect problems elsewhere.

4. THE DUAL CFT STATES

Our geometries are asymptotically AdS;xS? and cor-
respond holographically to 1/2-BPS states in a (4, 4) two-
dimensional CFT with central charge ¢ = 6n1ns; = 6N.
Since these states are supersymmetric, they should have
a simple description at the locus in moduli space at which
the CFT is realized as the symmetric orbifold M¥ /Sy.

The untwisted sector of this theory consists of N copies
of the CFT with target space M. The theory also con-
tains twisted sectors, in which the elementary fields have
non-trivial periodicities connecting different CFT copies:
When k copies are cyclically permuted by the boundary
conditions, we call the corresponding state a “strand of
winding k”. Following the conventions of [26], we denote
by [++4)1 a strand of length 1 in the RR ground state
that has j = 7 = 1/2. To describe our states we will also
need the twisted-sector RR ground state, |00);, which
has winding k£ and is a scalar under all symmetries.

In our solutions, the momenta are carried by exci-
tations of the |00); strands. These excitations can be
described by (4, 4) superconformal algebras with central
charge 6k living on each strand. Denoting the Virasoro
generators as L, and the R-symmetry SU(2) generators
as Ji, we excite the |00); strands with two mutually-
commuting, momentum-carrying perturbations: J*, =
(JX, +iJ2)) and (L_y — J3,).

The charges of our solutions (15) support the identifi-
cation of the dual CFT states with coherent superposi-
tions of states of the form:

(Ji—1)m (Lfl B
m! n!

J3 )

Ni,m,n
4+ o)L
for all values of N; such that Ny + kNg yn = N.

To find the exact coefficients of this superposition of
states, one can straightforwardly generalize the deriva-
tion of [26] to states with n > 0. These coefficients are
thereby determined in terms of the supergravity param-
eters a and by, p-

From this calculation one finds that the average num-
bers of |++); and |00); strands are given by Aa? and
Nb?/(2k) respectively, from which the strand quantum
numbers immediately yield the supergravity momentum
and angular momenta in (15). It is also possible to com-
pute 3-point correlators between our heavy states and
BPS states of low conformal dimension. These correla-
tors depend not only on the average numbers of strands
but also on the spread of the coherent superposition, pro-
viding an even more stringent check of the identification
between the CFT states and the supergravity solutions.
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FIG. 1: Sketch of the superstratum spatial geometry in the r-y
plane, compared to the extremal BTZ geometry.

5. THE STRUCTURE OF THE METRIC

In the AdS/CFT limit, one takes R, to be the largest
scale in the problem, implying that Qp < vQ1Q5. We
further focus on the regime a® < Qp = (m + n)b?/(2k),
in which the structure of the cap lies deep inside the AdSs
region discussed above.

In the ¢ — 0 limit, the AdS, throat tends to infi-
nite depth and our solutions tend to the BMPYV solution.
Furthermore, when m = 0, the angular momentum van-
ishes and the solutions tend to that of the non-rotating
D1-D5-P (Strominger-Vafa) black hole.

If, instead, we keep a? < Qp small but finite, then
the leading terms in the metric for » > a are those
of the corresponding black hole. The AdS, throat ex-
tends in the radial direction for a proper length of order
aqs10g (Qp /a?), and the geometry caps off smoothly in
the region r < a, as shown in Fig. 1. In string units,
the proper length of the y circle in the AdS, throat is of
order (gsnp)'/?/N'/* when the volume of the compact
space M is of order one. Thus one can easily arrange
that the proper length of the y circle in the AdS; re-
gion is large in string units, whereupon the supergravity
approximation is valid.

The momentum charge is carried by a superstratum
deformation (supergravity wave) concentrated deep in-
side the AdSs region. The wave profile is determined by
the functions Ay, ., [28]. Inside the support of the wave,
the momentum density that stabilized the size of the y-
circle quickly dilutes, and the circle starts to shrink until
one gets to r = 0, where the coiffuring relations guarantee
that the geometry caps off smoothly.

Our solutions therefore provide examples, with arbi-
trary finite angular momenta, of how the horizon of a
D1-D5-P black hole can be replaced by a smooth cap.
The solutions only differ significantly from the corre-
sponding black hole metric near the cap; the difference
is suppressed in the AdS, throat and further out into
the asymptotic AdS3 region. For example, in the k = 1,
m = 0, general n solution, the leading corrections to the

corresponding black hole metric have magnitude (in a
local orthonormal frame) of order \/na?/r? in the AdS,
throat, and of order a?/r? in the asymptotic AdS3 region.

When a is exactly zero, from the dictionary (15) one
can see that for any value of j and n, there exists a
one-parameter family of CFT states that should corre-
spond to a bulk solution with ¢ = 0. Since this solu-
tion is exactly the classical black-hole solution with an
event horizon, one might naively conclude that certain
pure CFT states have a bulk dual with an event hori-
zon, which would contradict the intuition expressed in
the Introduction. However, several hints indicate that
the strong-coupling description of these particular states
(and also of two-charge states of the form (]00)) %) re-
quires ingredients beyond supergravity. For example, the
supergravity approximation to the sequence of dualities
used to derive the geometry [27] is not valid in these in-
stances. Moreover, in the D1-D5 CF'T, this class of states
can be distinguished from the thermal ensemble only by
the VEVs of non-chiral primary operators.

6. DISCUSSION

In this Letter, we have constructed a new family of
black hole microstate geometries that solve the ten-year-
old problem of lowering the angular momentum j arbi-
trarily below the cosmic censorship bound, and we have
identified the dual CFT states. Our results demonstrate
how adding momentum can transform a two-charge so-
lution describing a microstate of a string-size black hole
into a smooth low-curvature solution with a long AdS,
throat. We are confident that all the solutions one can
build by generalizing the present work to include more
general fluctuations will continue to share these proper-
ties. The generic black-hole microstate differs from the
states we have constructed in the distribution and type
of momentum carriers — our solutions correspond in the
CF'T to using a very limited set of generators of the chiral
algebra (see (18)) to carry the momentum. It is a very
interesting question to ask how closely one can approach
the generic state using our techniques.
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Appendix A: Details of the general solution

The form of Fj 1, »n and wy ., for general k,m,n is

m?(k +n)? n?(k —m)?
]:Ic,m,n =4 [(kQ) F2k,2m,2n + %
R, [(k—m)?(k+n)? m2n?
Hkm,n = 7% |:( )k2( FQk,2m+2,2n+ 2

where

Fop om,2n—2—

sz,2m+2,2n2] . Wemon = hmon (AU +dP) + Comon (dp—do), (Al)

r? + a2 sin? 0 Aok omon  Tkm,n
T4y Thkmenm 472’ + 472) » (A2)

k+n—ji1—j2—js—1

Fopomon = — E

j1+j2+j3§k+n—l( .
J1,32,93=0

J1, 72,73

and where

(J1 + j2 + 73)!

Jilgalgs! (A4)

(jl +J2+ js) _
J1.d2,ds )
It should be understood that in Fj y,n and g m n, when
the coefficient of an F' function is zero, the term is zero.

The expression for (i . can be obtained from gy m »
by quadrature using the BPS equations for w, which now
reduce to an integrable system of differential equations,
as was the case for the n = 0 solutions studied in [13].

For regularity, ptx,m,» must vanish at » = 0,6 = 0; this
fixes g m,n to the value given below Eq. (14).

2
J1+j2 + ]3> (k—m—jhm—jz—l,n—js) AQ(k—jl—j2—1),2(m—j2—1),2(n—j3)

_ 2
(krfljvj,?nfll,n>

: (A3)

4(k +n)2(r?2 4+ a?)

(

One might worry that the warp factor Z; could become
negative and render the solution singular if the amplitude
of the fluctuations becomes too large. However, the min-
imal value of Z; occurs when cos U2k 2m,2n = —1. Then
the regularity conditions in Eq. (14) and the identity

2

A2k 2m,2n < 5 AQk,Qm,Qn _ a <1
§ k+n—1,p - 2 2 =
Tk,m,n Tk,m,n (7" +a )

mnO

ensure that b2 Aok oy 2n < b? and hence Z; > 0.

k,m,n
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