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Abstract
This paper presents a fault detection method for short circuits based on the correlation coefficient
of voltage curves. The proposed method utilizes the direct voltage measurements from the
battery cells, and does not require any additional hardware or effort in modeling during fault
detection. Moreover, the inherent mathematical properties of the correlation coefficient ensure
the robustness of this method as the battery pack ages or is imbalanced in real applications. In
order to apply this method online, the recursive moving window correlation coefficient
calculation is adopted to maintain the detection sensitivity to faults during operation. An additive
square wave is designed to prevent false positive detections when the batteries are at rest. The
fault isolation can be achieved by identifying the overlapped cell in the correlation coefficients
with fault flags. Simulation and experimental results validated the feasibility and demonstrated
the advantages of this method.
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1. Introduction

The prevailing application of lithium-ion batteries in the electrified vehicles (EVs) provides
competitive energy and power performances [1]. However, many recent publications worldwide
have reported a series of related accidents [2-4], revealing the potential safe concerns of lithium-
ion batteries, which retard their rapid expansion.

The demand of safe battery operation gives rise to the battery management systems (BMS)
[5]. The BMS in an EV monitors the voltage, current and temperature of a battery pack,
estimates the essential states of the cells [6, 7], and maintains the safe and efficient operation of
the energy storage system [8, 9]. A qualified BMS should be able to flag warnings when any of
the cell is in abuse condition and activate the corresponding mitigation methods [10, 11]. The
abuse behaviors cover a wide variety of conditions which can be grouped into four categories
based on the electric features, namely, over charge, over discharge, external short circuit and
internal short circuit [12].

Compared with the over charge/discharge faults, the short circuit faults are more hazardous.
The external short circuit fault induces abnormally high heat generation rate, which may easily
initiate the thermal runaway. The thermal runway describes the heat propagation process within
the battery pack, where the exothermic side reaction of one cell failure influences the safe
operation of surrounding cells, and further triggers the chain exothermic reactions [13].
Thereafter, the heat builds up rapidly and finally results in fire or explosion. Different from the
external short circuit, the internal short circuit is usually caused by manufacturing defects or
mechanical failure. As the short area in the separator emerges, an internal current path is formed.

The local high current rate elevates the local temperature. The high temperature first forces the



closure of separators with shutdown function. However, if the heat is not dissipated well, an even
higher temperature will melt the separator and eventually trigger thermal runaway [14].

With the available voltage, current and temperature measurements, previous research
introduced many detection approaches specifically for short circuits, which can be classified into
two groups: a) threshold based methods, and b) model based methods. The external short circuit
fault can be detected by comparing the direct sensor measurements with the threshold in current
increase, voltage drop and temperature rise [15, 16]. The limitation of this method is that a fault
may occur without triggering the threshold. If the resistance in the short loop is moderate such
that the current, voltage and temperature does not go beyond the preset limit within a short
period of time, the fault will not be flagged at the occurrence.

To a certain extent, the detection of the internal short circuit is more complicated. At the
initial phase of internal short circuit fault, when the damage on the separator leads to an internal
short, and the local heat results into the separator shutdown, the terminal voltage of the fault cell
will first drop and then recover [14, 17, 18]. If a simple threshold based method is applied, it may
not capture the abnormal voltage pattern. Since the current flows internally, it cannot be recorded
by the current sensor either. To make it even worse, the fast short may not cause adequate
increase of the cell surface temperature. Therefore, the threshold based methods do not function
with satisfaction. An illustrative case has been studied in [2], where a voltage drop recovery was
recorded by the onboard BMS, but the BMS failed to flag any warning at the initial phase of
failure. When the fault was recognized 17 minutes later, the start of fire was inevitable.

An improved threshold based method sets the threshold for maximum voltage differences
within a battery pack, instead of the absolute voltage value for each cell. This method was

originally designed for imbalanced state detection [19], but can be adopted to short circuit



detection as well. In this method, the threshold of voltage difference should be chosen with
special care. If the value is too large, it cannot capture the voltage drop, whereas if the value is
too small, it can easily lead to false positive detection due to inconsistencies in battery states and
parameters.

To investigate the mechanism of the internal short circuits, extensive experiments were
conducted to induce the faults by indentation [20-23], nail penetration [24, 25], fabrication with
defect structures [26, 27] and extreme high temperatures [28, 29]. Based on the findings, the
models of the internal short circuits were built in [30, 31], which can be utilized to detect the
fault by comparing the virtue model output/state with the battery output/state. If the residue is
above a threshold, a fault is flagged. A thorough introduction of multiple model based cell
condition monitoring was presented in [32]. It was discussed in [33] that the changes in the
estimated circuit parameters and temperature derivative of equilibrium potential are good
indicators to identify internal short circuit faults. These methods give more reliable detection
than the threshold based method, however, it requires substantial effort in accurate modeling and
testing [34]. Except that, this method is still vulnerable to cell inconsistencies, unless the online
parameter estimation is implemented for every single cell in the series pack which is prohibitive
in real applications.

Other methods seek to improve the detection and isolation of internal short circuits from
system design perspective. It was proposed in [35] that the internal short circuits can be
identified by the differences of branch currents in the series-parallel battery pack, however, the
method requires current sensors in every parallel branch, which greatly increases the system cost.

The interleaved voltage measurement method was presented in [36], and can distinguish between



sensor and cell failures without additional components, but the fault detection is still not robust
to cell inconsistencies.

In order to avoid the influence of inconsistencies in the battery pack upon fault detection,
this paper proposes a correlation based method for short circuit detection in lithium-ion battery
packs. The main idea is to capture the unusual voltage variation at the initial phase of a short
circuit fault by calculating the correlation coefficients of the cell voltages. Since the correlation
coefficient is independent of the mean value and the amplitude of the fluctuations, when
applying to the cell voltages, it eliminates the inconsistencies in open circuit voltage (OCV) and
internal resistance, hence does not lead to false positive faults when the batteries are in different
state of charge (SoC) or state of health (SoH). Moreover, this method is non-redundancy based,
because the correlation coefficient calculation only involves voltage outputs from different cells,
thereby saving the extensive effort in modeling and testing.

Based on these desired features, an online short circuit detection algorithm is developed. A
moving window filter is utilized to forget past data and maintain the detection sensitivity to
faults. An additive square wave is designed to prevent false detections when the noises dominate
the voltage variations during rest periods. Simulations are used to illustrate the functions of the
moving window and the square wave in different scenarios. Experiments are conducted to
validate the feasibility of the method, and to demonstrate the fault isolation. Finally, the key
assumptions of the proposed method are discussed and the root causes of different detection
results from different methods are analyzed.

2. Method description

2.1. A non-redundancy based fault detection method



Generally, the existing fault diagnosis methods are redundancy based, which can be further
divided into hardware redundancy and analytical redundancy. The key idea is to compare the
system state/output with the state/output of redundancy systems, and flag a fault when the
residue is not reasonably small. The hardware redundancy utilizes duplicative real systems to
provide comparison. The common drawbacks of the hardware redundancy are its increase in
hardware cost and system complexity, making it impractical for battery systems. The analytical
redundancy constructs a mathematical system model and compares the model state/output with
real state/output of the system. The aforementioned threshold based method can be regarded as a
rough modeling of the system limit without considering the input. However, the battery system is
highly nonlinear and a model is not assured to cover every situation. Then, the ambiguity
emerges when a fault is indicated which may come from a true battery failure, or can be resulted
from an inaccurate model. Other than that, extensive work is needed to build the system model
and substantial effort is required in data acquisition and validation.

If a closer insight is given to the redundancy based fault diagnosis methods, it can be found
that they are designed for single systems, or the target system is unique and can function
individually without any duplicative parts. This is the reason why it requires either a hardware or
analytical redundancy to provide a second output to compare with. Keep this in mind, it is worth
noting that there is a fundamental difference in the battery system. A battery pack includes
multiple same battery cells connecting in series, meaning that the cells share the same current. In
other words, a battery system consists of multiple same systems with same inputs, and thus the
voltage outputs should be similar, if not at fault conditions. In this way, one cell output can be
compared with that of any other cells, or all the other cells can serve as the hardware

redundancies of one single cell, even though there is physically no redundancy in the system. It



is important to notice that this method is robust because the output comes from the real systems,
which is guaranteed to be accurate and does not suffer from convergence issues.
2.2. Correlation coefficient
Rigorously speaking, the battery cells within a battery pack are not exactly the same. There
are variations in the manufacturing process, thermal conditions in usage, balance state, etc. In
general, all these variations are reflected into two essential states, i.e., SOC and SoH. These two
states affect the static and dynamic behavior of a battery cell by different OCV and internal
resistance, respectively. The different OCV leads to an offset in the cell voltages and the
difference in internal resistance causes voltage fluctuations with different amplitudes. If the
voltage outputs of the battery cells are simply compared, these voltage differences can easily
exceed the preset threshold value, making this simple comparison not robust in real applications.
In statistics, correlation coefficient, or Pearson product-moment correlation coefficient, is a

degree of measurement indicating the linear relation between two variables [37]. It is expressed

as
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where r, ., is the correlation coefficient of variables X and Y, covyy is the covariance of X and Y,

XY
0, is the variance of variable Z, [/, is the mean value of variable Z, and n is the number of

samples in the data. The correlation coefficient is unitless, and ranges from +1 to -1 inclusive,
where +1 indicates total positive correlation, O indicates no correlation and -1 indicates total
negative correlation.

An important property of the correlation coefficient is given as
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where @ and [ are two constants. This property is intuitive because when an offset [ is added

to any of the variables, it is subtracted from the mean values in (1), and when the fluctuation
amplitude of a variable is multiplied by @, it multiplies both the numerator and denominator by
a . Hence, the correlation coefficient measures whether the trend of two curves matches, instead
of their exact shape.

This feature is indeed an ideal property in coping with the inconsistencies in lithium-ion
batteries when: a) the imbalanced batteries demonstrate different OCV, and b) the cells in
different aging levels exhibit different internal resistances. If the correlation coefficient of two
cell voltages is calculated, the difference in OCV is removed because the static offset does not
influence the correlation coefficient, and the difference in internal resistances is eliminated
because the correlation coefficient is also independent of the fluctuation amplitudes. Therefore,
ideally, the correlation coefficient of two series cell voltages should be close to +1 during normal
operations. When a short circuit occurs, the abnormal voltage drop influences the synchronized
fluctuation on battery voltages, thus being reflected by the reduced correlation coefficient.

3. Extension to real applications
3.1. Recursive estimation

For online implementation, the correlation coefficient should be calculate recursively. Eq.
(1) is not a satisfactory formula for such application. Although the mean values can be updated
after every sampling recursively, the subtractions from mean values have to be calculated
individually.

An equivalent expression of the correlation coefficient can be obtained by multiplying both

the numerator and denominator of (1) by n, as
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Eq. (3) does not require subtractions from the mean values, so it is more appropriate for

recursive estimation. The formula of the recursive estimation is then obtained as
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3.2. Forgetting mechanism

Eq. (4) can be used to obtain the similarity of the time domain trends for two voltage curves
from the beginning of measurement. However, there are still several difficulties in
implementation: a) if the fault occurs long time after the beginning of measurement, the
abnormal behavior will have negligible effect on the correlation coefficient due to the high
similarity of the long history data; b) as time goes by, the magnitudes of updated quantities in (4)
become larger and larger, and will eventually exceed the storage limits of the onboard
MiCroprocessors.

The most straightforward approach to solving the abovementioned problems is to employ a
moving window filter for data processing, i.e., at each time instant, the correlation coefficient for

the data only in a history time window is calculated. Then (4) is modified as
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where w is the size of the moving window. It needs to be noted that (5) should be initialized by
(4) in the first w samples.

It is also worth noticing that the window size should be chosen with special care. If a large
set of data is employed in the calculation, the abnormal voltage variation led by short circuit will
have negligible effects in the correlation coefficient. Hence, in order to keep the detection
sensitivity to faults, a moving window with a small size is preferred. On the other hand, when the
moving window size is too small, the noise will be regarded as abnormal fluctuations and the
measurement noises will influence the calculation as well. Therefore, a proper size of moving
window should be selected based on the application.

3.3. Special case when noises dominate

When two signals are added to X and Y, respectively, Eq. (1) can be derived as
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where N is the signal added to X and M is the signal added to Y. Assume that both N and M are

independent of X and Y. Eq. (6) can be simplified as
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There are two terms in the numerator of (7). When the batteries are at rest, the first term is
zero because the voltages are very close to their OCVs. When N and M are independent and
identically distributed white noises, the second term is zero as well. This indicates that the
correlation coefficient is close to zero in this situation. This small value will lead to a sudden
drop in the calculation and surely triggers a false positive fault, which is not desired.

If (7) is further expanded to three signals and preferably the mean values of the added

signals are all zero, the correlation coefficient can be expressed as
D =)y, — )+ Y AB+Y NM,
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where A and B are the newly added signals to X and Y, and assume they are independent of X, Y,
N and M. A solution to avoiding the zero correlation coefficient is provided in (8) when A and B
are dependent. In such cases, when the batteries are at rest, Eq. (8) is simplified as
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If the variance of noises are negligible to the variance of A and B, the correlation coefficient
of X+A+N and Y+B+M will be the same as that of A and B.

Taking advantage of this feature, we can add the same signal to both voltage measurements,
which means rap is 1. The added signals should be negligible when there are persistent inputs,
meanwhile, the variance of the two signals should be larger than that of the noises, such that the
correlation coefficient of the two voltages will be close to 1 when the batteries are at rest.

A simple design is to add a square wave with the amplitude of 3 times the standard
deviation of the noise standard deviation, namely, 9 times the variance of the noise, as illustrated

n
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where SW is the additive square wave. As a result, the correlation coefficient is close to 0.9 when
the batteries are at rest. Clearly, when the amplitude of the square wave is larger, the correlation
coefficient is closer to 1 when the battery is at rest. However, the increase in amplitude also
decreases the detection sensitivity to the actual voltage drop. In the design of the additive square
wave, 0.9 is a reasonable objective given that the threshold is 0.5 in this paper.

The period of the square wave should be smaller than the window size. A trivial selection of
period can be 2 samples.

3.4. Fault isolation

In real applications, tens or hundreds of cells are connected in series. Here we assume only
the minority of the cells may have short circuit fault at the same time. Otherwise, the short circuit
fault can be easily detected by module or pack level voltage monitoring.

In order to acquire the status of each battery cell, the correlation coefficients for every pair
of neighboring cells need to be calculated, including that for the first and last cell, as illustrated
in Fig. 1. When a fault occurs on one of the cells, the two related correlation coefficients drop
and the fault location can be isolated by the overlapped index number. For example, when both

Iy, and r, , demonstrate a sudden drop, it indicates a fault on V2 because it is not in the same

trend as those of V; and V3. The same strategy can be applied when multiple faults occurs, as

long as the fault cells are the minority of the whole pack.
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Fig. 1. Correlation coefficient calculation for every pair of neighboring cells.

Table 1 Specification of the batteries under test.

Battery cell type Cylindrical 18650
Nominal voltage 3.2V

Nominal rated capacity 1.35Ah

Charge voltage 3.65V

Discharge cut-off voltage 2.5V

Max pulse discharge 4.05A

4. Simulation

4.1. Simulation setup

The fault conditions are simulated to demonstrate the feasibility of the proposed detection
method. First, an experiment is conducted to apply an urban dynamometer driving schedule
(UDDS) to two battery cells connecting in series. The specification of the batteries under test is

given in Table 1, and the voltage responses of the two cells, V; and V> are given in Fig. 2. The

sampling time in the experiment is 0.1 s.
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Fig. 2. Voltage responses of two batteries cells used in simulation (without fault signal).
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Fig. 3. Demonstration of basic detection principle for short circuits.

Then, a fault signal is constructed by reducing one voltage sample by 100 mV to simulate

the sudden voltage drop recovery at the initial phase of internal short circuit. The fault signal is

added to V; and denote the synthesized data as Vi In order to demonstrate the basic working

principle of the detection algorithm, the correlation coefficient of V; and Vy are first calculated.

It needs to be noted that, except the fault signal added, the two voltage responses are exactly the

14



same, including the measurement noises. The two voltages are plotted in Fig. 3(a), with the
added fault highlighted with an ellipse. The corresponding correlation coefficient of the two
voltages are provided in Fig. 3(b) with inset of detection at fault. The moving window sizes are
30, 40 and 50 samples.

After that, independent white noises with the same standard deviation of 1 mV are added to
Vi and Vy, respectively, to emulate the noisy measurements. The noisy voltages, V;, and Viz, are
given in Fig. 4(a), and the correlation coefficient of them is calculated in Fig. 4(b).

Later, the square wave discussed in Sec. 3.3 is added to V;,, and Vzs, denoting as Vi,s and
Vifns, and the corresponding correlation coefficient is plotted in Fig. 4(c). The mean value of the

square wave is zero, the amplitude is 3 mV and the period is 2 samples.
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Fig. 4. The drop in r when batteries are at rest is greatly reduced with added square wave.

Finally, real fault detections are simulated by calculating the correlation coefficient of Vs

and V2. In this simulation, the window size is 30 samples, and the duration of the voltage drop,
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denoted as d, are varied to be 1, 5, 10, 30, 40 and 50 samples, as shown in Fig. 5(a) and Fig. 5(b).

A threshold of 0.5 is marked as dashed black lines and is selected to trigger the fault detection.
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Fig. 5. The correlation coefficient variation as samples of the voltage drop increases.
4.2. Discussion of simulation results

It can be learnt from Fig. 2 that the internal resistances of the two batteries under test are
different. Given the same current input, the voltage difference between the two cells can be
larger than 100 mV at around 150 s. This large difference will trigger false positive faults if the

voltage difference threshold method is applied, or if only one model is tracked online in the
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model based detection method. Fig. 3(a) shows that the fault signal is added to V; at around 700
s. The voltage value at fault is not out of the voltage operation range given in Table 1, and thus
cannot be detected by the voltage threshold method.

The correlation coefficient calculated in Fig. 3(b) manages to capture the off-trend voltage
drop recovery, and the fault is flagged by the drop in the correlation coefficients. The
comparisons among the calculation with three different window sizes indicate that a smaller
window size leads to higher sensitivity to abnormal voltage variations. Meanwhile, when
independent white noises are added to the voltage measurements, the correlation coefficient
provided in Fig. 4(b) exhibits more fluctuations than that in Fig. 3(b). It needs to be noted that as
the size of the moving window increases, part of the fluctuations is smaller, as the ones at around
160 s, owing to the reduced sensitivity to noises.

However, part of the fluctuations remains the same in spite of the variation in window sizes,
as the ones at around 100 s. If a closer look is given to the voltages in Fig. 4(a), it can be found
that whenever there is a voltage plateau in measurements, there is an unrecoverable fluctuation in
the correlation coefficient. Actually, this phenomenon has been well-explained by Sec. 3.3 that
when the batteries are at rest, the correlation coefficient will drop as indicated in (7). The
proposed solution is to add a square wave to the voltage measurements with an amplitude of 3
mV and a period of 2 samples. Fig. 4(c) presents the correlation coefficient with the square wave
added, indicating that the induced fault can be easily identified.

In the simulation, the induced fault is detected with the proposed correlation based method,
whereas the other detection methods lead to various issues. The detection results are summarized

in Table 2.
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Table 2 Comparison of the simulated short circuit detection results.

Detection method True fault False fault

Voltage threshold based

Voltage difference threshold based v v
Model based v v
Correlation based v

It is understood that the correlation coefficient measures the similarity of the two signals. It
can be inferred when the voltage drop led by faults lasts longer within the moving window, the
similarity of the two voltage measurements degrades further, and thus the drop in the correlation
coefficient will be larger, as illustrated in Fig. 5(a). This ensures the robustness of this detection
method when multiple samples in the voltage drop are captured.

The simulated fault voltages V¢ with different lengths are demonstrated in Fig. 5(c). The
different faults start at the same time, but recover at different time instants. It can be observed
that when the voltage drop lasts longer than the length of the moving window, the batch-wise
voltage data within the moving window are the same at the initial stage of the short circuits, as
the cases of 30, 40 and 50 samples. Hence, in these cases, the variations in the correlation
coefficients are the same at the initial stages, regardless of the length of the voltage drop, as
shown in Fig. 5(b). Therefore, the fault detection times for short circuits with long durations are
the same, as summarized in Table 3. This property makes the proposed method applicable to
external short circuit detection as well, where the voltage drop may be longer than the moving
time window.

Table 3 Fault detection times of correlation based method for different short circuit durations.

Fault duration (sample) 1 5 10 30 40 50

Detection time (sec) 1.1 0.7 0.7 0.7 0.7 0.7

18



5. Experiment
5.1. Experiment setup

An experiment is set up to validate the proposed fault detection approach. The schematics
for experimental setup is shown in Fig. 6(a). Four battery cells, same as those introduced in
Table 1, are connected in series. A customized BMS is equipped to monitor the voltage, current
and temperature of the battery string. All the data are collected with dSPACE Micro-Autobox
and saved through ControlDesk in the host PC. The charge/discharge commands are executed by
the direct current power source and electronic load connecting in parallel with the battery string.

The hardware implementation is provided in Fig. 6(b).

Power connection
—————— Signal connection

dSPACE ~ Power

Batteri
uni:ie(l"rtl:sst / ,\
|/ =
V; ————__ . 2*a] = il
e e R s B
1
] |
V: T ---n | ' !
1 ] [}
1 1 [}
1 dSPACE : :
Vi ——=--1q . ' i
: ] :_ a Power : _ Electronic
1 source load
V,{]q_ ———— Host PC
(a) Schematics for experiment setup. (b) Hardware setup for experiment.

Fig. 6. Experimental setup for validation.

The battery string is then applied with a UDDS cycle in the room temperature. At 42.4 s of
the UDDS cycle, a jump wire with 0.36 Q resistance is used to short the positive and negative
terminal of cell #4 for 1.3 s. The corresponding voltage responses for the four cells are given in
Fig. 7(a), and the temperature responses are given in Fig. 7(b). The sampling interval in the

experiment is 0.1 s.
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Fig. 7. Experiment results.
5.2. Discussion of experiment results

It can be observed from Fig. 7(a) that when cell #4 is shorted by the jump wire, the voltage
suddenly drops to approximate 2.6 V, and the voltage recovers after the short is removed. The
voltage drop does not touch the discharge voltage limit given in Table 2. From the temperature
plot in Fig. 7(b), the temperature response of cell #4 does have a higher rise than other cells after
the fault occurrence, however, the amount is only 0.3 °C, which is negligible to notice in real
applications. Since the short circuit current does not pass the current sensor on the BMS board,
the short circuit is unobservable from current measurements. Thus the voltage, current or
temperature threshold based detection methods do not flag any fault in the scenario.

It is also worth noting that the SoCs of the four batteries under test are different. The OCV
of cell #2 is lower than the average OCV of the other three cells by 22 mV. This difference may
lead to false detection if the voltage difference threshold method is applied. When the model
based method is applied to track the voltage of only one of the cells, it will also result in a false

fault detection.
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The correlation coefficients for the neighboring cells are calculated and plotted in Fig. 8.
The size of the moving window is 30 samples. The amplitude of the square wave added is 3 mV
and the period is 2 samples. The correlation coefficients for the first two neighboring cell pairs
are close to 1 in the experiment, indicating these three cells follow the same variation in the
whole process. Whereas, the correlation coefficient of cell #3 and cell #4 drops abruptly when
the fault occurs because of the off-trend voltage drop. The location of the fault can be determined
as cell #4 because the same drop is captured in both 734 and r1).

A threshold value of 0.5 is marked in Fig. 8 to flag the short circuit fault. The voltage drop
is captured in the voltage reading at 42.5 s, and the correlation coefficient flags the fault at 42.5
s. It is because the voltage variation is much larger than the normal voltage fluctuations, leading
to a large drop in the correlation coefficient once the voltage drop is captured. This demonstrates

the prompt response of the proposed fault detection method in real applications.
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Fig. 8. Correlation coefficients calculated for the neighboring cells.
6. Further discussion

6.1. Key assumptions
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The proposed fault detection method utilizes the measurement of similarity from the
correlation coefficient, and determines a fault when the similarity is low. This section discusses
the key assumptions which may be violated in real applications and the corresponding mitigation
methods.

6.1.1. White noises

In the derivation in Sec. 3.3, the noises in the measurement are assumed to be white noises,
which is not true in real applications. Except that, given a small number of samples, the noises
can hardly exhibit its statistical property under the law of large numbers [38]. As a result, the
variance of the noises may be higher, and this can be compensated by adding a square wave with
higher amplitudes.
6.1.2.Synchronized measurement

The voltages in a vehicular battery pack are usually measured sequentially to save hardware
cost. For the experiment in this manuscript, the voltages are sequentially updated, but they are
shifted to align with one another in the time domain before the correlation coefficient
calculation. Otherwise, one voltage always leads or lags others, leading to false detections. One
solution is to shift the measurements in the moving window, and calculate the correlation
coefficient afterwards, as done in this manuscript. The other solution is to utilize the cross-
correlation [39, 40] which calculates the correlation coefficients of the time shifted version of
two signals. The time difference in the cross-correlation calculation will be the sampling interval.
6.1.3. Minority in fault

It is discussed in Sec. 3.4 that the fault isolation is not accurate when the majority of the
cells is in fault at the same time. In the extreme condition, when the whole pack is in the external

short circuit condition, the correlation coefficients are close to 1, because the voltage trends are
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the same. However, when multiple external short circuits occur at the same time, the faults can
be easily detected by module or pack level voltage monitoring. In addition, the internal short
circuits do not occurs simultaneously in real applications.
6.1.4.Short with low resistances

The proposed method captures the abrupt voltage drop by calculating correlation coefficient
within a moving window. A thorough study of internal short circuits with different resistances
has been conducted in [33]. It shows that not every internal short circuit has abrupt voltage drop,
or low resistance short. With large short resistances, the voltage curves follow the same trend
over the relatively short moving time windows and thus the fault cannot be identified.
Nevertheless, the proposed method is still meaningful because the internal shorts with low
resistances require immediate mitigation, and are more dangerous due to the instant excess heat
generation. Indeed, the large resistance internal short circuit can also be detected by the

correlation based method, when the moving window filter is modified as

W, =

i

L iz=n-jk.i=0.L- w—1
{,lnj,] 0,1,---, w (a1

0, otherwise

where W is the function of moving window filter, and & is the number that adjusts the time span
of the moving window filter. This filter evenly samples w points within a time span of kw. It
needs to be noted that the moving average filter used in the previous sections is a special case of
(11) with k=1. When £ is large, this filter can capture the voltage behavior over long periods of
time, thereby identifying internal shorts with large resistances.
6.2. Comparison of different detection methods

Because of the high cost of hardware redundancy, the software redundancy is the most
applied fault detection methods in battery systems. The voltage threshold method is the simplest

model, which only considers the safe operation range of the system, and is ignorant of the input
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information. It is easy in implementation, but the weakness is that the out-of-range voltage is not
a necessary condition for faults. In other words, a battery can still be faulty when the voltage is in
the safe range.

An improvement can be made by taking the input into consideration, and then it gives rise
to the model based fault diagnostic methods. The methods are able to distinguish the fault
conditions when the voltages are within the safe range, but the tradeoff is their substantial effort
in maintaining the robustness and accuracy of the battery models in difference situations. Except
that, there may be a false positive alarm when a fault is flagged, due to an inaccurate battery
model or the inconsistencies among individual cells.

The proposed method directly compares the outputs of the multiple cells, and identifies the
fault by the off-trend voltage behavior. The battery model is then not needed, which saves the
effort in modeling, because every other cell can be the hardware redundancy of the current cell.
It is interesting to note that the voltage difference threshold method is a special case of the
proposed method, where it assumes all the cells are the same. This assumption is not true when
the SoC and SoH of the cells varies, and is compensated well by the properties of correlation

coefficients. A brief summary of the comparisons of different detection methods is provided in

Table 4.
Table 4 Comparison of different detection methods.
Detection method Advantages Disadvantages
Voltage threshold Easy implementation. False negative faults within the
operation range.
Model based Fault detection in the operation Substantial modeling  work;
range. ambiguity in fault detection.
Voltage difference threshold ~ No modeling work. False positive faults when SoCs
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or SoHs are not consistent.
Correlation based No modeling work; Need to be combined with
Fault detection with inconsistent module/pack level monitoring.

SoCs or SoHs.

7. Conclusion

A correlation based fault detection method is proposed in this manuscript, which does not
require hardware and analytical redundancy, thus saving the hardware cost and effort in system
modeling.

The concept of correlation coefficient is first introduced. It is proved that the correlation
coefficient can detect the initial stage of short circuits by capturing the off-trend voltage drop,
and reflect the variation to the drop in correlation coefficient, in spite of the cell inconsistencies
in SoC or SoH.

Next, the correlation coefficient is expressed in the recursive form for online application. A
moving average window is applied to keep the most recent voltage trends of the cells, while
maintaining the detection sensitivity to short circuit faults. A square wave is added to the voltage
measurements to prevent the false detection when the batteries are at rest. In addition, it is
analyzed that the short circuit fault can be isolated by identifying the overlapped cell in the
dropped correlation coefficients.

Moreover, simulation and experiment results validated the analysis, and demonstrated the
scenarios where the proposed method can robustly identify the faults, while the voltage
threshold, voltage difference threshold and model based method lead to either false negative
faults or false positive faults.

At last, the key assumptions in the proposed method are discussed. It is explained that the

proposed method can detect the short circuits with a large short resistance by modification of the
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moving window. The comparison with other detection methods shows that the proposed method
does not require modeling work, and provides robust short circuit detection regardless of the
inconsistencies within the battery pack.

The future work of this study is to enhance the proposed detection method by adding the
large resistance short circuit detection.
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