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Abstract

An analytical expression describing the unsteady pressure evolution of the dispersed phase driven

by variations in the carrier phase is presented. In this article, the term ‘dispersed phase represents

rigid particles, droplets or bubbles. Letting both the dispersed and continuous phases to be inho-

mogeneous, unsteady and compressible, the developed pressure equation describes the particle re-

sponse and its eventual equilibration with that of the carrier fluid. The study involves impingement

of a plane traveling wave of a given frequency and subsequent volume-averaged particle pressure

calculation due to a single wave. The ambient/continuous fluid’s pressure and density-weighted

normal velocity are identified as the source terms governing the particle pressure. Analogous to

generalized Faxén’s theorem which is applicable to particle equation of motion, the pressure ex-

pression is also written in terms of the surface average of time-varying incoming flow properties.

The surface average allows the current formulation to be generalized for any complex incident flow,

including situations where the particle size is comparable to that of the incoming flow. Further

the particle pressure is also found to depend on the dispersed-to-continuous fluid density ratio and

speed of sound ratio in addition to dynamic viscosities of both fluids. The model is applied to

predict the unsteady pressure variation inside an aluminum particle subjected to normal shock

waves. The results are compared against numerical simulations and found to be in good agree-

ment. Furthermore, it is shown that although the analysis is conducted in the limit of negligible

flow Reynolds and Mach numbers, it can be used to compute the density and volume of the dis-

persed phase to reasonable accuracy. Finally, analogous to the pressure evolution expression, an

equation describing the time-dependent particle radius is deduced and is shown to reduce to the

Rayleigh-Plesset equation in the linear limit.
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I. INTRODUCTION

Dispersed multiphase flows (as opposed to separated multiphase flows) concerns fluid

systems where there exists discrete particles in an otherwise continuous fluid media. It

is important to note that, throughout this study, by ‘dispersed’ or ‘particulate’ phase we

mean air bubbles, liquid droplets or rigid solid particles such as sand, alumina or dust

particles, situated in a surrounding fluid, termed the ‘carrier’ or ‘continuous’ phase [1]. A

dispersed multiphase flow greatly simplifies when the dispersed phase (particles) is in perfect

equilibrium with the surrounding continuous phase. In other words, in the limit where

the dispersed phase pressure, velocity and temperature are instantaneously equal to the

corresponding pressure, velocity and temperature of the local surrounding continuous phase,

the multiphase system can be studied as a mixture, without needing to separately account

for the time evolution of the mass, momentum and energy of the individual phases. In this

limit, it is sufficient to solve the governing equations of the mixture (or the carrier phase

accounting for the volume fraction of the different phases) and the particles are transported

along with the fluid and this limit is often called the dusty gas approach [2, 3]. However

this approach is limited to particles of negligible inertia, since perfect pressure, velocity and

temperature equilibrium between the phases is assumed, and such perfect equilibrium is not

satisfied in most multiphase applications.

In situations where the inertia of the dispersed phase (particles) is not negligible, there will

be disequilibrium between the two phases. We identify three primary equilibrium processes

between the dispersed and the continuous phases; these are equilibrium of pressure, velocity

and temperature. For example, if the continuous phase pressure suddenly changes within

a reference volume of fluid at the macroscale, the particles dispersed within this reference

volume will respond by evolving towards this new pressure with an appropriate change in

density and specific volume, as dictated by the equation of state. Similarly, if the continuous

phase velocity or temperature suddenly changes within a reference volume, the velocity or

temperature of the particles within that volume will evolve towards their new values, due

to momentum and energy exchange between the continuous and the dispersed phases.

Starting from the pioneering work of Stokes [4] the velocity equilibrium process has been

well studied. In the quasi-steady limit, where the unsteady effects can be ignored, the

relative velocity between the dispersed/particulate and the continuous phases leads to the
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simplest particle equation of motion:

dud

dt
=

uc − ud

τpV
, τpV =

(2ρ̃+ 1)R2

9νcΦV
, (1)

where ud denotes the particle velocity and uc denotes the fluid velocity at the particle

location, t denotes time. In the definition of particle velocity time scale ρ̃, R, νc, and

ΦV are the particle-to-fluid density ratio, particle radius, kinematic viscosity of the fluid,

and nonlinear correction to Stokes drag respectively. The equation of motion describes the

approach to “velocity equilibrium” (or linear momentum equilibrium) where τpV denotes the

time scale on which the dispersed phase approaches the continuous phase velocity, uc. If the

time scale on which the continuous phase velocity changes is τcV , then a Stokes number can

be defined as the time scale ratio: StV = τpV /τcV . Only in the limit StV ≪ 1 the dispersed

phase (particles) can be taken to be in near-perfect equilibrium with the continuous phase

(i.e., ud ≈ uc ). Otherwise, the dispersed phase is not in local instantaneous equilibrium

with the continuous phase and the dispersed phase dynamics will be given by the equation

of motion.

If unsteady effects, arising from the acceleration of the continuous or the dispersed phase,

become important, then the dispersed phase (particle) velocity is governed by the more

involved Basset-Boussinesq-Oseen (BBO) [5–7] equation of motion. Further improvements to

the BBO equation exists and they rigorously include the effects of finite particle size, internal

motion within the dispersed phase (rigid particles/bubbles/droplets), and compressibility [8–

12]. Empirical extensions that account for the nonlinear effects of finite Reynolds and Mach

numbers have also been advanced [13–16]. In essence, the approach to velocity equilibrium

is well understood and expressed in terms of rigorous equations of motion in the linear limit

and reliable empirical extensions in the nonlinear regime.

Analogous to velocity, the approach to “thermal equilibrium” arising from the tempera-

ture difference between the particle and the surrounding fluid is given by [17]:

dT d

dt
=
T c − T d

τpT
, τpT =

ρ̃ R2C̃p

3κcΦT
, (2)

where, T d represents the dispersed phase temperature while T c denotes the temperature of

the continuous medium. Here, τpT is the thermal response time of the particle. Analogous
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to the velocity response time it denotes the time required for the dispersed phase to attain

thermal equilibrium with the continuous phase. In Eq. (2), C̃p, κ
c and ΦT denote the

particle-to-fluid specific heat ratio, thermal diffusivity of the continuous phase and nonlinear

correction to Nusselt number respectively.

While there are explicit equations governing the evolution of particle velocity and temper-

ature (Eqs. (1), (2)), an equation that governs the dispersed phase pressure evolution (i.e.,

pressure interior of the particle) is lacking. In many dispersed multiphase flow applications

in the incompressible regime, such as sediment transport, turbidity currents and fluidized

bed reactors, the pressure of the dispersed phase is taken to be equal to that of the contin-

uous phase, even when the dispersed phase (particle) velocity and temperature are taken to

be different from those of the continuous phase, and the evolution of the dispersed phase

velocity and temperature are given by equations of the form (1) and (2). The time scale of

pressure equilibration is of the order of the acoustic time scale, which is given by τpa = R/a,

were a is the speed of sound, assuming the speed of sound within the dispersed and the con-

tinuous phases to be of the same order. In many applications the time scale ratios τpa/τpV

and τpa/τpT are small and the assumption of pressure equilibrium is well justified. However,

in applications such as bubbly flows, cavitation and propagation of an intense shock over

a bed of particles, the assumption of pressure equilibrium between the dispersed and the

continuous phases become inappropriate. In these situations, we require an equation for the

evolution of the dispersed phase pressure, similar to those for dispersed phase velocity and

temperature. Obtaining such an evolution equation for the dispersed phase pressure is the

focus of the present work.

There is extensive literature [18–22] that investigates the behavior of isolated and dis-

persion of bubbles in liquids, where the evolution of pressure within the bubble plays an

important role. In the study of bubbly flows, the rapid growth and collapse of air or vapor

bubble is of significance since cavitation causes major damage to turbine blades and pro-

pellers. In such cases, the compressibility of the flow is important and one is interested in the

time history of bubble radius and pressure [23, 24]. The growth rate of bubbles is governed

by Rayleigh-Plesset equation [25, 26] and it has been observed both from theory and exper-

iments [27–29] that their evolution is highly oscillatory. This non-monotonic behavior also

translates to a non-monotonic evolution for the dispersed phase (bubble) pressure. Thus,

there is an interesting difference between the process of pressure equilibration and the evo-
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lution of dispersed phase velocity or temperature towards equilibrium. A sudden change in

the continuous phase velocity or temperature leads to a monotonic change in the dispersed

phase (particle) velocity or temperature, as represented by Eqs. (1) and (2). However a step

change in the continuous phase pressure leads to a non-monotonic, oscillatory evolution of

dispersed phase pressure along its path to equilibrium.

In applications involving shock-particle interaction, as the shock sweeps over the particle,

the pressure within the particle is driven by a rapid change in the fluid pressure surrounding

the particle. A micron-sized particle, initially at equilibrium with the pre-shock ambient con-

dition, when subjected to an intense shock wave will undergo pressure change on the order of

mega- to gigapascals in a few nanoseconds. In this scenario, the external post-shock pressure

serves as the source term and drives the dispersed phase (rigid particles/bubbles/droplets)

towards a new pressure equilibrium. The time scale of pressure variation within the particle

is of the same order as the time scale on which the continuous phase pressure changes.

In Eq. (1), the right hand side is the point-particle model for the quasi-steady force

exerted on a particle by the surrounding continuous phase, scaled by the mass of the particle.

It is an approximation to the actual force on a particle, which could be calculated with a fully

resolved simulation. But the advantage of the point-particle model is that it encapsulates

the net effect of all the details of the flow around the particle at the microscale and expresses

the quasi-steady force entirely in terms of the undisturbed continuous phase velocity at the

macroscale. Point-particle force models such as the BBO equation and the Maxey-Riley-

Gatignol (MRG) equation are systematic improvements upon Eq. (1). By taking into

account additional effects such as unsteadiness and finite particle size, they provide better

approximation to the net momentum exchange between the particle and the continuous

phase flow. Similarly, Eq. (2) is a point-particle model for the net energy exchange between

the particle and the continuous phase. However, to the best of our knowledge there appears

to be no physical model/equation that dictates the pressure equilibration process.

The primary objective of the current work is to rigorously develop an equation for the

time evolution of pressure of the dispersed phase (i.e., pressure inside the particle) purely

in terms of the undisturbed macroscale flow properties of the continuous phase. We accom-

plish this by considering an arbitrary time-dependent spatially-varying ambient flow past

a spherical particle and solving the linearized Navier-Stokes equations for both the inside

and outside flows with appropriate matching at the interface. We allow both the dispersed
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and continuous phases to be compressible and viscous. Therefore the pressure model to

be developed in the present study can be regarded as analogue to the MRG equation for

particle motion.

Towards this goal, in Sec. II, we begin by considering an acoustic wave of a given

frequency and wavenumber to impinge on a stationary sphere. We solve the linearized

compressible Navier-Stokes equations both inside and outside the sphere thus allowing for

transmitted and scattered waves. The velocities are expressed as flow potentials (sum of

infinite terms) and the monopole term alone dictates the volume-averaged pressure inside

the particle. In this work we allow only for radial pulsations of the particle and no shape

deformation is permitted. We impose no restriction on the particle size compared to the

length scale of the incoming flow. Subsequently in Sec. III, the volume-averaged par-

ticle pressure is computed for a given wavenumber and frequency. Following our earlier

work on generalized Faxén theorem [30], we establish (in Laplace space) the equivalence

between volume-averaged pressure inside the particle (monopole term) corresponding to a

single wavenumber/frequency and surface average of the incident pressure and velocity. The

resulting expression is transformed to the time-domain (Laplace inverse) and the particle

pressure is found to be a sum of two integral contributions arising from (i) undisturbed

pressure and (ii) undisturbed radial velocity of the continuous phase. Furthermore each

of the contributions is a convolution integral made up a temporal part, termed the kernel

and a spatial part arising from the surface average of the undisturbed fluid quantity of the

continuous phase. The behavior of the kernels for various combinations of continuous and

dispersed phase media is analyzed. These kernels are found to be oscillatory, leading to the

non-monotonic behavior seen in the particle pressure/radius evolution. Additionally, the

dependence of the kernels on the particle-to-medium impedance ratio is also presented.

On having evaluated the pressure evolution, equations for the temporal variation of par-

ticle volume and density are discussed in Sec. IV. The reduction of the present model to the

linearized Rayleigh-Plesset equation in the limit of (i) linear approximation and (ii) incom-

pressible ambient is discussed in Sec. V. As a consequence, we compare the Rayleigh-Plesset

equation with our linear formulation and asses the effects of non-linearity. In Sec. VI, we

apply the present pressure model to predict the pressure inside a finite-sized aluminum par-

ticle subjected to normal shock waves of varying strengths and compare against the direct

numerical simulation results [31]. Finally conclusions are presented in Sec. VII.
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II. ACOUSTIC SOLUTION

Our interest in this section is to obtain an equation for the time evolution of volume-

averaged pressure within a spherical medium (particle, droplet or bubble) in terms of the

undisturbed macroscale flow of the continuous phase which will be taken to be varying both

in time and space on the scale of the sphere. We will solve the linearized compressible viscous

Navier-Stokes equations both inside and outside the sphere with appropriate matching at

the interface. To linear approximation the arbitrary time and space dependent ambient flow

approaching the sphere can be considered as a superposition of planar waves. Thus, we start

with the classical problem of an incident planar sound wave in a viscous compressible, but

otherwise stationary, medium scattered by a sphere of finite radius. The incident and the

disturbance fields are described by the compressible Navier-Stokes equations:

∂ρ

∂t
+∇ · (ρu) = 0 , (3)

∂(ρu)

∂t
+∇ · (ρuu) = ∇ · σ , (4)

where, σ is the stress-tensor and defined as:

σ =

[
−pI + µ

(
∇u+ (∇u)T

)
+

(
µb −

2

3
µ

)
(∇ · u)I

]
. (5)

In the above equations, ρ is the fluid density, p is the pressure, u represents velocity, µ and

µb denote the dynamic and bulk viscosities of the medium respectively, t represents time,

while I and superscript T are the identity tensor and transpose operator respectively.

In literature, most elementary discussions [32, 33] on acoustic wave solutions involve only

homogeneous and stationary medium. However, since we are interested in accounting for

inhomogeneous ambient, the background medium (before the passage of the acoustic wave)

is allowed to be a function of space and time. In addition, since we are considering a plane

(one-dimensional) traveling wave, the background flow variation is restricted to be only in

the direction of the wave. Further, in order to limit ourselves to linearized flows, we assume

the background to be non-moving. These conditions allow us to express the flow-field as the

sum of the base or background flow (ρ0, p0,u0 = 0) and perturbation flow (ρ1, p1,u1). In
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other words:

ρ(r, t) = ρ0(r, t) + ρ1(r, t), p(r, t) = p0(r, t) + p1(r, t), u(r, t) = u1(r, t), (6)

where, the suffixes 0 and 1 represent the base and perturbation quantities respectively.

Further, the perturbation field can be written as linear superposition of the incident and

scattered components. Therefore the flow-field can be viewed as a summation of the undis-

turbed flow (Q0 +Qin
1 ) and disturbed flow (Qsc

1 ), where Q could represent density, velocity

or pressure. The superscripts, ‘in’ and ‘sc’, indicate flow properties concerning the incident

and scattered fields in general. On substituting Eq. (6) in Eqs. (3) - (4) and linearizing,

the first-order equations are given by:

∂ρ1
∂t

+∇ · (ρ0u1) = 0 , (7)

∂(ρ0u1)

∂t
= ∇ ·

[
−p1I + µ

(
∇u1 + (∇u1)

T
)
+

(
µb −

2

3
µ

)
(∇ · u1)I

]
. (8)

Solutions can readily be found in literature for homogeneous background flows [34–36].

Nevertheless, to employ the same technique in the present context of non-uniform back-

ground medium we define a density-weighted velocity [37]:

w1 =
ρ0u1

ρref
, (9)

where, ρref is some constant reference density. However this leads to density appearing in

the viscous terms as well. To overcome this, we assume the kinematic viscosity (ν) of the

fluid to be a constant such that:

µ =
ρ0µref

ρref
and µb =

ρ0µbref

ρref
, (10)

where, µref and µbref are reference dynamic and bulk viscosities respectively (also taken to

be constants). Substituting Eqs. (9) and (10) in Eqs. (7) - (8), and assuming the variation
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in background density (∇ρ0) to be of the order of the perturbation quantities one obtains:

∂ρ1
∂t

+ ρref∇ ·w1 = 0 , (11)

ρref
∂w1

∂t
= ∇ ·

[
−p1I + µref

(
∇w1 + (∇w1)

T
)
+

(
µbref −

2

3
µref

)
(∇ ·w1)I

]
. (12)

We place no restriction on the base state and thus p0 and ρ0 can be related by any equation

of state appropriate for the material. However, we require the perturbation density and

pressure to be related by the constant ambient speed of sound (a0) corresponding to the

base state:

p1 = a20ρ1 . (13)

The generality of the present approach to any arbitrary equation of state for the base flow will

become important later when we consider the average thermal evolution inside the sphere.

Now, Eqs. (11) - (13) resemble the equations governing uniform background flows. For the

purposes of this study, the flow properties corresponding to the carrier and dispersed phases

will be represented by the superscripts c and d respectively. Subsequently, the density-

weighted velocity field can be expressed in terms of the Helmholtz decomposition:

wl
1 = ∇φl +∇×Ψl , (14)

where, the superscript, l could either represent the carrier/continuous (c) or dispersed (d)

phase, φl represents the scalar velocity potential and Ψl is the vector velocity potential. It

is important to reiterate that any first order quantity of the outside fluid may be written as

the sum of an incident and scattered quantities - i.e., for example, wc
1 = win

1 + wsc
1 . Now,

we consider a plane wave propagating in the axial direction (z) and given by:

win
1 (ω) = win

1 ez = exp{i(kcz − ωt)}e
z
, (15)

where, e
z
denotes the unit vector in the axial direction, ω is the angular frequency of the

incident acoustic wave, which is related via the ambient speed of sound to its wavenumber

10



kc, which in turn is given by:

kc =
ω

ac0

[
1−

iωνc

ac0

2(µc
bref

µc
ref

+
4

3

)]
−

1

2

. (16)

Subsequently, the incoming potential can be written in spherical coordinates as [38],

φin =
∞∑

n=0

An(2n+ 1)injn(k
cr)Pn(cos θ)e

−iωt , (17)

where, jn represents spherical Bessel function of the first kind of order n, Pn denotes Leg-

endre polynomials of the first kind of degree n, An represents the complex amplitude of the

incoming wave. Here, r and θ represent the radial and circumferential directions respectively.

Similarly the scattered scalar wave potential can be described as [39],

φsc =
∞∑

n=0

An(2n + 1)inSc
nhn(k

cr)Pn(cos θ)e
−iωt , (18)

where, hn is the spherical Hankel function of the first kind of order n. For the inside flow

however, the constraint that the flow needs to be bounded at the origin leads to:

φd =
∞∑

n=0

An(2n+ 1)inSd
njn(k

dr)Pn(cos θ)e
−iωt , (19)

where,

kd =
ω

ad0

[
1−

iωνd

ad0

2(
µd
b ref

µd
ref

+
4

3

)]
−

1

2

. (20)

Considering the fact we are dealing with an axisymmetric problem, the vector potential Ψl

can be reduced to a scalar potential ψl that satisfies:

∇2ψl + klν
2
ψl = 0 , (21)

where, klν = (1+ i)/δl =
√

iω/νl, with δl denoting the momentum boundary layer thickness

and ∇2 = ∇ ·∇ . The solution of Eq. (21) yields:

ψl =

∞∑

n=0

An(2n+ 1)inSl
νnhn(k

l
νr)Pn(cos θ)e

−iωt . (22)
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In Eqs. (18), (19) and (22), Sc
n, S

d
n and Sl

νn are known as the scattering coefficients which are

evaluated using the boundary conditions at the surface of the sphere. Once the scattering

coefficients are computed, the complete flow-field can be described.

A. Boundary Conditions

In this study, we only allow for radial pulsations and all other deformations of the sphere

surface are ignored. Subsequently, noting that the n = 0 (monopole) term accounts purely

for the radial pulsation, we segregate the boundary conditions as (i) applicable to n = 0

and (ii) applicable to n 6= 0. Since for n = 0 the flow is independent of θ (independent of

viscosity), the scattering coefficients, Sc
ν0

and Sd
ν0

are rendered irrelevant. As a consequence,

we only need two interface matching conditions given by,

wc
1r

∣∣∣
n=0

= wd
1r

∣∣∣
n=0

, at r = R0 , (23a)

σc
1rr

∣∣∣
n=0

= σd
1rr

∣∣∣
n=0

− pST1

∣∣∣
n=0

, at r = R0 , (23b)

where, wc
1r(w

d
1r), σ

c
1rr(σ

d
1rr) and p

ST denote the carrier (dispersed) phase radial velocity, nor-

mal shear stress of the carrier (dispersed) phase and the surface tension pressure respectively.

It must be noted that, before the acoustic wave is incident on the particle, equilibrium con-

ditions exist, such that

pc0 = pd0 − pST0 , (24)

where, pST0 = 2Γ/R0, is the equilibrium surface tension pressure, with Γ denoting the surface

tension coefficient. Similarly, pc0 and pd0 represent the equilibrium hydrostatic pressures

outside and inside the particle respectively.

Note that the purpose of this study is to obtain an expression for the time-dependent

variation of the volume-averaged pressure inside the sphere in terms of the undisturbed flow

properties. Since the pressure variation corresponds to the monopole behavior, the analysis

of non-monopole modes is unnecessary for the current purposes. However, we present them

here for the sake of completeness. For all non-monopole modes (n 6= 0), at the interface

of the two fluids, the normal and tangential velocities must match. Ignoring variation in

surface tension all along the interface, we assume the normal and tangential stresses to be
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identical. These can quantitatively be written as, at r = R0,

wc
1r = wd

1r ; wc
1θ = wd

1θ ; σc
1rr = σd

1rr ; σc
1rθ = σd

1rθ , (25)

where, wc
1θ(w

d
1θ) and σ

c
1rθ(σ

d
1rθ) correspond to the tangential velocity and shear stress of the

particle (medium) respectively. It should be noted that the boundary conditions (Eqs. (23a),

(23b) (25)) are applied at the mean radius of the sphere, R0 as opposed to the instantaneous

radius, R(t). However, we argue that this approximation is valid in the linear framework

under consideration and such an approximation has been carried out in the past [40–42].

B. Scattering Coefficients

The general expression for the velocity and stress components (with µbref = 2µref/3) in

terms of the scalar and vector potentials is given as,

wl
1r =

∂φl

∂r
−

[
r∇2 −

1

r

∂

∂r
r2
∂

∂r

]
ψl ; (26)

wl
1θ =

∂φl

∂θ
+

[
1

r

∂

∂r
r
∂

∂θ

]
ψl ; (27)

σl
1rr = ρlref

∂φl

∂t
+ 2µl

ref

[(
−∇2 +

∂2

∂r2

)
φl +

(
r
∂3

∂r3
+ 3

∂2

∂r2
− r

∂

∂r
∇2 −∇2

)
ψl

]
; (28)

σl
1rθ = 2µl

ref

[(
∂2

∂r∂θ

1

r

)
φl +

{
∂

∂θ

(
∂2

∂r2
+

1

r

∂

∂r
−

1

r2
−

1

2
∇2

)}
ψl

]
. (29)

To compute the monopole coefficients using Eqs. (23a) and (23b), the appropriate defi-

nitions in Eqs. (26) - (29) are used. However, we also need to express the surface tension

pressure in terms of velocity potentials (or radial velocity). Therefore we write, in general,

pST =
2Γ

R
. (30)

Assuming the amplitude of the oscillation of the sphere (Rǫ) to be small compared to the

mean particle radius, we can write, R(t) = R0 + Rǫe
−iωt. Substituting this expression of

radius in Eq. (30), with Rǫ ≪ R0, we obtain, up to first-order in Rǫ,

pST =
2Γ

R0

[
1−

Rǫ

R0
e−iωt

]
. (31)
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Further, velocity at the interface due to volume pulsation of the sphere is nothing but,

Ṙ =
dR

dt
= wd

1r

∣∣∣
n=0

. (32)

Also, from the definition of R(t),

Ṙ = −iωRǫe
−iωt (33)

Equating Eqs. (32) and (33), we obtain an expression for Rǫ. Substituting the resulting

expression of Rǫ in Eq. (31) we obtain,

pST1

∣∣∣
n=0

=

(
2Γ/R0

iωR0

)
wd

1r

∣∣∣
n=0

, (34)

where, pST1 is a first-oder quantity (in surface tension pressure). On substituting the above

expression for pST1

∣∣∣
n=0

in Eq. (23b), one may notice that the boundary conditions for n = 0

are completely defined and can be expressed in terms of the velocity potentials.

Since our objective is to obtain an explicit expression for volume-averaged pressure inside

the sphere and as stated earlier this quantity depends only on the n = 0 mode, we shall

rewrite the monopole boundary conditions (neglecting surface tension effects) as:

−ŵsc
1r + ŵd

1r =ŵin
1r

−p̂sc1 + 2µc
ref

∂ŵsc
1r

∂r
+ p̂d1 − 2µd

ref

∂ŵd
1r

∂r
=p̂in1

(35)

where, flow properties corresponding to mode, n = 0, at the sphere surface, r = R0, is

denoted with the superscript, ̂ . In other words, for notational simplicity, we write for

example, w1r|r=R0,n=0 = ŵ1r. Note that the viscous terms corresponding to the incoming

flow have been neglected, as they can be considered to be flow properties away from the

sphere where viscous effects are negligible. Now expressing the boundary conditions above

in terms of scattering coefficients we have:


 f1 f2

g1 g2






Sc
0

Sd
0



 =




ŵin

1r

p̂in1



 , (36)
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where for simplification purposes, we define the following:

f1 = kcA0h1(k
cR0)e

−iωt, g1 = kcA0

[
−iρcrefa

c
0h0(k

cR0) +
4µc

ref

R0
h1(k

cR0)

]
e−iωt,

f2 = −kdA0j1(k
dR0)e

−iωt, g2 = −kdA0

[
−iρdrefa

d
0j0(k

dR0) +
4µd

ref

R0
j1(k

dR0)

]
e−iωt .

(37)

The pressure variation inside the sphere can thus be computed by solving for the scattering

coefficients in Eq. (36). Note that the right hand side of Eq. (36) involves the zeroth mode

of the incoming density-weighted radial velocity and pressure as source terms, which dictate

the inside pressure.

III. VOLUME-AVERAGED PARTICLE PRESSURE

In this section we obtain an expression for the average pressure inside the sphere in terms

of the time-dependent variation of the incoming undisturbed ambient flow. We begin by

considering the inviscid limit, where the wavenumber, kl reduces to kl0 = ω/cl0 and µ
l
ref = 0.

This leads to, pd1 = ρdref∂φ
d/∂t. Therefore the volume-averaged pressure inside the sphere

due to an incoming wave of a given frequency, ω is:

pd1
V
(ω) = ρdrefiωA0S

d
0 ,inv

3

kd0R0

j1(k
d
0R0)e

−iωt , (38)

where, (·)
V

represents the quantity, (·) averaged over the sphere volume (based on mean

radius) and defined as,
∫

V d
(·) dV/V d, and the suffix, ‘inv’ denotes that the corresponding

quantities have been computed in the inviscid limit. Our objective here is two fold: (i)

to express the inside pressure solely in terms of the undisturbed flow quantities and (ii) to

provide an expression that is applicable to any complex incident flow-field as opposed to an

incoming wave of a given frequency.

In pursuit of the first goal, we shall replace the dispersed phase scattering coefficient,

Sd
0 ,inv with the carrier phase scattering coefficient, Sc

0,inv using the normal velocity boundary

condition. In other words, we undertake the following replacements:

Sd
0 ,inv =

ŵin
1r

f2,inv
−
f1,inv
f2,inv

Sc
0,inv , ρdref = ρ̃ρcref , kd0 =

1

ã
kc0 , (39)
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where, ρ̃ and ã represent particle-to-medium density and speed of sound ratios. Substituting

Eq. (39) in Eq. (38) leads to:

pd1
V
(ω) = ρcref iω

3ρ̃ã2

kc0R0

[
A0S

c
0,invh1(k

c
0R0)e

−iωt −
ŵin

1r

kc0

]
. (40)

Further expanding Sc
0 using Eq. (36), we have:

pd1
V
(ω) = ρcref (iω)

3ρ̃ã2

kc0R0




1
kc
0

h0(k
c
0R0)

h1(kc0R0)

ρ̃ã
j0(k

c
0R0/ã)

j1(kc0R0/ã)
−
h0(k

c
0R0)

h1(kc0R0)

ŵin
1r +

1

ρcrefiω

ρ̃ã
j0(k

c
0R0/ã)

j1(kc0R0/ã)
−
h0(k

c
0R0)

h1(kc0R0)

p̂in1


 .

(41)

Now to allow for any non-uniform flow, we express the zeroth mode (monopole) density-

weighted normal velocity and pressure as surface averages of the total incoming velocity

and pressure. However since we began with an oncoming flow of a given frequency, the

expressions for surface-averaged velocity and pressure will be in the Laplace space, where

we define the Laplace variable, s = −iω. We argue that the variation in pressure inside

the sphere has to depend on the time variation of the surface-averaged pressure and normal

velocity at the sphere surface. Therefore it is best to express the volume-averaged interior

pressure as a function of ∂ŵin
1r/∂t and ∂p̂

in
1 /∂t as opposed to ŵin

1r and p̂
in
1 itself. Moreover since

the sphere considered here is assumed stationary, ∂/∂t may be replaced by time derivative

following the sphere, denoted by d/dt. It can be shown that (see Appendix A):

ŵin
1r = L

(
win

1r(r, t)
S
)
, p̂in1 = L

(
pin1 (r, t)

S
)
, (42)

where, win
1r(r, t) = win

1 (r, t) · n is the radial component of the velocity vector; L (·) denotes

the Laplace transform and (·)
S
represents the quantity, (·) averaged over the sphere surface

and defined as,
∫

Sd
(·) dS/Sd. In addition to the above transformations and combining −iω

with ŵin
1r and p̂in1 in Eq. (41) leads to:

L

(
pd1

V
(t)

)
=
R0

ac0
GpL

(
d

dt
pin1

S
)
+R0GwL

(
d

dt
ρcrefw

in
1r

S
)
, (43)
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where,

Gp =
3iρ̃ã2

s̃2

[
h0(is̃)

h1(is̃)
− ρ̃ã

j0(is̃/ã)

j1(is̃/ã)

]
−1

, Gw =
−3ρ̃ã2

s̃2
h0(is̃)

h1(is̃)

[
h0(is̃)

h1(is̃)
− ρ̃ã

j0(is̃/ã)

j1(is̃/ã)

]
−1

,

(44)

with, s̃ = sR0/a
c
0 being the non-dimensional Laplace variable. Here we define Gp and Gw as

the pressure and velocity transfer functions respectively in the Laplace space. Now, noting

that (i) ρcrefw
in
1r = ρ0u

in
1r from Eq. (9) and u1r = ur from Eq. (6), ρcrefw

in
1r may be written

as (ρur)
un to linear approximation (ii) similarly pin1 may be replaced by pun. Note that the

pressure expression derived above is the deviation in pressure from that of the initial base

pressure. Therefore the total inside pressure is:

pd
V
(t) = pd0

V
+ pd1

V
(t) . (45)

Now taking the Laplace inverse of Eq. (41) leads to a convolution integral and together with

Eq. (45), the volume-averaged inside pressure can be written in the time-domain as:

pd
V
(t) = pd0

V
+
R0

ac0

t̃∫

ξ̃=−∞

Kp(t̃− ξ̃)
d

dt
pun

S

∣∣∣∣∣
t̃=ξ̃

dξ̃ + R0

t̃∫

ξ̃=−∞

Kw(t̃− ξ̃)
d

dt
(ρur)un

S

∣∣∣∣∣
t̃=ξ̃

dξ̃ ,

(46)

where, t̃ = tac0/R0 and ξ̃ = ξac0/R0. Further, Kp = L −1(Gp) and Kw = L −1(Gw) are the

pressure and velocity kernels and L −1 denotes the Laplace inverse operator.

Finally, the effects of viscosity both inside and outside the sphere can be included. In

Eq. (39) the complete expressions for f1, f2, k
l and Sl

0 are used instead of the inviscid

counterparts and the process detailed above is repeated. This results in identically the same

expression as in Eq. (46) except that the transfer functions are modified by the viscosity

ratio (µ̃ = ρ̃νd/νc) and are given by:

Gp =
3iρ̃ã2

s̃2

[
h0(is̃)

h1(is̃)
− ρ̃ã

j0(is̃/ã)

j1(is̃/ã)
+

4i

Re
(1− µ̃)

]
−1

,

Gw =
−3ρ̃ã2

s̃2

[
h0(is̃)

h1(is̃)
+

4i

Re

] [
h0(is̃)

h1(is̃)
− ρ̃ã

j0(is̃/ã)

j1(is̃/ã)
+

4i

Re
(1− µ̃)

]
−1

,

(47)

where, Re = ac0R0/ν
c is the sphere Reynolds number based on the carrier phase speed of

sound. The corresponding kernels Kp and Kw to be used in (46) are obtained from the

17



Laplace inverse of the above viscous transfer functions.

A. Pressure and Velocity Kernels

Equation (46) for volume-averaged pressure inside the sphere is analogous to the evolution

equations (1) for the velocity and (2) for the temperature. However the pressure equation

(46) is somewhat more complicated by the convolution integrals and can be interpreted in

the following way. The perturbation pressure pd
V
(t)− pd0

V
has two contributions, one from

the ambient pressure variation and the other form the time variation of ambient density-

weighted velocity. A step change (denoted by ∆) in the undisturbed ambient pressure

averaged over the surface of the sphere (i.e., dpun
S
/ dt = (ac0/R0)∆p δ(t̃ − ξ̃)) will result

in a pressure variation of pd
V
(t) = pd0

V
+ ∆pKp, with δ denoting the Dirac-delta function.

Similarly a step change in the undisturbed ambient density-weighted velocity averaged over

the surface of the sphere (i.e., d(ρur)un
S
/ dt = (ac0/R0)∆(ρur) δ(t̃ − ξ̃)) will result in a

pressure variation of pd
V
(t) = pd0

V
+ ∆(ρur)a

c
0Kw. Thus, the kernels Kp and Kw can be

interpreted as response to unit step change in the undisturbed ambient pressure and density-

weighted velocity respectively.

With this interpretation, we now explore the temporal behavior of the kernels, Kp and

Kw. Note that the transfer functions Gp and Gw defined in Eq. (47) depend only the

following four parameters: (i) ρ̃ particle-to-medium density ratio, (ii) ã particle-to-medium

speed of sound ratio, (iii) µ̃ particle-to-medium viscosity ratio, and (iv) Re. In the inviscid

limit the dependence on the last two parameters are lost. These parametric dependences

also apply to the time domain kernel functions Kp and Kw. The reference density and

speed of sound of the various materials considered in the present analysis are summarized in

table I. In particular, in Sec. VI, we consider shock propagation over an aluminum particle

situated in nitromethane. The density and speed of sound ratios are listed in table II for the

nitromethane-aluminum and air-aluminum combinations in addition to sand in water and

air bubble in water conditions relevant for underwater applications.

The kernels are obtained by numerically computing the inverse Laplace transform [43, 44]

of Eq. (44) and are plotted in Fig. 1 for the cases mentioned in table II as a function of

dispersed-phase time, t̃d = tad0/R0. As can be seen from Fig. 1, the kernels are problem

dependent (arising from dependence on ρ̃ and ã) and need to be recomputed if a different
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TABLE I: Properties of the dispersed and carrier phases considered in this study.

Material ρ0 (kg/m3) a0 (m/s)

Air 1.21 343.23

Water 1000 1482

Nitromethane 982 1647

Aluminum 2783 5350

Sand 2600 1780

TABLE II: Particle-to-medium density ratio, speed of sound ratio, amplitude and
time-period of oscillation of the kernels Kp, Kw of the various particle-continuous phase

combinations considered in this study.

Medium - Particle ρ̃ ã R0 T̃
Ã

Kp Kw

Nitromethane - Aluminum 2.84 3.25 5 µm 2 1.4655 -1.21

Air - Aluminum 2311.16 15.59 40 mm 2 1.5 -1.439

Water - Sand 2.60 1.20 2 mm 2 1.4595 -0.9077

Water - Air 1.21 ×10−3 0.232 4 µm 104 1.978 -0.0137

particle and/or ambient material is considered for example. Nevertheless the late time

behavior (t̃d → ∞) is problem independent and Kp, Kw reach 1 and 0 respectively as can

be seen from Figs. 1(c). It will be shown analytically later in Sec. VA that the late time

behavior of the kernels (i.e., Kp → 1, Kw → 0) are the same irrespective of the particle-

medium combination chosen.

For the different particle-medium combinations considered, the first maxima (Ã) and the

non-dimensional time-period of oscillations (T̃) of the kernels are listed in table II. The

time-scale used to non-dimensionalize the time-period is R0/a
d
0. It must be noted that for

a given dispersed-carrier phase mixture, while T̃ is identical for both Kp and Kw, the first

maxima depends on the kernel under consideration. Irrespective of the particle-medium

combination, the non-dimensional peak value of the pressure kernel is approximately about

1.5. However the first maxima of the velocity kernel varies considerably. For example, as

can be seen from Fig. 1(d), for the air bubble in water, since Kw is negligible compared

with Kp, only the pressure variation of the external fluid affects the particle pressure and

any changes in ambient fluid velocity is immaterial. For the other three cases however, both

external pressure and velocity variations are significant.

As mentioned above, the time-period of oscillation or frequency is the same for both
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FIG. 1: Pressure and velocity kernels as a function of non-dimensional particle acoustic
time (t̃d) passing over (a) an aluminum sphere situated in nitromethane with ρ̃ = 2.84 and
ã = 3.25 (b) an aluminum sphere situated in air with ρ̃ = 2311.16 and ã = 15.59 (c) a sand

particle situated in water with ρ̃ = 2.6 and ã = 1.2 and (d) air bubble in water with
ρ̃ = 1.21× 10−3 and ã = 0.232. Any viscous effects are neglected.

kernels given a particle-medium combination and the frequency of the kernels are dependent

on the impedance ratio, Z = ρ̃ã, as shown in Fig. 1. If we consider an acoustic wave sweep

past the particle, and if Z > 1, T̃ is identical to time taken by the acoustic wave within the

particle to traverse one particle diameter. Noting that the non-dimensional time taken by

an acoustic wave to travel one particle diameter is t̃d = 2, it can seen from Fig. 1(a)-(c) and
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table II that T̃ = 2 for NM-Al, air-Al and water-sand scenarios. This is because for these

three cases the impedance ratio is greater than unity. While the frequency of oscillation is

a constant provided Z > 1, the impedance ratio dictates the decay rate of the kernels. In

particular, for the air-Al case, Z ≈ 35000, for NM-Al combination, Z ≈ 10 and Z ≈ 3 for

the water-sand scenario, and the decay rate of kernels are found to be inversely proportional

to the impedance ratio (Fig. 1). On the other extreme, Z ≪ 1 for the air bubble in

water case, and as can be seen from Fig. 1(d), the contribution of Kw is negligible since

ρ̃ãj0(is̃/ã)/j1(is̃/ã) ≪ h0(is̃)/h1(is̃) (Eq. (44)). Moreover the time-period of oscillation is

much larger than the other three cases considered. Finally, it is worth mentioning that the

time-period of oscillations in the kernels gets translated to the time-period of the particle

pressure as will be shown later in Sec. VI for the particular case of NM-Al.

IV. TIME EVOLUTION OF PARTICLE DENSITY AND VOLUME

In the current analysis, since mass is not allowed to enter or leave the sphere, by mass

conservation for the entire sphere:

∂

∂t

∫

V d(t)

ρd dV = 0 . (48)

Integrating the above equation in time from t = 0 to any time, t, leads to:

Ṽ d(t) =
V d(t)

V d
0

=

[
1 +

ρd1
V

ρd0
V

]−1

, (49)

where, V d
0 is the initial volume of the sphere. Since the perturbation density and pressure

are linearly related via Eq. (13), we substitute for ρd1
V
from Eq. (13) in Eq. (49) which, in

combination with Eq. (6) yields the time evolution of sphere volume and is given by:

Ṽ d(t) =

[
1 +

pd
V
(t)− pd0

V

ρd0a
d
0
2

]−1

, (50)
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where the expression for pd
V
(t) was obtained earlier in Sec. III (Eq. (46)). The inverse of

the above equation will yield the density evolution in time and is given by:

ρd
V
(t) = ρd0

V
+
R0/a

c
0

ad0
2

t̃∫

ξ̃=−∞

Kp(t̃− ξ̃)
d

dt
pun

S

∣∣∣∣∣
t̃=ξ̃

dξ̃ +
R0

ad0
2

t̃∫

ξ̃=−∞

Kw(t̃− ξ̃)
d

dt
(ρur)un

S

∣∣∣∣∣
t̃=ξ̃

dξ̃ .

(51)

V. LIMITING CASES

A. Long-time Behavior

Having obtained an explicit expression for the particle pressure, we now investigate the

limiting behavior of the kernels, Kp and Kw. We begin by noting that we are unable to

obtain analytical Laplace inverse of the transfers functions Gp and Gw and therefore we

resort to numerical inversion [43]. Further, it can be seen that the kernels depend on the

density and speed of sound ratios. Since Kp and Kw are responses to unit step change in

the incoming pressure and density-weighted normal velocity respectively, let us consider a

pressure pulse (with the corresponding density and velocity jump) to impinge on the sphere

at time, t = 0, such that:

pun
S
= pc0 +∆pH(t) , (ρur)un

S
= ∆(ρur)H(t) , (52)

where, pc0 is the ambient pressure before the impulse and ∆p is the jump in pressure after the

impulse and H(t) is the Heaviside step function. Let ∆(ρur) be the corresponding change

in the density-weighted normal velocity. Substituting Eq. (52) in Eq. (46) and noting that

dpun
S
/dt = ac0/R0∆pδ(t̃− ξ̃) leads to:

pd
V
(t) = pd0

V
+∆pKp(t̃− ξ̃) + ∆(ρur)a

c
0Kw(t̃− ξ̃) . (53)
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Let us consider the limiting behavior of the kernels at late times. As t̃ → ∞ (s̃ → 0), the

spherical Bessel and Hankel functions appearing in Eq. (44) reduce to:

h0(is̃)

h1(is̃)
=

is̃

1 + s̃
,

j0(is̃/ã)

j1(is̃/ã)

∣∣∣∣∣
s̃→0

=
−3iã

s̃
. (54)

The above substitutions in Eq. (44) lead to:

Gp =
1

s̃
=⇒ Kp(t̃−ξ̃ → ∞) = 1, Gw =

−1

1 + s̃
=⇒ Kw(t̃−ξ̃ → ∞) = −e−(t̃−ξ̃)

∣∣∣∣∣
t̃→∞

= 0 .

(55)

Substituting Eq. (55) in Eq. (53) we obtain:

pd
V
(t) = pd0

V
+∆p . (56)

Therefore we observe from Eq. (56) that the particle pressure eventually equilibrates with

that of the carrier phase as it should, since in the absence of surface tension, pd0
V

= pc0
V

from Eq. (24), and ∆p is the difference between the post-shock pressure and pc0
V
. While

the kernels decay exponentially with time, the presence of spherical Bessel functions (which

may be written as a combination/summation of trigonometric functions) in the transfer

functions will lead to an oscillatory behavior at early and intermediate times as will be

shown in Sec. VI. Therefore in summary, any disturbance in the external pressure (and/or

normal velocity) will propagate into the particle via sound waves reflecting back and forth

inside the sphere/particle before reaching the modified external pressure (caused by the

pressure pulse).

B. Reduction to Linearized Rayleigh-Plesset Equation

The pressure equation derived is applicable to any particle subjected to complex incoming

flows. The problem of a pulsating spherical bubble in water is of prime importance in the field

of underwater explosions and cavitation. Typically in such studies, the dynamic parameter

is the bubble radius which is governed by the celebrated Rayleigh-Plesset (RP) equation.

The bubble radius is in turn related to the pressure inside the bubble. While the work

by Rayleigh [25] ignores the effect of interface surface tension and viscosity of the carrier
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fluid, a discussion including these effects can be found in the classic review article by Plesset

& Prosperetti [45]. The reader is referred to the works of Leighton [46] and Brennen [23]

for a detailed analysis in addition to the work of Prosperetti & Lezzi [19] that discusses the

effects of compressibility. The classic nonlinear RP equation in the limit of negligible surface

tension and vapor pressure is given by:

pL − p∞
ρc0

= RR̈ +
3

2
Ṙ2 +

4νcṘ

R
, (57)

where, pL = pc(r = R) since we assume surface tension Γ = 0, and p∞ = pin(r → ∞).

In the above equation, over-dot represents the time derivative following the particle. The

above equation is derived from first principles and does not linearize the governing equa-

tions. However, the bubble pressure is explicitly specified by assuming the interior to be

an adiabatic or isothermal lumped system of constant pressure and only the outside flow is

solved assuming incompressibility and spatial variation to be purely in the radial direction.

In comparison, in the present work, we solve the flow both within and outside the spherical

particle allowing for compressible effects. Therefore in order to derive the RP equation

from our current analysis in terms of bubble radius, we begin by revisiting the boundary

conditions. We consider a step change in the ambient fluid pressure causing the undisturbed

pressure to be p∞ for t > 0 throughout the medium, while maintaining the ambient fluid

to be stationary. Additionally, the viscosity within the air bubble and surface tension are

ignored. Subsequently the boundary conditions given in Eq. (35) can be written as:

−ŵsc
1r + Ṙ = 0 (58a)

−p̂sc1 + 2µc
ref

∂ŵsc
1r

∂r
+ p̂d1 = p̂in1 (58b)

Taking the time derivative of Eq. (58a) by using the definitions in Eq. (18) and (26) as

applied to the scattered potential one obtains:

−iωf1S
c
0 = R̈ (59)

It must be noted that in obtaining the above expression only the n = 0 term survives and

as a consequence the viscous portion of the scattered potential (ψ) is rendered irrelevant.
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Further, using the definition, psc1 = ρcref∂φ
sc/∂t and substituting Eq. (59) in Eq. (58b), we

obtain:

p̂d1 − p̂in1 = ρcref

[
1

kcR0

h0(k
cR0)

h1(kcR0)

]
R0L

(
R̈
)
− 2µc

ref

[
kcR0

h′1(k
cR0)

h1(kcR0)

]
L

(
Ṙ
)

R0

. (60)

Since the ambient flow is incompressible, the reference densities and viscosities can be con-

sidered to be that of the base flow itself, i.e., ρcref = ρc0 and µ
c
ref = µc

0. Using Eq. (42), we can

write, p̂in1 = L

(
pin1

S
)
. Moreover L

(
pin1

S
)
= L

(
pun1

S
)
− L

(
pc0

S
)
. In the incompressible

limit, i.e., as ac0 → ∞ any change in pressure at far-field is immediately felt throughout the

fluid. As a consequence of this, p̂in1 = L (p∞) − L

(
pc0

S
)
. Further the incompressibility

condition leads to kcR0 → 0 and as a result we have:

1

kcR0

h0(k
cR0)

h1(kcR0)

∣∣∣∣∣
kcR0→0

= 1 ; kcR0
h′1(k

cR0)

h1(kcR0)

∣∣∣∣∣
kcR0→0

= −2 . (61)

Similar to the expression of p̂in1 above and noting that the fluid inside the bubble is considered

homogeneous, p̂d1 = L
(
pd
)
−L

(
pd0

S
)
. Finally in the absence of surface tension we note that

L
(
pd
)
= L (pL). From the equality of pc0

S
and pd0

S
we obtain, p̂d1 − p̂in1 = L (pL)−L (p∞).

Taking the Laplace inverse we finally obtain:

pL − p∞
ρc0

= R0R̈ +
4νcṘ

R0
. (62)

which precisely is the RP equation in the linear limit. Note that the above equation is

linear in bubble radius. In the classic RP equation (Eq. (57)), the term 3Ṙ2/2 arises from

the convective term of the Navier-Stokes equation. Since the current work is restricted to

linear regime, (i) the non-linear term has been ignored and (ii) the time-dependent radius

only appears with the time derivative, while the radius itself otherwise shows up as the

mean radius. In both Eqs. (57) and (62), if the gas inside the bubble is assumed to follow

adiabatic law, then pL = pd0(R0/R)
3γ.

As specified earlier, in the current work, we allow for both fluids to be viscous and

compressible and thereby allow propagation of both acoustic and viscous waves in both the

carrier and dispersed phases. With all such complexities accounted the evolution of bubble
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radius follows directly from Eq. (50) and is given by:

R(t) = R0

[
1 +

pd
V
(t)− pd0

V

ρd0a
d
0
2

]−1/3

, (63)

In Eq. (63), the effects of viscosity can be taken into account if the kernels in Eq. (47)

are used when evaluating the volume-averaged particle pressure. Note that the bubble

radius derived above (Eq. (63)) is expressed in terms of the bubble pressure. However, it is

possible to obtain an expression for bubble radius starting from Eq. (33) and purely using the

linear theory. The procedure is similar to that outlined in Sec. III, where time derivative

of the particle radius is first expressed in terms of dispersed phase flow quantities and

then transforming them to flow quantities that depend explicitly on undisturbed properties.

Therefore carrying out the above mentioned linear analysis leads to:

R(t) = R0


1−

R0/a
c
0

3ρd0a
d
0
2

t̃∫

ξ̃=−∞

Kp(t̃− ξ̃)
d

dt
pun

S

∣∣∣∣∣
t̃=ξ̃

dξ̃ −
R0

3ρd0a
d
0
2

t̃∫

ξ̃=−∞

Kw(t̃− ξ̃)
d

dt
(ρur)un

S

∣∣∣∣∣
t̃=ξ̃

dξ̃


 .

(64)

It is worth mentioning that Eqs. (63) and (64) are identical in the linear limit. When non-

linear effects are negligible,
(
pd

V
(t)− pd0

V
)
/ρd0a

d
0
2
≪ 1. Therefore after substituting Eq.

(46) in Eq. (63), we perform a binomial expansion on the right hand side of Eq. (63) and

consider only the leading order term, neglecting higher order terms. The resulting expression

is the same as that of Eq. (64). However, it must be noted that Eq. (63) is only approximate

and therefore in the current work, Eq. (64) is used to compute the instantaneous particle

radius.

Now we consider the example provided in Ref. 47 of a time-varying ultrasound wave

impinging on an air bubble in water and compare the bubble radius obtained using Eqs.

(57), (62) and (64). The initial bubble radius (R0) is 2 mm, the pressure in the carrier phase

is sinusoidally varied as, p∞ = pc0 − pacos(2πft) with pc0 = pd0 = 1 atm and pa = 2.7 atm.

The frequency of the driving pressure, f = 10 kHz, the dynamic viscosities of water and air

are taken to be 10−2 poise and 1.8×10−4 poise respectively. The air is taken to be adiabatic

with γ = 1.4, while the effects of surface tension are ignored. All of the above parameters

are taken from Ref. 47. As can be seen from Fig. 2, the linearized Rayleigh-Plesset equation

(Eq. (62) obtained from our analysis by solving only the carrier phase in the incompressible
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FIG. 2: The time evolution of bubble radius initially at 2 mm subjected to a driving
frequency of 10 kHz and amplitude of 2.7 atm. The base pressures in the medium and air

bubble are both taken to be 1 atm. The other parameters are γ = 1.4, µc
ref = 10−3,

µd
ref = 1.8× 10−5 and Γ = 0.

limit) is in good agreement with the model that takes into account details of the acoustic

and viscous waves traveling within and outside the particle. The results compare well even

with the classical non-linear RP equation (Eq. (57)) except at certain time instances when

non-linearity becomes important.

To study the behavior of a much smaller bubble, where the effects of non-linearity becomes

prominent the application of the present model with either Eq. (63) or (64) requires some

care. As the bubble base pressure (pd0) in itself varies substantially over time, one needs

to first obtain the time-evolving base density (ρd0) and speed of sound (ad0). Subsequently,

these base quantities must be fed to compute the kernel, which now become parametrically

time-dependent. In other words, the density ratio (ρ̃) and speed of sound ratio (ã) that

determine the kernels to be used in Eq. (46) for the volume-averaged pressure or in Eq. (64)

for the bubble radius, are themselves time varying. As a consequence the evaluation of the

convolution integral becomes more involved, where the kernels have to be updated at every

time instant as ρd0 and ad0 changes over time.
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TABLE III: Pre- and post-shock properties of air and nitromethane for the varying shock
Mach numbers (Ms) considered.

Medium Ms
Post-shock properties Pre-shock properties

p (MPa) ρ (kg/m3) u (m/s) p (MPa) ρ (kg/m3) u (m/s)

NM
1.11 200 1045.6 111.3 0.101325 982 0

1.25 500 1116.9 248.0 0.101325 982 0

VI. APPLICATION - SHOCK PROPAGATION OVER A SPHERE

In this section, we consider passage of a planar normal shock wave over a stationary

aluminum particle situated in nitromethane to validate our pressure formulation. While the

properties of NM, Al are detailed in table I, the Mach numbers and their corresponding

post-shock properties under study are tabulated in table III. Note that size of the aluminum

particle (5µm radius) and the post-shock properties are taken from Ref. 31. Nevertheless

there are two important differences worth mentioning. First, the time evolution of the

various dispersed phase quantities presented in Ref. 31 are averaged over the particle mass;

however these are transformed to volume-averaged quantities to compare against the current

analysis. Second, the simulations presented in Ref. 31 are re-run by taking both NM and Al

to follow the stiffened gas EOS. The reader is referred to Ref. 48 for a brief overview of the

stiffened gas EOS used in these simulations. While the simulations allow for shape changes,

the model/theory considered here assumes the particle to remain spherical and allows only

for volumetric pulsations without any shape change. The viscous effects are neglected in

this context and therefore µ̃ = 0.

We begin by considering a planar shock propagation over an aluminum particle in ni-

tromethane. The volume-averaged particle pressure is computed using Eq. (46). The

necessary kernels (Kp, Kw) have been computed and presented in Fig. 1(a). For the NM-Al

case under consideration, the pre-shock ambient pressure and the initial volume-averaged

interior pressure
(
pd0

V
)
is chosen to be 0.1 MPa. Similarly, at time t = 0, the particle is said

to be in thermal equilibrium with the ambient at 300 K. As the shock wave sweeps over the

particle, Fig. 3 shows the time history of pun
S
and (ρur)un

S
that appear within the integrals

in Eq. (46). We can observe that both the surface-averaged pressure and density-weighted

radial velocity rapidly increase from their pre-shock to post-shock values on the acoustic

scale. Since the kernels also evolve on the acoustic scale, the convolution integral must be
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accurately computed (change in pun
S
and (ρur)un

S
cannot be assumed to be step functions).

The time evolution of particle pressure is plotted in Fig. 4(a) due to a shock wave

of Mach number, Ms = us/a
c
0 = 1.11, where us is the shock velocity. The results are

plotted as a function of non-dimensional shock time (t̃s), defined as tus/R0. Note that as

the shock traverses the particle, the volume-averaged particle pressure begins at 0.1 MPa

and eventually equilibrates with the post-shock pressure of 0.2 GPa for t̃s ≥ 9. In Fig. 4(a)

while the pressure (Kp) contribution is always positive the normal velocity contribution (Kw)

becomes both positive and negative over time depending on the direction of pulsation of the

particle surface. The sum of these two contributions in addition to the initial interior pressure

leads to the time history of the total particle pressure. However it undergoes oscillations as

it goes from the pre-shock to post-shock pressure and this arises from the oscillatory kernels

and correspond to the waves traveling back and forth inside the particle. If one ignores

the oscillatory behavior, the volume-averaged particle pressure can be observed to reach the

post-shock pressure exponentially beginning from the initial undisturbed pressure as shown

by the black dash-line in Fig. 4. In other words, the non-oscillatory approach to the final

pressure can be described by:

pd
V
= pfinal

(
1− exp(−t̃s)

)
+ pinitial exp

(
−t̃s

)
, (65)

where pinitial and pfinal denote respectively the initial and final pressures attained by the

particle, which happen to be the pre- and post-shock pressures listed in table III. The above

can be rewritten in a form similar to the equation of motion or the temperature evolution

equation as:

dpd
V

dt
=
pfinal − pd

V

τpP
, (66)

where τpP = R0/us is the shock propagation time scale.

Also shown in Fig. 4(a) is the comparison of the current model with that of the direct

numerical simulation in Ref. 31 and as can be observed the prediction is reasonable. The

differences can be attributed to several factors: while the theoretical model developed here is

based on linear perturbation assumption, clearly the shock-induced flow around the sphere

in the numerical simulation is strongly nonlinear. Furthermore, at the strong post-shock

pressure the aluminum particle is observed to undergo some shape deformation, while the
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FIG. 3: Undisturbed surface-averaged pressure and radial momentum of the carrier phase
as a function of non-dimensional shock time (t̃s) as a normal shock of Ms = 1.11 traverses

an aluminum sphere situated in nitromethane with ρ̃ = 2.84 and ã = 3.25.

theoretical model assumes a spherical shape at all times. Finally the simulations employ

a non-ideal gas equation of state, which are not accounted for in the current model of

the linearized perturbation flow. The time-period of oscillation based on the shock speed,

Ts = ∆tsR0/us, observed both in the simulations and the present model is found to be

approximately 1.85 ns. Here ∆ts denotes the difference in shock time between any two

successive pressure peaks. The time taken by an acoustic wave inside the particle to travel

one diameter is given by, T = 2R0/a
d
0 = 1.87 ns, which is consistent with the time-period

of oscillation, Ts, computed above. The observations made for Ms = 1.11 hold true for

Ms = 1.25 as well and is shown in Fig. 4(b). However the discrepancy between simulation

and the pressure model is higher, perhaps owing to increased nonlinearity and the fact that

the speed of sound of the ambient and particle used to compute the kernels begins to vary

from their base values when a shock of finite strength traverses the sphere.

The density evolution of the dispersed phase as computed from Eq. (51) is plotted in Fig.

5 and the results are in good agreement with the simulations [31]. As can be seen from the

figure, the density change is minimal in comparison with the pressure change. Note that the
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FIG. 4: Volume averaged particle pressure as a function of non-dimensional shock time (t̃s)
for a normal shock of (a) Ms = 1.11 and (b) Ms = 1.25 passing over an aluminum sphere
in nitromethane with ρ̃ = 2.84 and ã = 3.25. Also shown is the comparison of the current

pressure formulation with results in Ref. 31.
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FIG. 5: Volume averaged particle density as a function of non-dimensional shock time (t̃s)
for a normal shock of Ms = 1.11 passing over an aluminum sphere in nitromethane with

ρ̃ = 2.84 and ã = 3.25.

particle pressure reaches the post-shock pressure of 0.2 GPa for shock time scales, t̃s ≥ 9,

since it is the pressure difference that acts as the driver in our model.

VII. CONCLUSIONS

An equation that models the particle pressure in response to any complex, time-

dependent, non-uniform flows in a compressible medium is presented. A plane acoustic

wave of a given frequency and wavenumber is assumed to impinge on the particle. The

zeroth mode (monopole) of the carrier phase density-weighted normal velocity and pres-

sure were identified as the source terms affecting the particle pressure. Subsequently, the

volume-averaged dispersed phase pressure was expressed as a function of density-weighted

normal acceleration and time-derivative of the external pressure. The monopole terms were

further formulated as surface average of the incoming flow properties thus allowing for any

complex incident flow field. A Laplace inverse of the resulting expression was carried out

to obtain the pressure expression in the time domain. Analogous to the particle equation
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of motion, the pressure was also expressed as a convolution integral, comprising two parts.

One arising due to flow unsteadiness, termed the kernel, and two, arising from the spatial

flow inhomogeneity. The kernels obtained were found to depend on the particle to medium

density ratio (ρ̃), speed of sound ratio (ã), viscosity ratio (µ̃) and Reynolds number (Re). A

similar equation was also derived to compute the time evolution of particle volume/radius

and density. Further, the current formulation reduced to the linearized Rayleigh-Plesset

equation in the limit of (i) incompressible medium and (ii) homogeneous flow behavior

within the particle. The present formulation was applied to study the pressure history

inside an aluminum particle as normal shock waves of varying strengths passed over it; and

the results obtained were in good agreement with the direct numerical simulations [31].

Appendix A: Equivalence between the monopole component of radial veloc-

ity/pressure and surface-averaged incoming radial velocity/pressure

The radial component of the incoming velocity can be obtained using Eq. (26) as:

win
1r = kc

∞∑

n=0

An(2n + 1)inj′n(k
cr)Pn(cos θ)e

−iωt . (A1)

Now if we consider only the monopole component of the density-weighted radial velocity

above we obtain:

ŵin
1r = A0k

cj0
′(kR0)e

−iωt . (A2)

The surface average of the incoming radial velocity can be obtained by integrating Eq. (A1)

as:

L

(
win

1r(r, t)
S
)
=

1

2
A0k

cj′0(kR0)e
−iωt

π∫

0

sin θ dθ

= A0k
cj0

′(kR0)e
−iωt .

(A3)

In obtaining the above expression, we note that of all the terms in the summation in Eq.

(A1) only one term (n = 0) survives the integration in Eq. (A3). In addition we have used

the definition of Legendre polynomial, P0(cos θ) = 1. Subsequently, comparing Eqs. (A2)

and (A3), we arrive at their equivalence mentioned in Eq. (42).

The pressure equivalence can also be proved as follows. Starting from Eq. (28), the
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incoming pressure equation can be expressed as:

pin1 = ρcref
∂φin

∂t
= −ρcrefiω

∞∑

n=0

An(2n+ 1)injn(k
cr)Pn(cos θ)e

−iωt . (A4)

The monopole component of Eq. (A4) yields:

p̂in1 = −ρcrefiωA0j0(kR0)e
−iωt . (A5)

The surface average of the incoming radial velocity can be obtained by integrating Eq. (A4)

and noting only n = 0 survives the integration, we obtain:

L

(
pin1 (r, t)

S
)
= −ρcrefiω

1

2
A0j0(kR0)e

−iωt

π∫

0

sin θ dθ

= −ρcrefiωA0j0(kR0)e
−iωt .

(A6)

Thus the equivalence referred to in Eq. (42) has been achieved.
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