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Abstract 

This paper presents a fault detection method for short circuits based on the correlation coefficient 

of voltage curves. The proposed method utilizes the direct voltage measurements from the 

battery cells, and does not require any additional hardware or effort in modeling during fault 

detection. Moreover, the inherent mathematical properties of the correlation coefficient ensure 

the robustness of this method as the battery pack ages or is imbalanced in real applications. In 

order to apply this method online, the recursive moving window correlation coefficient 

calculation is adopted to maintain the detection sensitivity to faults during operation. An additive 

square wave is designed to prevent false positive detections when the batteries are at rest. The 

fault isolation can be achieved by identifying the overlapped cell in the correlation coefficients 

with fault flags. Simulation and experimental results validated the feasibility and demonstrated 

the advantages of this method. 
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1. Introduction 

The prevailing application of lithium-ion batteries in the electrified vehicles (EVs) provides 

competitive energy and power performances [1]. However, many recent publications worldwide 

have reported a series of related accidents [2-4], revealing the potential safe concerns of lithium-

ion batteries, which retard their rapid expansion. 

The demand of safe battery operation gives rise to the battery management systems (BMS) 

[5]. The BMS in an EV monitors the voltage, current and temperature of a battery pack, 

estimates the essential states of the cells [6, 7], and maintains the safe and efficient operation of 

the energy storage system [8, 9]. A qualified BMS should be able to flag warnings when any of 

the cell is in abuse condition and activate the corresponding mitigation methods [10, 11]. The 

abuse behaviors cover a wide variety of conditions  which can be grouped into four categories 

based on the electric features, namely, over charge, over discharge, external short circuit and 

internal short circuit [12].  

Compared with the over charge/discharge faults, the short circuit faults are more hazardous. 

The external short circuit fault induces abnormally high heat generation rate, which may easily 

initiate the thermal runaway. The thermal runway describes the heat propagation process within 

the battery pack, where the exothermic side reaction of one cell failure influences the safe 

operation of surrounding cells, and further triggers the chain exothermic reactions [13]. 

Thereafter, the heat builds up rapidly and finally results in fire or explosion. Different from the 

external short circuit, the internal short circuit is usually caused by manufacturing defects or 

mechanical failure. As the short area in the separator emerges, an internal current path is formed. 

The local high current rate elevates the local temperature. The high temperature first forces the 
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closure of separators with shutdown function. However, if the heat is not dissipated well, an even 

higher temperature will melt the separator and eventually trigger thermal runaway [14].  

With the available voltage, current and temperature measurements, previous research 

introduced many detection approaches specifically for short circuits, which can be classified into 

two groups: a) threshold based methods, and b) model based methods. The external short circuit 

fault can be detected by comparing the direct sensor measurements with the threshold in current 

increase, voltage drop and temperature rise [15, 16]. The limitation of this method is that a fault 

may occur without triggering the threshold. If the resistance in the short loop is moderate such 

that the current, voltage and temperature does not go beyond the preset limit within a short 

period of time, the fault will not be flagged at the occurrence.  

To a certain extent, the detection of the internal short circuit is more complicated. At the 

initial phase of internal short circuit fault, when the damage on the separator leads to an internal 

short, and the local heat results into the separator shutdown, the terminal voltage of the fault cell 

will first drop and then recover [14, 17, 18]. If a simple threshold based method is applied, it may 

not capture the abnormal voltage pattern. Since the current flows internally, it cannot be recorded 

by the current sensor either. To make it even worse, the fast short may not cause adequate 

increase of the cell surface temperature. Therefore, the threshold based methods do not function 

with satisfaction. An illustrative case has been studied in [2], where a voltage drop recovery was 

recorded by the onboard BMS, but the BMS failed to flag any warning at the initial phase of 

failure. When the fault was recognized 17 minutes later, the start of fire was inevitable.  

An improved threshold based method sets the threshold for maximum voltage differences 

within a battery pack, instead of the absolute voltage value for each cell. This method was 

originally designed for imbalanced state detection [19], but can be adopted to short circuit 
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detection as well. In this method, the threshold of voltage difference should be chosen with 

special care. If the value is too large, it cannot capture the voltage drop, whereas if the value is 

too small, it can easily lead to false positive detection due to inconsistencies in battery states and 

parameters. 

To investigate the mechanism of the internal short circuits, extensive experiments were 

conducted to induce the faults by indentation [20-23], nail penetration [24, 25], fabrication with 

defect structures [26, 27] and extreme high temperatures [28, 29]. Based on the findings, the 

models of the internal short circuits were built in [30, 31], which can be utilized to detect the 

fault by comparing the virtue model output/state with the battery output/state. If the residue is 

above a threshold, a fault is flagged. A thorough introduction of multiple model based cell 

condition monitoring was presented in [32]. It was discussed in [33] that the changes in the 

estimated circuit parameters and temperature derivative of equilibrium potential are good 

indicators to identify internal short circuit faults. These methods give more reliable detection 

than the threshold based method, however, it requires substantial effort in accurate modeling and 

testing [34]. Except that, this method is still vulnerable to cell inconsistencies, unless the online 

parameter estimation is implemented for every single cell in the series pack which is prohibitive 

in real applications. 

Other methods seek to improve the detection and isolation of internal short circuits from 

system design perspective. It was proposed in [35] that the internal short circuits can be 

identified by the differences of branch currents in the series-parallel battery pack, however, the 

method  requires current sensors in every parallel branch, which greatly increases the system cost. 

The interleaved voltage measurement method was presented in [36], and can distinguish between 
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sensor and cell failures without additional components, but the fault detection is still not robust 

to cell inconsistencies. 

In order to avoid the influence of inconsistencies in the battery pack upon fault detection, 

this paper proposes a correlation based method for short circuit detection in lithium-ion battery 

packs. The main idea is to capture the unusual voltage variation at the initial phase of a short 

circuit fault by calculating the correlation coefficients of the cell voltages. Since the correlation 

coefficient is independent of the mean value and the amplitude of the fluctuations, when 

applying to the cell voltages, it eliminates the inconsistencies in open circuit voltage (OCV) and 

internal resistance, hence does not lead to false positive faults when the batteries are in different 

state of charge (SoC) or state of health (SoH). Moreover, this method is non-redundancy based, 

because the correlation coefficient calculation only involves voltage outputs from different cells, 

thereby saving the extensive effort in modeling and testing. 

Based on these desired features, an online short circuit detection algorithm is developed. A 

moving window filter is utilized to forget past data and maintain the detection sensitivity to 

faults. An additive square wave is designed to prevent false detections when the noises dominate 

the voltage variations during rest periods. Simulations are used to illustrate the functions of the 

moving window and the square wave in different scenarios. Experiments are conducted to 

validate the feasibility of the method, and to demonstrate the fault isolation. Finally, the key 

assumptions of the proposed method are discussed and the root causes of different detection 

results from different methods are analyzed. 

2. Method description 

2.1. A non-redundancy based fault detection method 
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Generally, the existing fault diagnosis methods are redundancy based, which can be further 

divided into hardware redundancy and analytical redundancy. The key idea is to compare the 

system state/output with the state/output of redundancy systems, and flag a fault when the 

residue is not reasonably small. The hardware redundancy utilizes duplicative real systems to 

provide comparison. The common drawbacks of the hardware redundancy are its increase in 

hardware cost and system complexity, making it impractical for battery systems. The analytical 

redundancy constructs a mathematical system model and compares the model state/output with 

real state/output of the system. The aforementioned threshold based method can be regarded as a 

rough modeling of the system limit without considering the input. However, the battery system is 

highly nonlinear and a model is not assured to cover every situation. Then, the ambiguity 

emerges when a fault is indicated which may come from a true battery failure, or can be resulted 

from an inaccurate model. Other than that, extensive work is needed to build the system model 

and substantial effort is required in data acquisition and validation. 

If a closer insight is given to the redundancy based fault diagnosis methods, it can be found 

that they are designed for single systems, or the target system is unique and can function 

individually without any duplicative parts. This is the reason why it requires either a hardware or 

analytical redundancy to provide a second output to compare with. Keep this in mind, it is worth 

noting that there is a fundamental difference in the battery system. A battery pack includes 

multiple same battery cells connecting in series, meaning that the cells share the same current. In 

other words, a battery system consists of multiple same systems with same inputs, and thus the 

voltage outputs should be similar, if not at fault conditions. In this way, one cell output can be 

compared with that of any other cells, or all the other cells can serve as the hardware 

redundancies of one single cell, even though there is physically no redundancy in the system. It 
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is important to notice that this method is robust because the output comes from the real systems, 

which is guaranteed to be accurate and does not suffer from convergence issues. 

2.2. Correlation coefficient 

Rigorously speaking, the battery cells within a battery pack are not exactly the same. There 

are variations in the manufacturing process, thermal conditions in usage, balance state, etc. In 

general, all these variations are reflected into two essential states, i.e., SoC and SoH. These two 

states affect the static and dynamic behavior of a battery cell by different OCV and internal 

resistance, respectively. The different OCV leads to an offset in the cell voltages and the 

difference in internal resistance causes voltage fluctuations with different amplitudes. If the 

voltage outputs of the battery cells are simply compared, these voltage differences can easily 

exceed the preset threshold value, making this simple comparison not robust in real applications. 

In statistics, correlation coefficient, or Pearson product-moment correlation coefficient, is a 

degree of measurement indicating the linear relation between two variables [37]. It is expressed 

as 
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where 
,X Y

r  is the correlation coefficient of variables X and Y, covX,Y is the covariance of X and Y, 

Zσ  is the variance of variable Z, Zµ  is the mean value of variable Z, and n is the number of 

samples in the data. The correlation coefficient is unitless, and ranges from +1 to -1 inclusive, 

where +1 indicates total positive correlation, 0 indicates no correlation and -1 indicates total 

negative correlation. 

 An important property of the correlation coefficient is given as 
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where α  and β  are two constants. This property is intuitive because when an offset β  is added 

to any of the variables, it is subtracted from the mean values in (1), and when the fluctuation 

amplitude of a variable is multiplied by α , it multiplies both the numerator and denominator by 

α . Hence, the correlation coefficient measures whether the trend of two curves matches, instead 

of their exact shape. 

This feature is indeed an ideal property in coping with the inconsistencies in lithium-ion 

batteries when: a) the imbalanced batteries demonstrate different OCV, and b) the cells in 

different aging levels exhibit different internal resistances. If the correlation coefficient of two 

cell voltages is calculated, the difference in OCV is removed because the static offset does not 

influence the correlation coefficient, and the difference in internal resistances is eliminated 

because the correlation coefficient is also independent of the fluctuation amplitudes. Therefore, 

ideally, the correlation coefficient of two series cell voltages should be close to +1 during normal 

operations. When a short circuit occurs, the abnormal voltage drop influences the synchronized 

fluctuation on battery voltages, thus being reflected by the reduced correlation coefficient. 

3. Extension to real applications 

3.1. Recursive estimation 

For online implementation, the correlation coefficient should be calculate recursively. Eq. 

(1) is not a satisfactory formula for such application. Although the mean values can be updated 

after every sampling recursively, the subtractions from mean values have to be calculated 

individually. 

An equivalent expression of the correlation coefficient can be obtained by multiplying both 

the numerator and denominator of (1) by n, as  
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Eq. (3) does not require subtractions from the mean values, so it is more appropriate for 

recursive estimation. The formula of the recursive estimation is then obtained as 

 

( )

1

1

1

2

1

2

1

,
2 2

k k i i

k k i

k k i

k k i

k k i

k k k

X Y k

k k k k

P P x y

Q Q x

R R y

S S x

T T y

kP Q R
r

kS Q kT R

−

−

−

−

−

= +
= +
= +

= +

= +
−=

− −

  (4) 

3.2. Forgetting mechanism 

Eq. (4) can be used to obtain the similarity of the time domain trends for two voltage curves 

from the beginning of measurement. However, there are still several difficulties in 

implementation: a) if the fault occurs long time after the beginning of measurement, the 

abnormal behavior will have negligible effect on the correlation coefficient due to the high 

similarity of the long history data; b) as time goes by, the magnitudes of updated quantities in (4) 

become larger and larger, and will eventually exceed the storage limits of the onboard 

microprocessors. 

The most straightforward approach to solving the abovementioned problems is to employ a 

moving window filter for data processing, i.e., at each time instant, the correlation coefficient for 

the data only in a history time window is calculated. Then (4) is modified as 



10 

 

( )

1

1

1

2 2

1

2 2

1

,
2 2

k k i i i w i w

k k i i w

k k i i w

k k i i w

k k i i w

k k k

X Y k

k k k k

P P x y x y

Q Q x x

R R y y

S S x x

T T y y

wP Q R
r

wS Q wT R

− − −

− −

− −

− −

− −

= + −
= + −
= + −

= + −

= + −
−=

− −

  (5) 

where w is the size of the moving window. It needs to be noted that (5) should be initialized by 

(4) in the first w samples. 

It is also worth noticing that the window size should be chosen with special care. If a large 

set of data is employed in the calculation, the abnormal voltage variation led by short circuit will 

have negligible effects in the correlation coefficient. Hence, in order to keep the detection 

sensitivity to faults, a moving window with a small size is preferred. On the other hand, when the 

moving window size is too small, the noise will be regarded as abnormal fluctuations and the 

measurement noises will influence the calculation as well. Therefore, a proper size of moving 

window should be selected based on the application. 

3.3. Special case when noises dominate 

When two signals are added to X and Y, respectively, Eq. (1) can be derived as 
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where N is the signal added to X and M is the signal added to Y. Assume that both N and M are 

independent of X and Y. Eq. (6) can be simplified as 
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There are two terms in the numerator of (7). When the batteries are at rest, the first term is 

zero because the voltages are very close to their OCVs. When N and M are independent and 

identically distributed white noises, the second term is zero as well. This indicates that the 

correlation coefficient is close to zero in this situation. This small value will lead to a sudden 

drop in the calculation and surely triggers a false positive fault, which is not desired. 

If (7) is further expanded to three signals and preferably the mean values of the added 

signals are all zero, the correlation coefficient can be expressed as 
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where A and B are the newly added signals to X and Y, and assume they are independent of X, Y, 

N and M. A solution to avoiding the zero correlation coefficient is provided in (8) when A and B 

are dependent. In such cases, when the batteries are at rest, Eq. (8) is simplified as 
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 If the variance of noises are negligible to the variance of A and B, the correlation coefficient 

of X+A+N and Y+B+M will be the same as that of A and B. 

Taking advantage of this feature, we can add the same signal to both voltage measurements, 

which means rA,B is 1. The added signals should be negligible when there are persistent inputs, 

meanwhile, the variance of the two signals should be larger than that of the noises, such that the 

correlation coefficient of the two voltages will be close to 1 when the batteries are at rest. 

A simple design is to add a square wave with the amplitude of 3 times the standard 

deviation of the noise standard deviation, namely, 9 times the variance of the noise, as illustrated 

in 
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where SW is the additive square wave. As a result, the correlation coefficient is close to 0.9 when 

the batteries are at rest. Clearly, when the amplitude of the square wave is larger, the correlation 

coefficient is closer to 1 when the battery is at rest. However, the increase in amplitude also 

decreases the detection sensitivity to the actual voltage drop. In the design of the additive square 

wave, 0.9 is a reasonable objective given that the threshold is 0.5 in this paper.  

The period of the square wave should be smaller than the window size. A trivial selection of 

period can be 2 samples. 

3.4. Fault isolation 

In real applications, tens or hundreds of cells are connected in series. Here we assume only 

the minority of the cells may have short circuit fault at the same time. Otherwise, the short circuit 

fault can be easily detected by module or pack level voltage monitoring. 

In order to acquire the status of each battery cell, the correlation coefficients for every pair 

of neighboring cells need to be calculated, including that for the first and last cell, as illustrated 

in Fig. 1. When a fault occurs on one of the cells, the two related correlation coefficients drop 

and the fault location can be isolated by the overlapped index number. For example, when both 

1 2,V V
r  and 

2 3,V V
r  demonstrate a sudden drop, it indicates a fault on V2 because it is not in the same 

trend as those of V1 and V3. The same strategy can be applied when multiple faults occurs, as 

long as the fault cells are the minority of the whole pack. 
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Fig. 1. Correlation coefficient calculation for every pair of neighboring cells. 

Table 1 Specification of the batteries under test. 

Battery cell type Cylindrical 18650 

Nominal voltage 3.2V 

Nominal rated capacity 1.35Ah 

Charge voltage 3.65V 

Discharge cut-off voltage 2.5V 

Max pulse discharge 4.05A 

4. Simulation 

4.1. Simulation setup 

The fault conditions are simulated to demonstrate the feasibility of the proposed detection 

method. First, an experiment is conducted to apply an urban dynamometer driving schedule 

(UDDS) to two battery cells connecting in series. The specification of the batteries under test is 

given in Table 1, and the voltage responses of the two cells, V1 and V2 are given in Fig. 2. The 

sampling time in the experiment is 0.1 s. 
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Fig. 2. Voltage responses of two batteries cells used in simulation (without fault signal). 

  

(a) The fault signal added. (b) Detection results with inset at faults. 

Fig. 3. Demonstration of basic detection principle for short circuits. 

Then, a fault signal is constructed by reducing one voltage sample by 100 mV to simulate 

the sudden voltage drop recovery at the initial phase of internal short circuit. The fault signal is 

added to V1 and denote the synthesized data as V1f. In order to demonstrate the basic working 

principle of the detection algorithm, the correlation coefficient of V1 and V1f are first calculated. 

It needs to be noted that, except the fault signal added, the two voltage responses are exactly the 
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same, including the measurement noises. The two voltages are plotted in Fig. 3(a), with the 

added fault highlighted with an ellipse. The corresponding correlation coefficient of the two 

voltages are provided in Fig. 3(b) with inset of detection at fault. The moving window sizes are 

30, 40 and 50 samples. 

After that, independent white noises with the same standard deviation of 1 mV are added to 

V1 and V1f, respectively, to emulate the noisy measurements. The noisy voltages, V1,n and V1f,n are 

given in Fig. 4(a), and the correlation coefficient of them is calculated in Fig. 4(b).  

Later, the square wave discussed in Sec. 3.3 is added to V1,n and V1f,n, denoting as V1,n,s and 

V1f,n,s, and the corresponding correlation coefficient is plotted in Fig. 4(c). The mean value of the 

square wave is zero, the amplitude is 3 mV and the period is 2 samples. 

 

Fig. 4. The drop in r when batteries are at rest is greatly reduced with added square wave. 

Finally, real fault detections are simulated by calculating the correlation coefficient of V1f,s 

and V2,s. In this simulation, the window size is 30 samples,  and the duration of the voltage drop, 
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denoted as d, are varied to be 1, 5, 10, 30, 40 and 50 samples, as shown in Fig. 5(a) and Fig. 5(b). 

A threshold of 0.5 is marked as dashed black lines and is selected to trigger the fault detection. 

  

(a) Correlation coefficients when d<w. (b) Correlation coefficients when d ≥ w. 

 

(c) Voltage variations within the moving window. 

Fig. 5. The correlation coefficient variation as samples of the voltage drop increases. 

4.2. Discussion of simulation results 

It can be learnt from Fig. 2 that the internal resistances of the two batteries under test are 

different. Given the same current input, the voltage difference between the two cells can be 

larger than 100 mV at around 150 s. This large difference will trigger false positive faults if the 

voltage difference threshold method is applied, or if only one model is tracked online in the 
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model based detection method. Fig. 3(a) shows that the fault signal is added to V1 at around 700 

s. The voltage value at fault is not out of the voltage operation range given in Table 1, and thus 

cannot be detected by the voltage threshold method.  

The correlation coefficient calculated in Fig. 3(b) manages to capture the off-trend voltage 

drop recovery, and the fault is flagged by the drop in the correlation coefficients. The 

comparisons among the calculation with three different window sizes indicate that a smaller 

window size leads to higher sensitivity to abnormal voltage variations. Meanwhile, when 

independent white noises are added to the voltage measurements, the correlation coefficient 

provided in Fig. 4(b) exhibits more fluctuations than that in Fig. 3(b). It needs to be noted that as 

the size of the moving window increases, part of the fluctuations is smaller, as the ones at around 

160 s, owing to the reduced sensitivity to noises.  

However, part of the fluctuations remains the same in spite of the variation in window sizes, 

as the ones at around 100 s. If a closer look is given to the voltages in Fig. 4(a), it can be found 

that whenever there is a voltage plateau in measurements, there is an unrecoverable fluctuation in 

the correlation coefficient. Actually, this phenomenon has been well-explained by Sec. 3.3 that 

when the batteries are at rest, the correlation coefficient will drop as indicated in (7). The 

proposed solution is to add a square wave to the voltage measurements with an amplitude of 3 

mV and a period of 2 samples. Fig. 4(c) presents the correlation coefficient with the square wave 

added, indicating that the induced fault can be easily identified. 

In the simulation, the induced fault is detected with the proposed correlation based method, 

whereas the other detection methods lead to various issues. The detection results are summarized 

in Table 2. 
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Table 2 Comparison of the simulated short circuit detection results. 

Detection method True fault False fault 

Voltage threshold based   

Voltage difference threshold based ✓ ✓ 

Model based ✓ ✓ 

Correlation based ✓  

It is understood that the correlation coefficient measures the similarity of the two signals. It 

can be inferred when the voltage drop led by faults lasts longer within the moving window, the 

similarity of the two voltage measurements degrades further, and thus the drop in the correlation 

coefficient will be larger, as illustrated in Fig. 5(a). This ensures the robustness of this detection 

method when multiple samples in the voltage drop are captured.  

The simulated fault voltages V1f with different lengths are demonstrated in Fig. 5(c). The 

different faults start at the same time, but recover at different time instants. It can be observed 

that when the voltage drop lasts longer than the length of the moving window, the batch-wise 

voltage data within the moving window are the same at the initial stage of the short circuits, as 

the cases of 30, 40 and 50 samples. Hence, in these cases, the variations in the correlation 

coefficients are the same at the initial stages, regardless of the length of the voltage drop, as 

shown in Fig. 5(b). Therefore, the fault detection times for short circuits with long durations are 

the same, as summarized in Table 3. This property makes the proposed method applicable to 

external short circuit detection as well, where the voltage drop may be longer than the moving 

time window.  

Table 3 Fault detection times of correlation based method for different short circuit durations. 

Fault duration (sample) 1 5 10 30 40 50 

Detection time (sec) 1.1 0.7 0.7 0.7 0.7 0.7 
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5. Experiment 

5.1. Experiment setup 

An experiment is set up to validate the proposed fault detection approach. The schematics 

for experimental setup is shown in Fig. 6(a). Four battery cells, same as those introduced in 

Table 1, are connected in series. A customized BMS is equipped to monitor the voltage, current 

and temperature of the battery string. All the data are collected with dSPACE Micro-Autobox 

and saved through ControlDesk in the host PC. The charge/discharge commands are executed by 

the direct current power source and electronic load connecting in parallel with the battery string. 

The hardware implementation is provided in Fig. 6(b).  

  

(a) Schematics for experiment setup. (b) Hardware setup for experiment. 

Fig. 6. Experimental setup for validation. 

The battery string is then applied with a UDDS cycle in the room temperature. At 42.4 s of 

the UDDS cycle, a jump wire with 0.36 Ω resistance is used to short the positive and negative 

terminal of cell #4 for 1.3 s. The corresponding voltage responses for the four cells are given in 

Fig. 7(a), and the temperature responses are given in Fig. 7(b). The sampling interval in the 

experiment is 0.1 s. 
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(a) Cell voltages in the experiment. (b) Cell temperatures in the experiment. 

Fig. 7. Experiment results. 

5.2. Discussion of experiment results 

It can be observed from Fig. 7(a) that when cell #4 is shorted by the jump wire, the voltage 

suddenly drops to approximate 2.6 V, and the voltage recovers after the short is removed. The 

voltage drop does not touch the discharge voltage limit given in Table 2. From the temperature 

plot in Fig. 7(b), the temperature response of cell #4 does have a higher rise than other cells after 

the fault occurrence, however, the amount is only 0.3 °C, which is negligible to notice in real 

applications. Since the short circuit current does not pass the current sensor on the BMS board, 

the short circuit is unobservable from current measurements. Thus the voltage, current or 

temperature threshold based detection methods do not flag any fault in the scenario. 

It is also worth noting that the SoCs of the four batteries under test are different. The OCV 

of cell #2 is lower than the average OCV of the other three cells by 22 mV. This difference may 

lead to false detection if the voltage difference threshold method is applied. When the model 

based method is applied to track the voltage of only one of the cells, it will also result in a false 

fault detection.  
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The correlation coefficients for the neighboring cells are calculated and plotted in Fig. 8. 

The size of the moving window is 30 samples. The amplitude of the square wave added is 3 mV 

and the period is 2 samples. The correlation coefficients for the first two neighboring cell pairs 

are close to 1 in the experiment, indicating these three cells follow the same variation in the 

whole process. Whereas, the correlation coefficient of cell #3 and cell #4 drops abruptly when 

the fault occurs because of the off-trend voltage drop. The location of the fault can be determined 

as cell #4 because the same drop is captured in both r(3,4) and r(4,1). 

A threshold value of 0.5 is marked in Fig. 8 to flag the short circuit fault. The voltage drop 

is captured in the voltage reading at 42.5 s, and the correlation coefficient flags the fault at 42.5 

s. It is because the voltage variation is much larger than the normal voltage fluctuations, leading 

to a large drop in the correlation coefficient once the voltage drop is captured. This demonstrates 

the prompt response of the proposed fault detection method in real applications.  

 

Fig. 8. Correlation coefficients calculated for the neighboring cells. 

6. Further discussion 

6.1. Key assumptions 

0 20 40 60 80 100

-0.5
0

0.5
1

0 20 40 60 80 100

-0.5
0

0.5
1

0 20 40 60 80 100

-0.5
0

0.5
1

0 20 40 60 80 100

Time (sec)

-0.5
0

0.5
1



22 

The proposed fault detection method utilizes the measurement of similarity from the 

correlation coefficient, and determines a fault when the similarity is low. This section discusses 

the key assumptions which may be violated in real applications and the corresponding mitigation 

methods. 

6.1.1. White noises 

 In the derivation in Sec. 3.3, the noises in the measurement are assumed to be white noises, 

which is not true in real applications. Except that, given a small number of samples, the noises 

can hardly exhibit its statistical property under the law of large numbers [38]. As a result, the 

variance of the noises may be higher, and this can be compensated by adding a square wave with 

higher amplitudes. 

6.1.2. Synchronized measurement 

 The voltages in a vehicular battery pack are usually measured sequentially to save hardware 

cost. For the experiment in this manuscript, the voltages are sequentially updated, but they are 

shifted to align with one another in the time domain before the correlation coefficient 

calculation. Otherwise, one voltage always leads or lags others, leading to false detections. One 

solution is to shift the measurements in the moving window, and calculate the correlation 

coefficient afterwards, as done in this manuscript. The other solution is to utilize the cross-

correlation [39, 40] which calculates the correlation coefficients of the time shifted version of 

two signals. The time difference in the cross-correlation calculation will be the sampling interval. 

6.1.3. Minority in fault 

 It is discussed in Sec. 3.4 that the fault isolation is not accurate when the majority of the 

cells is in fault at the same time. In the extreme condition, when the whole pack is in the external 

short circuit condition, the correlation coefficients are close to 1, because the voltage trends are 
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the same. However, when multiple external short circuits occur at the same time, the faults can 

be easily detected by module or pack level voltage monitoring. In addition, the internal short 

circuits do not occurs simultaneously in real applications. 

6.1.4. Short with low resistances 

 The proposed method captures the abrupt voltage drop by calculating correlation coefficient 

within a moving window. A thorough study of internal short circuits with different resistances 

has been conducted in [33]. It shows that not every internal short circuit has abrupt voltage drop, 

or low resistance short. With large short resistances, the voltage curves follow the same trend 

over the relatively short moving time windows and thus the fault cannot be identified. 

Nevertheless, the proposed method is still meaningful because the internal shorts with low 

resistances require immediate mitigation, and are more dangerous due to the instant excess heat 

generation. Indeed, the large resistance internal short circuit can also be detected by the 

correlation based method, when the moving window filter is modified as 

 
1, , 0,1, , 1

0, otherwise
i

i n jk j w
W

= − = −
= 


L
  (11) 

where W is the function of moving window filter, and k is the number that adjusts the time span 

of the moving window filter. This filter evenly samples w points within a time span of kw. It 

needs to be noted that the moving average filter used in the previous sections is a special case of 

(11) with k=1. When k is large, this filter can capture the voltage behavior over long periods of 

time, thereby identifying internal shorts with large resistances. 

6.2. Comparison of different detection methods 

Because of the high cost of hardware redundancy, the software redundancy is the most 

applied fault detection methods in battery systems. The voltage threshold method is the simplest 

model, which only considers the safe operation range of the system, and is ignorant of the input 
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information. It is easy in implementation, but the weakness is that the out-of-range voltage is not 

a necessary condition for faults. In other words, a battery can still be faulty when the voltage is in 

the safe range. 

An improvement can be made by taking the input into consideration, and then it gives rise 

to the model based fault diagnostic methods. The methods are able to distinguish the fault 

conditions when the voltages are within the safe range, but the tradeoff is their substantial effort 

in maintaining the robustness and accuracy of the battery models in difference situations. Except 

that, there may be a false positive alarm when a fault is flagged, due to an inaccurate battery 

model or the inconsistencies among individual cells. 

The proposed method directly compares the outputs of the multiple cells, and identifies the 

fault by the off-trend voltage behavior. The battery model is then not needed, which saves the 

effort in modeling, because every other cell can be the hardware redundancy of the current cell. 

It is interesting to note that the voltage difference threshold method is a special case of the 

proposed method, where it assumes all the cells are the same. This assumption is not true when 

the SoC and SoH of the cells varies, and is compensated well by the properties of correlation 

coefficients. A brief summary of the comparisons of different detection methods is provided in 

Table 4. 

Table 4 Comparison of different detection methods. 

Detection method Advantages Disadvantages 

Voltage threshold Easy implementation. False negative faults within the 

operation range. 

Model based Fault detection in the operation 

range. 

Substantial modeling work; 

ambiguity in fault detection. 

Voltage difference threshold No modeling work. False positive faults when SoCs 



25 

or SoHs are not consistent. 

Correlation based No modeling work; 

Fault detection with inconsistent 

SoCs or SoHs. 

Need to be combined with 

module/pack level monitoring. 

7. Conclusion 

A correlation based fault detection method is proposed in this manuscript, which does not 

require hardware and analytical redundancy, thus saving the hardware cost and effort in system 

modeling. 

The concept of correlation coefficient is first introduced. It is proved that the correlation 

coefficient can detect the initial stage of short circuits by capturing the off-trend voltage drop, 

and reflect the variation to the drop in correlation coefficient, in spite of the cell inconsistencies 

in SoC or SoH. 

Next, the correlation coefficient is expressed in the recursive form for online application. A 

moving average window is applied to keep the most recent voltage trends of the cells, while 

maintaining the detection sensitivity to short circuit faults. A square wave is added to the voltage 

measurements to prevent the false detection when the batteries are at rest. In addition, it is 

analyzed that the short circuit fault can be isolated by identifying the overlapped cell in the 

dropped correlation coefficients. 

Moreover, simulation and experiment results validated the analysis, and demonstrated the 

scenarios where the proposed method can robustly identify the faults, while the voltage 

threshold, voltage difference threshold and model based method lead to either false negative 

faults or false positive faults. 

At last, the key assumptions in the proposed method are discussed. It is explained that the 

proposed method can detect the short circuits with a large short resistance by modification of the 
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moving window. The comparison with other detection methods shows that the proposed method 

does not require modeling work, and provides robust short circuit detection regardless of the 

inconsistencies within the battery pack. 

The future work of this study is to enhance the proposed detection method by adding the 

large resistance short circuit detection. 
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