- 1 A novel activation domain is essential for CIA5-mediated gene regulation in response to CO₂
- 2 changes in *Chlamydomonas reinhardtii*
- 3 Bo Chen^a, Kwanghong Lee^{b,c}, Tom Plucinak^{b,d}, Deqiang Duanmu^{a,e}, Yingjun Wang^a,
- 4 Kempton M. Horken^{b,f}, Donald P. Weeks^b and Martin H. Spalding^{a*}
- ^a Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA
- 6 50011
- ^b Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664
- 8 ^c Korea Seed & Variety Service, 456 Yepyeong-ro, Sangnam-myeon, Miryang, Republic of
- 9 Korea 627-91
- d GlaxoSmithKline, 5 Moore Drive, Research Triangle Park, NC 27709
- ^e State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University,
- 12 Wuhan, 430070, China
- 13 f Veterinarian Diagnostic Center, University of Nebraska, Lincoln, NE 685988-8465
- *: Corresponding Author:
- 15 Martin H. Spalding
- Telephone: 515 294-1749
- 17 FAX: 515 294-1303

ABSTRACT

2	The inducible CO ₂ concentrating mechanism (CCM) of microalgae is essential for their
3	acclimation to highly variable aquatic inorganic carbon levels. The key transcriptional
4	regulator, CIA5, affects expression of thousands of genes in Chlamydomonas reinhardtii, but
5	the molecular characteristics of this important protein are poorly understood. This study
6	identifies a functional activation domain in CIA5 and demonstrates the functionality of a
7	mini-CIA5 including only the Zinc-binding domain and the identified activation domain. A
8	highly conserved 130aa region from CIA5 exhibits auto-activation in yeast and appears
9	responsible for the markedly slow migration of CIA5 when analyzed by SDS-PAGE. This
10	130aa region or either half of this region also effectively replaced the activation domain of a
11	modified designer Transcription Activator-like Element (dTALE) in targeted activation of an
12	endogenous Chlamydomonas gene. Additionally, a mini-CIA5 combining the conserved
13	zinc-binding domain with the 130aa putative activation domain complemented the growth
14	phenotype of the cia5 mutant and triggered CO ₂ -regulated gene expression patterns similar to
15	wild-type cells or cia5 complemented with the full-length CIA5. Although the mini-CIA5
16	complementation did not fully restore wild-type growth rates or full gene
17	induction/repression amplitudes, especially in very low CO ₂ , this newly identified activation
18	domain combined with the previously described zinc-binding domain are demonstrated to be
19	the key essential components of CIA5 that permit rapid CIA5-mediated responses to changes

21

20

22 Keywords:

in CO₂ concentrations.

- 1 CO₂ concentrating mechanism (CCM), CIA5, Activation Domain, recombinant mini-CIA5,
- 2 Chlamydomonas

4

1. Introduction

5

Carbon dioxide (CO₂) serves both as the substrate for photosynthesis and as an important 6 7 signal to regulate plant growth and development. Variable CO₂ concentrations can have 8 significant effects on photosynthesis, growth and productivity of plants and other 9 photosynthetic organisms. Although atmospheric CO₂ has increased from a preindustrial 10 concentration of about 280 ppm to a globally averaged concentration of approximately 400 ppm at present (http://co2now.org/), this CO₂ concentration is still limiting to 11 12 photoautotrophic growth of most land plants and photosynthetic microorganisms. This is 13 because of the inefficiency of the enzyme Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), which has both an oxygenase and a carboxylase function, as well as a low affinity 14 15 for $CO_2[1, 2]$. A number of photosynthetic organisms have developed strategies to increase the 16 concentration of CO₂ surrounding Rubisco to improve its function, including the well-known 17 C4 photosynthesis and Crassulacean Acid Metabolism (CAM) pathways in terrestrial 18 19 vascular plants [3]. In contrast, some aquatic photosynthetic microorganisms accomplish this through induction of a different type of CO₂-concentrating mechanism (CCM) when 20 photosynthesis is limited by inorganic carbon (Ci; i.e. dissolved CO₂, and HCO₃⁻). Much 21 22 knowledge regarding the mechanisms of the microalgal CCM has been gained from the wellstudied eukaryotic microalga, Chlamydomonas reinhardtii [4-8] (hereafter, 23

- 1 Chlamydomonas). When Ci becomes limiting, the CCM becomes activated and acts via Ci
- 2 uptake systems located in both the plasma membrane and the chloroplast envelope to
- 3 increase internal Ci accumulation. Various carbonic anhydrases function to dehydrate
- 4 accumulated HCO₃ and provide elevated internal CO₂ concentrations in the near vicinity of
- 5 Rubisco [4, 5, 7-9].
- 6 Even though the Chlamydomonas CCM has been extensively studied for at least three
- 7 decades, we still know little about the CO₂ sensing process, the induction (and/or de-
- 8 repression) of the CCM or the final acclimation to limiting (or excess) CO₂. In
- 9 Chlamydomonas, CCM induction appears to be regulated by the transcription regulator,
- 10 CIA5, the so-called "master regulator" of the CCM. [10-13]. A UV- induced mutant, cia5,
- was first identified as a slow growing mutant in ambient CO₂ concentration [14]. This mutant
- can grow under high CO₂ and grows more slowly than the wild type in low CO₂. However, it
- cannot grow in very low CO₂ (i.e., <100ppm) and appears to completely lack the changes in
- gene expression associated with acclimation to low CO₂ [15]. Further studies show that
- almost all identified Low CO₂ Inducible (LCI) genes remain unchanged when *cia5* mutant is
- exposed to limiting CO₂ [14-18]. The defective gene in *cia5*, *CIA5* (also known as *CCM1*),
- was identified independently by two research groups as encoding a predicted 698 amino acid
- 18 hydrophilic protein [12, 13].
- 19 CIA5/CCM1 has been proposed to be a putative transcription factor or transcription co-
- activator; it has two non-typical zinc-binding domains, which may comprise a DNA-binding
- 21 motif typical of transcription factors. It was confirmed that 2 atoms of zincs can bind to the
- N-terminal domain of each CIA5 molecule, and that, if mutated to perturb the putative zinc
- binding sites (H54Y, C77V and C80V), the zinc binding ability is lost [19]. CIA5 also

- 1 contains a Gln-rich repeat that may allow interactions with and/or activation of other
- 2 transcription factors, and a prominent Gly-rich region, but the function of these regions has
- 3 not been experimentally determined. The 72 kD CIA5 protein that regulates the
- 4 Chlamydomonas CCM migrates as an approximately 90-100 kD during SDS PAGE [11, 19].
- 5 This suggested either aberrant migration of CIA5 or potential posttranslational modification
- 6 of CIA5.

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Aside from being a critical upstream regulator of the CCM and other low CO₂ acclimation responses (and likely requiring posttranslational modifications during high and low CO₂ concentration transitions), the details of CIA5 function remain undiscovered. We know very little about sequences recognized by its putative DNA binding domain or the downstream genes it directly regulates [17]. Two studies exploring the impact of the cia5 mutation on the transcriptome identified a massive impact of CIA5/CCM1 and CO2 on the transcriptome and revealed an array of gene clusters with distinctive expression patterns that provide insights into the regulatory interaction between CIA5 and CO₂ [17, 18]. Individual gene clusters responded primarily to CIA5, to CO₂, or to an interaction between the two factors [17]. In this study, we found that CIA5 has transcriptional activation activity both in yeast and in Chlamydomonas. We also discovered that the identified acidic activation domain also is responsible for abnormal SDS-PAGE migration of CIA5. A recombinant mini-CIA5 containing the minimal activation domain and the putative zinc-binding domain of CIA5 successfully complemented the cia5 mutant. The identification of a functional CIA5 activation domain and the characterization of regions responsible for abnormal migration during SDS-PAGE, together with the construction of a functional mini-CIA5, provide a solid foundation for further work to better define the detailed mechanisms of CIA5 function.

2

2. Materials and methods

3

4

2.1. Cell strains and culture conditions

5

6 Chlamydomonas strain CW10 (cc849) was obtained from the Chlamydomonas Resource 7 Center (University of Minnesota, St. Paul, MN). Media and growth conditions for 8 Chlamydomonas strains have been previously described [20]. All strains were maintained on 9 plates containing CO₂ minimal medium and kept in high CO₂ (air enriched with 5% vol/vol 10 CO₂) chambers at room temperature, under continuous illumination (50 μmol photons m⁻² s⁻¹ 1). Liquid cultures for experimental use were grown on a gyratory shaker (180 rpm) under 11 aeration in white light (approximately 100 µmol photons m⁻² s⁻¹). For experiments in which 12 cells were shifted from high to limiting CO₂ (low CO₂, 350-400 ppm or very low CO₂, 50-13 100 ppm) conditions, cells were cultured in CO₂ minimal medium aerated with 5% CO₂ to a 14 density of $\approx 2 \times 10^6$ cells/ml and then shifted to aeration with the appropriate limiting CO₂ for 15 various times. Very low CO₂ was obtained by mixing normal air with compressed, CO₂-free 16 air. 17 For spot tests of cell growth, actively growing cells were 5-fold serially diluted to similar 18 cell densities in minimal medium, spotted (5 µL/spot) onto minimal agar plates, and grown in 19 various CO₂ concentrations for approximately 9 days. 20 21 For liquid-culture growth experiments, cells inoculated from agar plates were cultured in CO₂ minimal medium aerated with 5% CO₂ for about 2 days, then centrifuged at 1300 rpm 22 for 5 min, and an appropriate aliquot used to inoculate experimental cultures at a starting 23

- density of 1×10⁵/mL in a fresh 50 ml culture. Liquid cultures were grown in 250 ml flasks on
- a gyratory shaker (180 rpm) under aeration (with bubbling) in 3 CO₂ conditions: high CO₂,
- 3 air-level CO₂ and very low CO₂, and were sampled daily for both cell density and
- 4 chlorophyll concentration. Because Sager and Granick found OD₇₅₀ of cell cultures to be
- 5 linear over a range of 2×10^5 to 1×10^7 cells/ml [21] and because, at this wavelength,
- 6 chlorophyll absorbance does not interfere, optical density at 750 nm (OD₇₅₀) was used to
- 7 monitor algal cell density. Growth assays were performed in clear, flat-bottom 96-well
- 8 microtiter plates monitored at 750 nm using a Synergy 2 Multi-Mode Plate Reader (BioTek
- 9 Instruments, Inc) as described by Bernd and Cook [6].

11 2.2. Modified Yeast two-hybrid and LacZ assay

10

12

21

23

- The yeast two-hybrid procedure was performed in accordance with the protocol for the
- 14 HybriZAP-2.1 XR library construction kit (Stratagene). The *Eco*RI *Sal*I fragments
- containing the full length coding DNA sequence (CDS) or partial CDS of CIA5 were
- subcloned into pGBKT7 (Clontech) to make bait constructs. Yeast (AH109) cells
- transformed with indicated constructs were grown in SD media lacking Trp or Trp and His.
- Putative positive clones were used for LacZ assays using the X-gal (5-bromo-4-chloro-3-
- 19 indolyl-β-D-galactopyranoside; Sigma) colony-lift filter assay performed following the
- 20 manufacturer's instructions (Clontech).

22 2.3. Chlamydomonas dTALE construction and colorimetric assay

1 The dTALE was constructed as previously described using an altered TAL plasmid 2 pSKavrXa7delta and a Chlamydomonas expression vector pDW2177 [22]. Only the pDW2177ARS1 construct was used for this study. This dTALE construct was cut with 3 BbvCI and XbaI to remove the activation domain [23], and CIA5 activation domain (AD) 4 5 candidates (WF: whole fragment; LH: left half and RH: right half as indicated on Fig. 1A, 6 green colored fragments) were integrated into the dTALE AD domain adjacent portion by 7 fusion PCR (the procedure is shown on Fig. S1), then subcloned into dTALE BbvCI and 8 XbaI site to assure that only the dTALE AD domain was replaced and to create the final 9 construct, pDW2177ARS CIA5. For expression in Chlamydomonas, this dTALE construct 10 was used to transform CW10 (CC849, mt⁻⁾ cells by the glass bead transformation technique [24]. ARS activity in transformants was assayed as previously described [22]. 11 12 13 2.4. Construction of mini-CIA5 and complementation selection 14 To investigate the function of key CIA5 domains, two conserved regions of the CIA5 15 CDS, the putative binding domain, nt 1-330, and the putative activation domain, nt 1282-16 1671, were fused to generate a recombinant mini-CIA5. This mini-CIA5 was then 17 18 transformed into cia5 by glass bead transformation [25] to test whether it could complement 19 the lethal phenotype of cia5 in very low CO₂ and/or affect downstream gene expression normally regulated by CIA5. Full-length CIA5 CDS (F-CIA5) also was transformed into cia5 20 21 as a positive control. The primers used to construct mini-CIA5 and F-CIA5 are shown in

Table S1. The CIA5 fragments generated by PCR using these primers were then subcloned

through the NdeI/EcoRI multi-cloning site into pGenD_AphVIII plasmid, which is a

22

- 1 modified version of the nuclear expression vector pGenD described by Fischer and Rochaix
- 2 [26]. For expression in Chlamydomonas, the mini-CIA5 and F-CIA5 were used to transform
- 3 *cia5* cells by the glass bead transformation technique [24].
- To select for complementation of the *cia5* lethal phenotype in very-low CO₂,
- 5 transformed *cia5* cells were plated on either CO₂ minimal plates or CO₂ minimal with 10
- 6 μg/L paromomycin (Par), and the plates were placed into either high CO₂ (aerated with 5%
- 7 CO₂) growth chamber (plates with Par) or very low CO₂ (50-100 ppm CO₂) chamber (plates
- 8 without Par). Par^R transformants from the high CO₂ growth plates were transferred to very
- 9 low CO₂ for complementation screening. Colony-PCR [27] was used to confirm the presence
- of the transgene in surviving colonies, and spot-tests were applied to confirm the
- 11 complementation by growth.

13

2.5. Gene expression analysis

- 15 RNA was extracted using an RNeasy Plant Mini Kit (Qiagen, Cat. No. 74904), and the
- 16 RNA concentration was measured using an ND-2000 Nanodrop spectrophotometer
- 17 (Nanodrop Technologies). 1-5 μg total RNA was treated with TURBO DNA-FreeTM kit (Life
- 18 Technologies), and cDNA was generated from 0.5 μg -1 μg of treated total RNA (Verso
- cDNA Synthesis Kit; Thermo Scientific). The resulting cDNA (25-50ng) was used for
- 20 reverse transcription polymerase chain reaction (RT-PCR) and for quantitative RT-PCR
- 21 (qRT-PCR). Primer sequences and efficiencies are provided in the supplemental information
- 22 (Table S1 and Table S3). The qRT-PCR was performed on a CFX Connect™ Real-Time
- 23 PCR Detection System (Biorad) using a SYBR green two-step quantitative PCR system

- 1 (Quanta Biosciences). For quantitative analyses, the *CBLP* (Chlamydomonas G protein beta
- 2 subunit-like polypeptide) gene was used as an internal control for normalization of qRT-PCR
- data [17]. The relative transcript abundance in each sample is defined as $\Delta Ct = Ct_{\text{(target gene)}}$ -
- 4 Ct_(CBLP) to represent the difference between the transcript abundance of genes examined and
- 5 the transcript abundance of CBLP. After normalization, ΔCt values of each transformant
- 6 were compared with that of wild type cells, and the relative gene expression is represented by
- 7 $\Delta\Delta Ct = \Delta Ct_{(transformant)} \Delta Ct_{(wild type)}$ [22].

- 9 2.6. Western immunoblot analysis
- For western immunoblotting, total protein was obtained as described previously [28].
- 11 Proteins were separated by SDS-PAGE on 4-12% polyacrylamide gels. Immunoblotting
- utilized an anti-FLAG-tag antibody (Santa Cruz Biotechnology; catalog no. sc-51590) and
- was performed as described in the protocol from Bio-Rad Laboratories (product catalog no.
- 14 500-0006).

15

16 2.7. Expression of protein fragments in E. coli

17

- A fragment of the CIA5 gene from EagI (1214) to NotI (1930) sites and all other
- fragments used in this study were sub-cloned into pET30 vector and then transformed into E.
- 20 coli. Cells were IPTG induced at 37°C. Proteins were separated by SDS-PAGE on 8% or
- 21 10% polyacrylamide gels, and detected by immunoblotting using an anti-His-tag antibody.

22

23 2.8. Chlorophyll measurement

2 The chlorophyll content was measured as described by Glaesener *et al.* [29] with

3 calculations were based on Porra et al. [30].

3. Results

3.1. Identification of the CIA5/CCM1 auto-activation domain using yeast

Yeast two-hybrid screening is a technique used to discover protein-protein interactions by testing for physical interactions (such as binding) between two proteins. The most common screening approach involves the GAL4 yeast two-hybrid assay [31]. Using a yeast two hybrid GAL4 system to detect CIA5/CCM1 interacting components, we found too many false positive yeast colonies to count when the full length *CIA5* cDNA was fused with the cDNA encoding GAL4 DNA binding domain (fragment 1 in Fig. 1A) as bait to screen a cDNA library [20, 32]. We hypothesized that CIA5/CCM1 itself can auto-activate reporter genes when fused with GAL4 DNA binding domain in yeast, so we introduced the full-length *CIA5* fused with GAL4 DNA binding domain in yeast without the prey plasmid, and again found it can activate expression of the reporter genes. Thus, the CIA5/CCM1 protein itself appears to have auto-activation activity, at least in yeast.

Taking advantage of this auto-activation effect in yeast, we were able to narrow down which CIA5/CCM1 regions might act as putative activation motifs. In testing several -partial CIA5/CCM1 fragments (Fig. 1A, fragments 2-28), we found that any CIA5 fragments that

included aa 436 to 544 (golden color region shown on Fig. 1A), including fragments 17, 18,

- 1 21 or 22, could auto-activate the reporter genes when fused with the GAL4 DNA-binding
- 2 domain in the absence of the GAL4 activation domain (Fig. 1B and Table S2). This 109-aa
- 3 (436aa 544aa) delineated auto-activation region agrees very well with the 130-aa C-

7

- 4 terminal region highly conserved between *Volvox carteri* (hereafter, *Volvox*) CCM1 and
- 5 Chlamydomonas CIA5/CCM1 (aa 428 to 557; i.e., the region of Fig. 1A boxed in red) [33].

1: 1-2097 LH RH 30: 1-2097 Tyr 10: 922-1281 2: 1-303 11: 922-1305 12: 922-1461 3: 1-330 13: 922-1632 29: 1-330 Tyr 14: 922-1671 15: 922-2097 4: 1-588 16: 1282<mark>-1461</mark> 25: 1462<mark>-</mark>1671 17: 1282-1632 18: 1282-1671 5: 1-1281 19: 1282-2097 20: 1306-1461 24: 1462-1632 21: 1306-1632 22: 1306-1671 6: 1-1305 23: 1306-2097 7: 1-1461 26: 1462-2097 8: 1-1632 27: 1633-2097 9: 1-1671 28: 1672-2097 В SD-Trp SD-Trp-His X-Gal response 2 4 5 7 12 10 11 10 11 12 10 11 8 18 13 15 16 17 18 13 14 15 16 18 16 17 15 21 22 24 19 20 19 20 23 21 22 23 24 25 26 27 28 29 30 25 26 27 28 29

1 **Fig. 1.** Testing of *CIA5* fragments as activation domains in the yeast two-hybrid system. A. 2 CIA5 full coding DNA sequences (CDS) or DNA fragments containing regions of the CDS used for yeast two hybrid experiments. The uppermost bar represents the full CIA5 coding 3 sequence. The position of each fragment in the CIA5 coding sequence is indicated by its 4 5 position relative to the full coding sequence and by the numbers representing its span of nucleic acid residues in the coding DNA sequence. Fragments colored either blue () or 6 7 green () showed auto activation in the yeast two hybrid assay. Fragments lacking color were negative when tested using the two hybrid assay. The golden box (□) indicates the N-8 9 terminal Zinc-binding domain and the red box () indicates the C-terminal region conserved 10 between Chlamydomonas and Volvox and that overlaps with the auto activation region identified using the yeast two hybrid assay, and the grey dashed line (1) splits this region into 11 two halves. The golden color region () is the region which was identified as promoting auto 12 13 activation in the two hybrid assay The green colored fragments (16, 18 and 25) were used for replacing dTALE activation domain and designated as LH (16: 1282-1461, left half), WF 14 (18: 1282-1671, whole fragment) and RH (25: 1462-1671, right half) respectively. The grey 15 colored fragments (29 and 30) are those containing a His⁵⁴ to Tyr⁵⁴ point mutation. B. 16 Results of yeast two hybrid experiments using CIA5 CDS and CIA5 CDS fragments, but in 17 the absence of activation-domain partners to identify auto-activation domains. pGBKT7 18 constructs containing either full length or partial CIA5 cDNAs (numbered as indicated in 19 Figure 1) were transformed into yeast AH109, and selected using SD dropout Trp (SD-Trp) 20

selective plates. Transformants were then transferred to SD dropout Trp and His (SD-Trp-

His) selective plates to screen for possible auto-activation. Any growth on SD-Trp-His

medium indicates potential auto-activation candidates. X-gal induction was used as a

21

22

- secondary screen to confirm auto-activation. Because α -galactosidase is a secreted enzyme, it
- 2 can be assayed directly using $X-\alpha$ -Gal indicator plates.

- We further investigated the CIA5 fragments capable of auto-activation in yeast and
- 5 discovered that either half of the 109-aa or the 130-aa conserved C-terminus domain (Fig.
- 6 1A, fragments 16, 20, 24, & 25) could activate the reporter genes in yeast. Results from
- 7 experiments using either the SD dropout selective medium assay or an X-gal test (Fig. 1B
- 8 and Table S2) confirmed that either the 109-aa and 130-aa region or half of these regions
- 9 behave as true activation domains in yeast. Only the 130-aa region was further studied.

10

3.2. CIA5 activation domain confirmation in Chlamydomonas

12

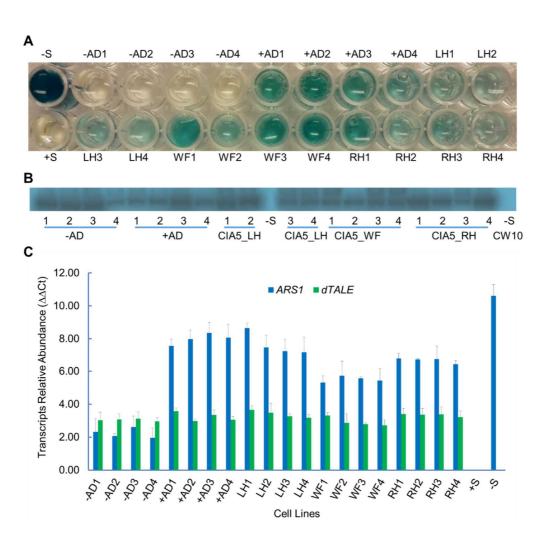
11

- Although the efficiency for activating target gene expression is relatively low, a
- designed transcription activator-like element (dTALE) system can be used to target and
- activate expression of the arylsulfatase 1 (ARS1) gene in Chlamydomonas [22, 34]. We
- reasoned that we could test the activation function of putative activation domains of CIA5 in
- 17 Chlamydomonas cells by using them to replace the TALE activation domain [23] in this
- 18 dTALE system.

19

20 3.2.1. Expression of dTALEs in Chlamydomonas cells

- We used a two-step PCR reaction to create constructs pDW2177ARS_CIA5 containing
- either the entire 130-aa (aa 428 557) putative activation domain (pDW2177ARS_CIA5_WF)


- or each half of this domain (either pDW2177ARS CIA5 LH or pDW2177ARS CIA5 RH)
- 2 (Fig. S1). We then transformed wild-type Chlamydomonas strain CW10 (CC849) with these
- 3 dTALE constructs carrying an antibiotic gene (Ble), and selected transformants based on
- 4 resistance to zeocin (10 μg/mL). The original dTALE construct, pDW2177ARS [22], and a
- 5 modified dTALE lacking any activation domain, pDW2177ARS-AD, were used as positive
- and negative controls, respectively (Fig. S2). We confirmed the insertion of intact dTALE
- 7 constructs into the Chlamydomonas genome in about 20-40% of the 192 zeocin resistant
- 8 transformants, screened for each of the five constructs using colony PCR (Fig. S3).
- 10 3.2.2. dTALEs containing CIA5 activation domains induced expression of ARS1 in
- 11 Chlamydomonas

- A colorimetric assay was performed to screen for ARS activity in the transgenic cells
- grown under sulfur-replete conditions. This assay is capable of detecting activation of ARS1
- expression in the absence of sulfur stress a condition under which the ARS1 and ARS2
- genes are typically fully repressed. Of the 192 transformants screened for the positive control
- 17 (pDW2177ARS) and each of the three CIA5-fragment-containing pDW2177ARS-derived
- constructs (pDW2177ARS CIA5 WF, pDW2177ARS CIA5 LH or
- 19 pDW2177ARS CIA5 RH), ~5-20% of each transformation showed cleavage of the XSO₄ (5-
- 20 bromo-4-chloro-3-indolyl-β-D-SO₄) substrate and demonstrated concomitant color changes
- 21 in sulfur-replete culture medium (representative data in Fig. 2A; not all data shown). All
- transformants testing positive for ARS activity contained an intact dTALE construct as
- determined by PCR amplification of the gene. None of the transformant colonies lacking a

- 1 PCR-detectable intact dTALE construct showed detectable color change under the same
- 2 growth conditions. Of 192 negative control transformants (i.e., those transformed with
- 3 pDW2177ARS-AD which lacks an activation domain), 42 lines (21.9% of all transformants
- 4 screened) contained a PCR-detected intact dTALE. However, none of these 42 lines showed
- 5 detectable ARS activity (representative data for four transformants (-AD1, -AD2, -AD3 and -
- 6 AD4) are provided in Fig. 2A; not all data shown).

8

9

Fig. 2. Representative examples of colorimetric screens for ARS activity induced by dTALEs. CW10 cells grown either with (+S) or without (-S) sulfur serve as negative and

- 1 positive controls, respectively. Other transformants were all grown with sufficient sulfur for
- 2 60 hours, then incubated with XSO₄. The blue-green color indicates ARS activity. Microtiter
- 3 wells -AD1 to 4 contain cells transformed with the pDW2177ARS-AD construct lacking an
- 4 activation domain; wells +AD1 to 4 contain cells transformed with construct pDW2177ARS
- 5 that contains the native TALE activation domain; wells LH1 to 4 contain cells transformed
- 6 with pDW2177ARS CIA5 LH that contains the left half of the CIA5 activation domain;
- 7 wells WF1 to 4 contain cells transformed with pDW2177ARS CIA5 WF that contains the
- 8 entire CIA5 activation domain; wells RH1 to 4 contain cells transformed with
- 9 pDW2177ARS CIA5 RH that contains the right half of the CIA5 activation domain. B.
- 10 Western immunoblots of Chlamydomonas cells transformed with various pDW2177ARS-
- derived constructs showing the relative abundance of the dTALE proteins. Anti-Flag-tag
- antibody was used as described in Material and Methods. Cells were grown under sulfur
- replete conditions for 60 hours. Non-transformed CW10 cells grown without sulfur (-S) were
- used as a control (middle and last columns). C. qRT-PCR analysis of ARS1 target gene and
- dTALE gene transcript abundances in cells transformed with constructs containing various
- activation domains. Columns 1-20: ARS1 and dTALE transcript abundances (Relative log2)
- Fold Change) for selected transformed lines that contained intact dTALE-ARS1 constructs
- 18 (with and without various activation domains) including those (columns 5-20) that tested
- 19 positive for ARS activity. Transformants containing constructs lacking an inserted activation
- domain (-AD 1-4) showed only basal level ARS expression. The ARS transcript abundance is
- 21 much higher in those with an inserted activation domain, but not as high as the CW10 sulfur
- starvation-induced control (-S, last column). $\Delta\Delta Ct = \Delta Ct_{(transformant)} \Delta Ct_{(WT)} = (Ct_{(target)} \Delta Ct_{(WT)})$
- 23 $gene_transformant) Ct(CBLP_transformant)) (Ct(target gene_wT)-Ct(CBLP_wT))$, where ΔCt equals the

- difference between target transcript abundance and the transcript abundance of the CBLP
- 2 gene, the internal control gene. Three technical replicates were performed for each
- 3 transformant and the error bar represents the standard error. Transformed lines were grown
- 4 under sulfur replete conditions, while CW10 cells were grown under either sulfur-replete or
- 5 sulfur-deficient conditions, as indicated, for 60 hours. Numbers underneath each panel
- 6 indicate individual transformant lines.

- 8 Successful expression of dTALE constructs at the transcript level was confirmed using
- 9 RT-PCR (Fig. S4). We tested 4 candidate transformant lines for each of the 5
- 10 pDW2177ARS-derived constructs, using primers specific for the 5' region of the dTALE
- constructs. All showed detectable expression of dTALE-ARS1 transcripts. We also used
- western immunoblot analysis to detect dTALE expression at the protein level. Of all tested
- transformant lines exhibiting RT-PCR-detectable expression of dTALEs, protein expression
- was confirmed using anti-FLAG tag antibody (Fig. 2B). The expression of dTALE also was
- detected in pDW2177ARS-AD transformants lines (lacking an activation domain) at both the
- transcript and protein levels (Figs. 2B & S4).
- Activation of the target gene, ARS1, was also demonstrated at the transcript level by RT-
- PCR with primers specific for the ARS1 3'UTR. When grown under sulfur starvation,
- elevated expression of ARS1 was observed in wild type cells (Fig. S4). dTALE-induced
- 20 production of ARS1 transcripts and positive colorimetric assays in cells grown under sulfur-
- 21 replete conditions were observed in all tested lines that contained intact pDW2177ARS-
- derived dTALE construct and showed colorimetric ARS activity (positive control and three
- 23 CIA5-fragment-containing constructs). In contrast, pDW2177ARS-AD lines (i.e., lines

- transformed with dTALE construct lacking activation domain) displayed an intact
- 2 pDW2177-ARS1 dTALE construct but no detectable colorimetric ARS activity (Figs. 2A &
- 3 S4).

- 5 3.2.3. Each half of the CIA5 activation domain can function as an independent activation
- 6 domain

- 8 All three dTALE constructs containing the putative CIA5 activation domain or its left or
- 9 right partial domains (i.e., pDW2177ARS_CIA5_WF, pDW2177ARS_CIA5_LH, and
- 10 pDW2177ARS_CIA5_RH, respectively) could activate expression of the target gene, ARS1,
- under sulfur-replete conditions (Fig. S4). To gain a more quantitative appraisal of gene
- transcription enhancement supported by the p2177ARS_CIA5-based dTALE constructs, we
- used RNA from the same transformed lines employed above to conduct gRT-PCR analyses.
- The abundance of ARS1 transcripts in all examined lines from the positive control (i.e.,
- 15 CW10 -S) and the three CIA5-activation domain-containing constructs (i.e., dTALE
- 16 containing an activation domain) (Fig. 2C) were all positively correlated to the levels of ARS
- activity observed in the *in vivo* measurements of ARS activity present in cultures of
- transformed cells (Fig. 2A). Transformants lacking an activation domain (i.e.,
- 19 pDW2177ARS-AD) showed only lower, basal level ARS expression, even though the
- 20 dTALE abundance was similar to those in all other transformants (Fig. 2C). The relationship
- between qRT-PCR based ARS1 transcript abundance and colorimetric ARS activity assays
- performed on transformants expressing pDW2177ARS-based dTALEs in sulfur-replete
- 23 medium showed that colorimetric ARS activity was detectable in only those selected lines

- with substantial transcript abundance. Interestingly, the levels of ARS gene transcripts in
- 2 transformants containing constructs encoding the left or right fragments of the CIA5
- 3 activation domain were somewhat higher than in the constructs carrying the intact activation
- 4 domain, but this did not translate to markedly increased responses in the ARS colorimetric
- 5 analyses (Fig. 2A).

7 3.3. The CIA5 activation domain is also responsible for abnormal migration of CIA5 during

8 SDS-PAGE

9

10

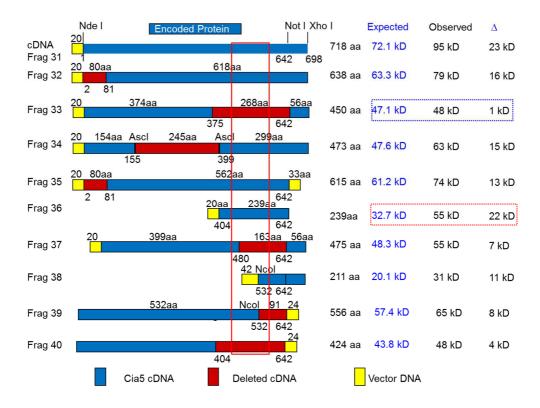
11

12

13

14

15


16

17

18

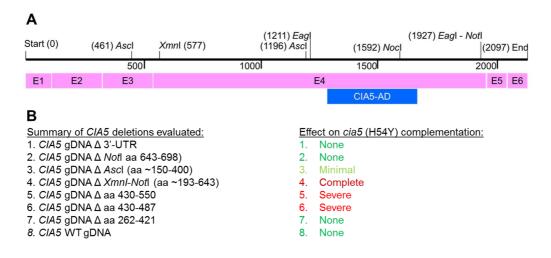
SDS-PAGE (Fig. S5).

Intact CIA5 always shows abnormal migration during SDS-PAGE (i.e, an apparent molecular size of ~95 kD vs. the expected 72 kD), whether obtained from Chlamydomonas cell extracts and detected with anti-CIA5 antibody [11, 19], or from extracts of *E. coli* overexpressing His-tagged CIA5 and detected with anti-His antibody (Fig. S5). To investigate which region of CIA5 is responsible for the abnormal SDS-PAGE migration, we expressed in *E. coli* different constructs bearing either full length or partial CIA5 coding regions (all containing C-terminal extensions encoding a 6xHis-tag) (Fig. 3) and then detected their expression using anti-His-tag antibody to probe blots of proteins separated by

11

12

13


Fig. 3. Migration of CIA5 and CIA5 fragments during SDS-PAGE. CIA5 fragments 2 produced in E. coli were used for testing the effect of partial deletions on protein migration 3 during SDS-PAGE. Beside each construct is indicated the predicted mass of the CIA5 4 5 fragment, the mass of the fragment deduced from migration of protein standards during SDS-6 PAGE and the difference between the two - a measure of migration aberrancy. Lengths (in 7 amino acid numbers) of CIA5 polypeptides (blue boxes) and deleted regions (red boxes) are 8 provided above each cartoon. Starting and finishing points (in amino acid position) for each 9 deletion are provided below each cartoon. Vector sequences are shown as yellow boxes. The 10 open red box (□) indicates the approximately 130-aa activation domain region of CIA5.

As shown both in Fig. 3 and Fig. S5, a construct containing the full-length *CIA5* cDNA (Frag 31, Fig. 3 and Fig. S5) produced a protein migrating as a ~95 kD protein instead of the

- 1 expected 72.1 kD (i.e., an approximate 23 kD difference between observed and predicted
- 2 molecular mass). Indeed, any partial cDNA containing the coding region for amino acids
- from residue 402 to residue 642 [or the *AscI-NotI* region (aa 399-642)] showed aberrant
- 4 migration rates during SDS-PAGE (i.e., Fragments 32, 34, 35, 36, 37, 38, 39, and Frag 40 in
- 5 Fig. 3 and Fig. S5). Those constructs containing Frag 36 (aa 404 to 642) show the greatest
- 6 abnormal SDS-PAGE migration (about 22 kD difference from the expected). The constructs
- 7 containing only a small part of this region (Frag 37, 38, 39 and Frag 40 in Fig. 3 and Fig. S5)
- 8 show less abnormal migration, and those including no part of this region (e.g., Frag 33 in Fig.
- 9 3 and Fig. S5) exhibit no abnormal migration. This apparent size discrepancy is observed
- both with CIA5 isolated from Chlamydomonas and with CIA5 produced from E. coli and,
- thus, is not likely due to post-translational modification of the protein. In particular, the
- aberrant migration also does not result from post-translational SUMOylation of CIA5
- because the protein still ran aberrantly and could still complement the cia5 mutant when
- every potential CIA5 SUMOylation site was mutated [35].
- The region apparently responsible for abnormal SDS-PAGE migration (aa 399 642)
- overlaps extensively with the 130-aa C-terminal CIA5/CCM1 domain conserved between
- 17 Chlamydomonas and *Volvox* that we demonstrated above to behave as an activation domain
- in both yeast and Chlamydomonas. The aa sequence of this region contains an abundance of
- acidic aa residues (E and D), which suggests that it may function as an acidic activation
- 20 domain [23].

3.4. The activation domain is indispensable for complementation of the cia5 mutant

1 A number of restriction enzyme-based deletions in the CIA5 gene were created and 2 tested for their ability to complement the cia5 mutant. The 130-aa region within the Cterminus of CIA5 (and conserved between Chlamydomonas and Volvox) that we confirmed 3 to act as an activation domain in yeast and Chlamydomonas, also appears essential for 4 5 complementation of the cia5 mutant. In all cases, constructs were designed (and confirmed by DNA sequencing) to ensure that a proper reading frame for the coding sequence was 6 7 created. Either removal of the entire 3'-UTR of CIA5 (Figs. 4 & S6, fragment 1) or elimination of DNA downstream of the NotI restriction site [i.e., the region encoding aa 642 -8 698 (Figs. 4 & S6, fragment 2)] shows no effect on the ability of the resulting constructs to 9 10 complement the cia5 mutant. Deletion of the large AscI restriction fragment (encoding aa 153 - 399) (Figs. 4 & S6, fragment 3) or deletion of a fragment encoding aa 261 - 420 (Figs. 4 & 11 12 S6, fragment 7) from the CIA5 WT gDNA does not affect the ability of this DNA molecule 13 to complement the cia5 mutant, but deletion of the larger XmnI-NotI restriction fragment encoding aa 192 - 642 (Figs. 4 & S6, fragment 4), which contains the C-terminal conserved 14 domain, prevents complementation. 15

16

- 1 Fig. 4. Determination of the regions of the CIA5 gene or cDNA needed for successful
- 2 complementation of the *cia5* mutant. A. Restriction enzyme map of the CIA5 cDNA showing
- 3 cleavage sites for restriction enzymes used to create various cDNA (or gDNA) deletion
- 4 mutants used in complementation assays. Exons E1 through E6 comprising the CIA5 cDNA
- 5 are depicted in the pink bar below the restriction map. The location of the coding region for
- 6 the CIA5 activation domain is shown as a blue bar. B. Summary of results of
- 7 complementation experiments with intact and deleted *CIA5* constructs.

- 9 This large coding region overlaps with the *EagI-NotI* region responsible for the aberrant
- 10 SDS-PAGE migration (see above) and the conserved 130-aa putative activation domain
- associated with gene activation in yeast and Chlamydomonas. Deletion of the EagI-NotI
- restriction fragment (encoding aa 403 642) also eliminates CIA5 function. Deletion of the
- approximate 130-aa region aa 430 550 (Figs. 4 & S6, fragment 5) also eliminates the CIA5
- function. Even deletion of only nucleotides 1288 to 1458 (encoding aa 430 487),
- approximately the first half of the 130-aa C-terminal putative activation region conserved
- between Chlamydomonas and *Volvox*, also eliminates the ability of the resulting CIA5
- fragment to complement *cia5* (Figs. 4 & S6, fragment 6).

18

19

3.5. Recombinant mini-CIA5 construct can complement cia5

- Both mini-CIA5 and full length CIA5 CDS were subcloned into pGenD_AphVIII vector
- 22 through *NdeI/EcoRI* (Fig. S7), then transformed into *cia5* by glass bead transformation [25].
- 23 Cells were plated on either CO₂ minimal medium or CO₂ minimal medium with 10 μg/mL

- paromomycin (Par), the plates were placed into either high CO₂ (aerated with 5% CO₂)
- 2 growth chamber (plates with Par) or very low CO₂ (50-100 ppm CO₂) chamber (plates
- 3 without Par). The Par^R transformants from the high CO₂ growth plates were transferred to
- 4 very low CO₂ for complementation screening. The majority of Par^R transformant colonies
- 5 obtained from high CO₂ either died or were unable to continue growth after transfer to very
- 6 low CO₂ for about one month. After 4-5 weeks selection under very low CO₂, we obtained 5
- 7 Par^R transformants from the mini-CIA5 (hereafter named mini-CIA5) construct and 11 Par^R
- 8 transformants from the full length CIA5 CDS construct (thereafter named F-CIA5). Colony-
- 9 PCR was used to confirm the presence of the transgene, and spot-tests were applied to
- confirm the complementation by growth. Primer pair P1/P6 was used for colony PCR [27],
- and could only amplify a 435-bp genomic DNA fragment from the control lines (CW10, ad1
- and *cia5*), but could amplify both a 330-bp CDS fragment and the 435-bp genomic fragment
- with DNA from transformants complemented with either mini-CIA5 or F-CIA5 (Fig. 5A).
- 14 Sequencing of both these bands obtained using colony PCR of DNA from the complemented
- lines revealed that the genomic DNA band still retained the original CIA5 gene point
- mutation, confirming that the complemented lines were not revertants. Unlike the *cia5*
- mutant itself, *cia5* transformants complemented with either mini-CIA5 or F-CIA5 were able
- to grow under very low CO₂, just like the control strains *ad1* and CW10 (Fig. 5B).
- 19 Interestingly, Par^R was lost (presumably silenced) in all the complemented *cia5*
- transformants after long selection under very low CO₂ conditions in the absence of Par.

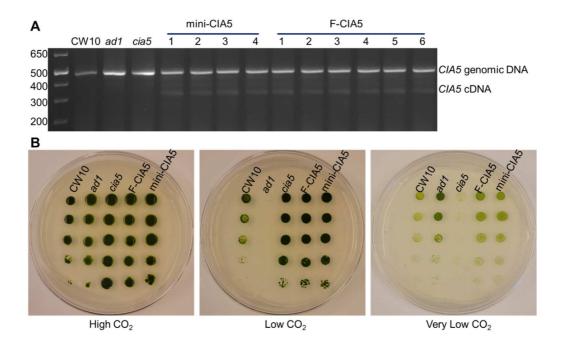


Fig. 5. Comparison of growth of *cia5* mutants transformed with a full-length *CIA5* gene or the mini-*CIA5* gene construct. A. Colony PCR assessing the presence or absence of *CIA5* CDS in transformants. The primer pair P1/P6 (Table S1) which can amplify either a 330 bp fragment with *CIA5* CDS as the template or a 435 bp fragment with *CIA5* genomic DNA as the template was used to perform colony PCR. The transformants that carried either *CIA5* full CDS (F-CIA5) or partial CDS (mini-CIA5) should have both the 330 bp and 435 bp PCR products, while the control lines CW10, *ad1* and *cia5* only contain genomic DNA template, so should amplify only the single 435-bp PCR product. B. Spot test for growth of control lines (CW10, *ad1* and *cia5*) and *cia5* transformants (F-CIA5 and mini-CIA5) on minimal medium in high (5%) CO₂, low (air-level; ~400 ppm) CO₂ or very low (~100ppm) CO₂. Cells grown in liquid medium in high CO₂ to logarithmic phase were diluted to similar concentrations, spotted (5 μl) on plates in a five-fold dilution series and incubated for 9 days under three different CO₂ concentrations.

3.6. Expression of CO₂-responsive genes in mini-CIA5 transformants

1

2

3

4

10.00 Transcripts Relative Abundance 8.00 6.00 4.00 2.00 0.00 517586 520461 520777 523829 514370 511727 Cluster 1 10.00 Transcripts Relative Abundance cia5_H F-CIA5_H mini-CIA5_H CW10_H 8.00 CW10 A cia5_A F-CIA5 A mini-CIA5_A 6.00 4.00 2.00 0.00 520263 512596 517768 526006 515108 520668 Cluster 2 15.00 Transcripts Relative Abundance 12.00 9.00 6.00 3.00 0.00 LCI1 HLA3 LCIB LCIC CAH1 CIA5 CAH3 **CCM Related Genes**

Fig. 6. qRT-PCR analysis of expression of CO₂-responsive genes from different

- 5 transcriptome categories. Transcript relative abundance ($\Delta\Delta$ Ct) are depicted for CW10 (blue
- 6 color), cia5 (red color) and cia5 transformants complemented with either CIA5 full length
- 7 CDS (F-CIA5) (green color) or CIA5 partial CDS (mini-CIA5) (purple color) under either

- 1 high CO₂ (H) (solid fill) or air-level CO₂ (A) (pattern fill) conditions. The names or assigned
- 2 numbers for candidate genes from each category are listed in Table S3. Three replicates were
- 3 performed for each strain. Error bars represent the standard error.

- 5 Although the mini-CIA5 construct can complement *cia5*, whether it functions fully or
- 6 partially with regards to all types of CIA5-regulated genes is in question (Fang et al. 2012).
- 7 Based on transcriptome data, transcript abundance for over 1,000 genes appears to be
- 8 affected mainly by CIA5 but only minimally by CO₂ in "CIA5 clusters" [17]. Among genes
- 9 from typical "CIA5 clusters", cluster 1 genes show high expression in WT but low
- expression in *cia5*, and cluster 2 genes show the opposite expression pattern. Several genes
- from both clusters (Cluster 1 and Cluster 2), as well as a few representative, well-
- characterized CCM-related genes, were selected to test their expression in the mini-CIA5-
- complemented *cia5* lines to compare functions of mini-CIA5 vs full length CIA5. Ten
- candidates from each of these 3 categories were chosen for initial screening (detailed
- information, such as gene names or transcript IDs and primers used for RT-PCR and qRT-
- PCR, are included in Table S3). All primers were tested by RT-PCR for 30 cycles in CW10
- or *cia5* (primers from cluster 2), and the amplification efficiency for each primer pair is
- shown in Fig. S8A. The primers for candidate genes with good amplification efficiency were
- used to perform both RT-PCR and qRT-PCR in cell lines, including CW10, cia5, cia5
- transformants complemented with mini-CIA5, and cia5 transformants complemented with F-
- 21 CIA5, under high CO₂ (H) and air level CO₂ (A) conditions.
- F-CIA5 transformants complemented with CIA5 full length CDS enable the
- complemented transformants to function very similarly to the CW10 WT strain with regard

- to expression patterns and amplitudes of all candidate genes investigated (see F-CIA5 in Fig.
- 2 S8B, C and D, and Fig. 6A, B and C). On the other hand, mini-CIA5 transformants
- 3 complemented with mini-CIA5 carrying only a partial CIA5 CDS (nt 1-330 plus nt 1282-
- 4 1671), although clearly complementing *cia5* and showing similar expression patterns, did not
- 5 function exactly the same as either CW10 or F-CIA5-complemented lines, with regard to
- 6 expression amplitude for any of the candidate genes for which CIA5 functions as either an
- 7 apparent activator (cluster 1 plus some CCM-related genes) or an apparent repressor (cluster
- 8 2). When complemented with mini-CIA5, the expression amplitude of each of the candidate
- 9 genes behaved as intermediate between cia5 and CW10 (see mini-CIA5 in Fig. S8B, C and
- D, and Fig. 6A, B and C). These results demonstrate that, although mini-CIA5 clearly can
- phenotypically complement *cia5* and enable the transformants to grow under very low CO₂,
- mini-CIA5 apparently did not fully activate or fully repress downstream gene expression to
- the same extent as the full length CIA5, and mini-CIA5 also did not enable the same impact
- amplitude as CIA5 did when both CIA5 and CO₂ affected expression of CCM related genes
- 15 (see CCM related genes in Fig. S8B, C and D, and Fig. 6A, B and C).

17

3.7. Analysis of growth of mini-CIA5 transformants in liquid culture

- We compared the growth rate and chlorophyll content of the complemented *cia5*
- transformants (F-CIA5 and mini-CIA5) with those of CW10, ad1 and cia5 under high CO₂,
- 21 air-level CO₂ and very low CO₂ conditions. Growth experiments showed patterns of
- 22 photoautotrophic growth for *cia5* transformants consistent with those observed in spot tests
- 23 (Fig. 5A). Actively growing, 2-d-air-acclimated cells were inoculated into liquid minimal

medium with similar starting cell densities (1×10⁵ cells mL⁻¹), grown with aeration, and the 1 2 cell densities measured by OD₇₅₀ daily at the same time of day for 10 d. Not much difference was observed among all strains grown under high CO₂ (Fig. 7A), except the maximum 3 density of mini-CIA5 transformants from day 8 forward was lower than the others. Also, in 4 air-level CO₂, the cell densities for CW10, F-CIA5, mini-CIA5 and cia5 were all lower than 5 6 those in high CO₂ but almost uniformly much higher than that of ad1 (Fig. 7B), except that 7 the mini-CIA5 complemented line again was slightly lower than the others from day 10 8 forward. However, in very low CO₂, all strains exhibited a markedly decreased growth rate 9 and a much lower final cell density than in high or air-level CO₂, with CW10, ad1 and F-10 CIA5 showing similarly higher growth rates and final cell densities than cia5, while mini-CIA5 exhibited a growth rate and final cell density intermediate between CW10 (or F-CIA5 11 or ad1) and cia5 (Fig. 7C). Chlorophyll concentration also was measured in these cultures 12 13 during the same time course, with the growth curves based on chlorophyll exhibiting a pattern similar to those for OD₇₅₀-based cell density (Fig. 7 D-F). 14

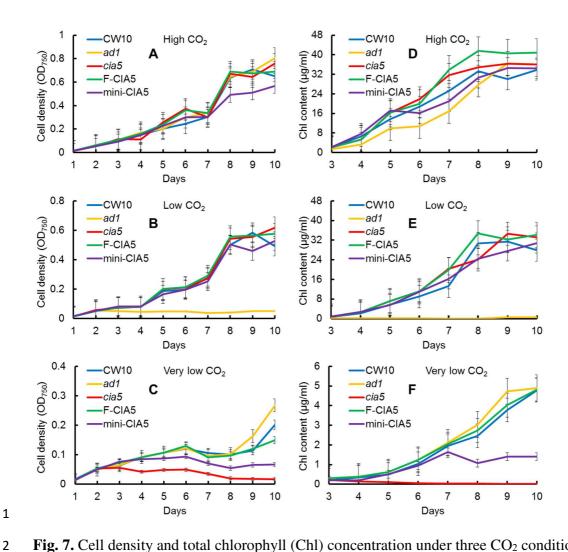


Fig. 7. Cell density and total chlorophyll (Chl) concentration under three CO₂ conditions.

- Cell density was measured and monitored as the absorbance at 750 nm using clear, flat-
- bottom 96-well plates. Chlorophyll concentrations were measured by monitoring the 4
- 5 absorbance at 750 nm, 663.6 nm and 646.6 nm using clear, flat-bottom 96-well plates, and
- 6 employing the flow-chart and calculations based on Porra et al. [30]. Three replicates were
- 7 performed for each measurement.

4. Discussion

3

8

9

1 As a master regulator of the CCM in Chlamydomonas, CIA5 may function alone or, 2 more likely, work with other factors to control downstream gene expression. CIA5 was identified independently by two research groups [12, 13], but little progress has been made in 3 understanding how CIA5 regulates such a large network of genes [17]. The regulation of 4 5 thousands of genes, including induction or up-regulation of almost all limiting-CO₂ inducible genes (including most putative Ci transporters and some carbonic anhydrases) is impaired in 6 7 the *cia5* mutant [10, 11, 17]. 8 CIA5/CCM1 contains two N-terminal zinc-binding domains. If one of these zincbinding domains is mutated, H54Y as in the cia5 mutants [12, 13], CIA5 activity is lost and 9 10 the regulation of most CO₂-responsive genes is disrupted. Aside from this role as the regulator of the CCM and other low CO₂ acclimation responses, the details of CIA5 function 11 12 remain largely undefined. Transcriptome analyses of cells shifted from high to low CO₂ 13 conditions identified a massive impact of CIA5/CCM1 and CO₂ on the transcription of several thousand genes and revealed an array of gene clusters with distinctive expression 14 patterns [17, 18]. These observations provide important insights into the regulatory 15 interaction between CIA5 and CO₂ and the knowledge that individual gene clusters 16 responded primarily to CO₂-regulated changes in CIA5 activity [17]. 17 18 The yeast two-hybrid system helped us identified a 109aa region (436aa - 544aa) of 19 CIA5/CCM1 that corresponds to a 130-aa region (428aa - 557aa) highly conserved between Chlamydomonas CIA5 and Volvox CCM1 - a region that also exhibits auto-activation in 20 yeast. Replacement of the normal TALE activation domain in a dTALE with this 130-aa 21 22 putative activation domain demonstrated that this region also behaves as an activation

domain in Chlamydomonas, suggesting it also may function as an activation domain in

- 1 CIA5. Deletion of the *Xmn*I-*Not*I region, which contains the 130-aa C-terminal conserved,
- 2 putative activation domain, totally eliminates the ability of CIA5 to complement the *cia5*
- 3 mutant, suggesting that this region has an essential function in CIA5.
- 4 The 130-aa, conserved C-terminal putative activation domain contains an abundance of
- 5 acidic amino acid residues, and is included within the *Asc*I and *Not*I region (aa 399-642)
- 6 responsible for abnormal migration of CIA5 during SDS-PAGE. Both observations are
- 7 consistent with the identified 130-aa conserved C-terminal region acting as an acidic
- 8 activation domain.
- 9 This 130-aa, putative activation region may represent two independent activation
- 10 domains (aa 428 487, LH; aa 488 557, RH), since each half of the 130-aa domain could
- 11 function in auto-activation in yeast as well as in the dTALE system to activate gene
- expression in Chlamydomonas. Both RT-PCR and qRT-PCR indicated that the ARS1
- expression in transformants with either half (LH or RH) of the 130-aa AD domain is
- somewhat higher than in transformants containing the entire (WF) AD (Figs. 2C and S4).
- 15 Thus, it could be argued that there is a repressor domain within this 130-aa region and this
- putative repressor domain is destroyed when the 130-aa region is split into two halves.
- However, deletion of only aa 430-487, approximately the first half of the 130-aa, C-terminal,
- conserved domain, totally eliminates the ability of CIA5 to complement the *cia5* mutant.
- 19 This observation argues that the second putative activation domain within this 130 aa region
- 20 is not sufficient by itself to allow CIA5 function.
- The present work represents the first demonstration that a conserved, acidic domain from
- 22 the CCM master regulator, CIA5, can function as an activation domain both in
- 23 Chlamydomonas and in yeast. This conserved acidic activation domain also appears

- 1 indispensable for CIA5 function, as judged from results of complementation experiments
- 2 with the *cia5* mutant. Together, these observations provide strong suggestive evidence that
- 3 CIA5 functions, at least in part, through gene-direct activation of gene expression. Whether
- 4 CO₂-responsive genes are specifically targeted for activation by CIA5 alone or by
- 5 collaboration of CIA5 with specific transcription factors remains a prime question to be
- 6 answered in future studies.
- 7 Increased mobility during SDS-PAGE migration has been reported to occur when amino
- 8 acid residues are substituted that decrease the net negative charge on human superoxide
- 9 dismutase [36]. These studies demonstrated that aa substitutions such as H80R, G85R,
- 10 D90A, G93R, E100G, E100K, D101G, and D101N can increase migration (by \sim 2 3 kD)
- during SDS-PAGE by promoting the binding of three to four additional SDS molecules,
- without significantly altering the secondary structure, while only one substitution, G93D,
- decreases migration (by ~ 2 3 kD) [36]. A slight discrepancy between the theoretical MW
- and the MW observed during SDS-PAGE is not uncommon, incomplete unfolding might
- influence electrophoretic mobility, also, the observed MW of a protein might differ from the
- theoretical value when the protein binds more or less SDS than it should on average due to
- amino acid composition, thus appearing to be larger or smaller than expected. It was reported
- that basic proteins bind more SDS and acidic proteins bind lese detergent than the average
- 19 [37]. The pI for CIA5 aa 1 698 is 5.58, while for the 130-aa conserved C-terminal region is
- 4.14 (http://web.expasy.org/compute_pi/). Thus, one might reason that it is possible that high
- 21 density of acidic residues such as the CIA5 130-aa AD region should decrease SDS binding
- and, therefore, increase migration of CIA5 during SDS-PAGE just the opposite of our
- 23 experimental observations. Thus, the cause for abnormal migration of CIA5 in SDS-PAGE

- 1 remains enigmatic and will rely on a more detailed future analysis of CIA5 using appropriate
- 2 biophysical techniques and/or systematic introductions of amino acid changes to determine
- 3 which amino acid sequences are key to allowing such unusual migration behavior.
- The mini-CIA5 construct, which carries only a partial CIA5 CDS (nt 1-330 plus nt 1282-
- 5 1671) was transformed into *cia5* to learn more about the domains of CIA5 required for
- 6 regulation of CO₂-responsive genes. Based on selection of transformants in very-low CO₂,
- 7 mini-CIA5 appeared able to complement the *cia5* lethal phenotype in very low CO₂. Both
- 8 spot tests (Fig. 5B) and liquid growth rate experiments (Fig. 7) corroborated the observation
- 9 that mini-CIA5 transformants, which contained only two small parts of the CIA5 CDS, were
- able to complement *cia5* and enable growth under very low CO₂. All CCM-related candidate
- genes investigated here by either RT-PCR (Fig. S8) or qRT-PCR (Fig. 6) responded to mini-
- 12 CIA5 with similar expression patterns as they did to F-CIA5, including clear CO₂-regulated
- expression patterns for those genes normally regulated by both CIA5 and CO₂. However,
- mini-CIA5 complemented transformants exhibited an apparently intermediate response
- between CW10 and *cia5*, since mini-CIA5 apparently did not fully activate or fully repress
- downstream gene expression, and also exhibited intermediate growth phenotypes in very low
- 17 CO₂ liquid culture. These observations together demonstrate that the conserved N-terminal
- 28 Zn-binding domain (nt 1-330 or aa 1-110), combined with the conserved C-terminal
- activation domain (nt 1282-1671 or aa 428-557) are sufficient to provide CIA5 function,
- including responsiveness to limiting CO₂ signal, enabling mini-CIA5 to complement the *cia5*
- 21 mutant phenotype, and restoring the growth under very low CO₂. However, we can not rule
- out the possibility that other CIA5 sequences absent from this mini-CIA5 also may be
- 23 important for a fully functional CIA5 *in vivo*.

1 2 **Author Contributions** 3 B.C., K.L, T.P., D.P.W. and M.H.S. conceived this project and designed all experiments. 4 B.C., K.L. and T.P. performed experiments. D.D. and Y.W. performed initial yeast two-5 hybrid cDNA library screenings, and K.H. made the original observation that CIA5 lacking 6 7 the large AscI fragment could still complement the cia5 mutant. B.C., D.P.W. and M.H.S. 8 analyzed data and wrote the paper. 9 10 Acknowledgements 11 We thank David A. Wright for plasmid pDW2177, and Han Gao for plasmid 12 13 pDW2177ARS1. We also thank Yanhai Yin for the gift of plasmid pGBKT7 and yeast strain AH109. This work was supported by the U. S. National Science Foundation (grants no. MCB-14 0952323 to M.H.S., and MCB-0952533 and EPSCoR-1004094 to D.P.W.), the U. S. 15 Department of Energy (grants no. DEFG02-12ER16335 to M.H.S. and Y.W., and DOE DE-16 EE0001052 and DOE CAB-COMM DOE DE-EE0003373 to D.P.W.), and the National 17 Natural Science Foundation of China (project no. 31570233 to D.D). 18 19 **Supplemental Data** 20 21

- The following supplemental materials are available.
- 23 **Supplemental Table S1.** A summary of all the primers used in this work.

- 1 **Supplemental Table S2**. *CIA5* Fragments used for yeast two-hybrid auto-activation
- 2 identification, and the summary for the results from yeast two-hybrid and X-gal screening.
- 3 **Supplemental Figure S1.** Schematic of a two-step PCR (fusion PCR) approach for synthesis
- 4 and insertion of the CIA5 activation domain (AD) into pDW2177ARS constructs.
- 5 **Supplemental Figure S2.** dTALE constructs used for testing CIA5 putative activation
- 6 domains in Chlamydomonas cells.
- 7 Supplemental Figure S3. Representative transformants containing intact dTALE constructs
- 8 as determined by colony PCR assay.
- 9 **Supplemental Figure S4.** RT-PCR analysis of *ARS1* and *dTALE* transgene transcription in
- 10 Chlamydomonas cells transformed with various pDW2177ARS-derived constructs.
- 11 Supplemental Figure S5. Western immunoblot analysis for determination of migration of
- recombinant CIA5 and CIA5 fragments during SDS-PAGE.
- 13 Supplemental Figure S6. Results from complementation experiments using intact and
- deleted CIA5 genomic DNA constructs.
- 15 **Supplemental Figure S7.** Schematic diagram of mini-CIA5 construct.
- Supplemental Figure S8. RT-PCR analysis of expression of genes with known responses to
- 17 changes in CO₂ growth conditions.
- 18 **Supplemental Table S3.** Genes of interest and primer lists used for analysis of gene
- expression in *cia5* transformants complemented with either *CIA5* full length CDS (F-CIA5)
- or CIA5 partial CDS (mini-CIA5).

References

- 2 [1] S.P. Long, E.A. Ainsworth, A. Rogers, D.R. Ort, Rising atmospheric carbon dioxide: plants
- FACE the future, Annual review of plant biology, 55 (2004) 591-628.
- 4 [2] D.Q. Duanmu, M.H. Spalding, Insertional suppressors of *Chlamydomonas reinhardtii* that
- 5 restore growth of air-dier lcib mutants in low CO₂, Photosynth Res, 109 (2011) 123-132.
- 6 [3] K.K. Niyogi, R.A. Wolosiuk, R. Malkin, Photosynthesis, in: B.B. Buchanan, W. Gruissem,
- 7 R.L. Jones (Eds.) Biochemistry & Molecular Biology of Plants, John Wiley & Sons,
- 8 Ltd2015, pp. 508-588.
- 9 [4] J.V. Moroney, R.A. Ynalvez, Proposed carbon dioxide concentrating mechanism in
- 10 *Chlamydomonas reinhardtii*, Eukaryotic cell, 6 (2007) 1251-1259.
- 11 [5] M.H. Spalding, Microalgal carbon-dioxide-concentrating mechanisms: Chlamydomonas
- inorganic carbon transporters, J Exp Bot, 59 (2008) 1463-1473.
- 13 [6] K.K. Bernd, N. Cook, Microscale assay monitors algal growth characteristics,
- 14 BioTechniques, 32 (2002) 1258-1259.
- 15 [7] M. Meyer, H. Griffiths, Origins and diversity of eukaryotic CO₂-concentrating
- mechanisms: lessons for the future, J Exp Bot, 64 (2013) 769-786.
- 17 [8] Y. Wang, D.J. Stessman, M.H. Spalding, The CO₂ concentrating mechanism and
- photosynthetic carbon assimilation in limiting CO₂: how Chlamydomonas works against
- the gradient, The Plant journal: for cell and molecular biology, 82 (2015) 429-448.
- 20 [9] Y. Wang, D. Duanmu, M.H. Spalding, Carbon dioxide concentrating mechanism in
- 21 Chlamydomonas reinhardtii: inorganic carbon transport and CO₂ recapture, Photosynth
- 22 Res, 109 (2011) 115-122.

- 1 [10] K. Miura, T. Yamano, S. Yoshioka, T. Kohinata, Y. Inoue, F. Taniguchi, E. Asamizu, Y.
- Nakamura, S. Tabata, K.T. Yamato, K. Ohyama, H. Fukuzawa, Expression profiling-
- based identification of CO₂-responsive genes regulated by CCM1 controlling a carbon-
- 4 concentrating mechanism in *Chlamydomonas reinhardtii*, Plant physiology, 135 (2004)
- 5 1595-1607.
- 6 [11] Y. Wang, Z.H. Sun, K.M. Horken, C.S. Im, Y.B. Xiang, A.R. Grossman, D.P. Weeks,
- 7 Analyses of CIA5, the master regulator of the carbon-concentrating mechanism in
- 8 Chlamydomonas reinhardtii, and its control of gene expression, Can J Bot, 83 (2005) 765-
- 9 779.
- 10 [12] H. Fukuzawa, K. Miura, K. Ishizaki, K. Kucho, T. Saito, T. Kohinata, K. Ohyama, Ccm1,
- a regulatory gene controlling the induction of a carbon-concentrating mechanism in
- 12 Chlamydomonas reinhardtii by sensing CO₂ availability, P Natl Acad Sci USA, 98 (2001)
- 13 5347-5352.
- 14 [13] Y. Xiang, J. Zhang, D.P. Weeks, The Cia5 gene controls formation of the carbon
- concentrating mechanism in *Chlamydomonas reinhardtii*, P Natl Acad Sci USA, 98
- 16 (2001) 5341-5346.
- 17 [14] J.V. Moroney, H.D. Husic, N.E. Tolbert, M. Kitayama, L.J. Manuel, R.K. Togasaki,
- 18 Isolation and characterization of a mutant of *Chlamydomonas reinhardtii* deficient in the
- 19 CO₂ concentrating mechanism, Plant physiology, 89 (1989) 897-903.
- 20 [15] M.H. Spalding, CO₂-concentrating mechanism and carbon assimilation., In: Harris EH,
- 21 Stern DB (eds) The *Chlamydomonas* sourcebook: organellar and metabolic processes, Vol
- 22 2, 2nd edition. Academic, Oxford, chp8, (2009) 257-301.

- 1 [16] M.H. Spalding, K. Van, Y. Wang, Y. Nakamura, Acclimation of Chlamydomonas to
- 2 changing carbon availability, Funct Plant Biol, 29 (2002) 221-230.
- 3 [17] W. Fang, Y. Si, S. Douglass, D. Casero, S.S. Merchant, M. Pellegrini, I. Ladunga, P. Liu,
- 4 M.H. Spalding, Transcriptome-wide changes in *Chlamydomonas reinhardtii* gene
- 5 expression regulated by carbon dioxide and the CO₂-concentrating mechanism regulator
- 6 CIA5/CCM1, The Plant cell, 24 (2012) 1876-1893.
- 7 [18] A.J. Brueggeman, D.S. Gangadharaiah, M.F. Cserhati, D. Casero, D.P. Weeks, I.
- 8 Ladunga, Activation of the carbon concentrating mechanism by CO₂ deprivation coincides
- 9 with massive transcriptional restructuring in *Chlamydomonas reinhardtii*, The Plant cell,
- 10 24 (2012) 1860-1875.
- 11 [19] T. Kohinata, H. Nishino, H. Fukuzawa, Significance of zinc in a regulatory protein,
- 12 CCM1, which regulates the carbon-concentrating mechanism in *Chlamydomonas*
- 13 *reinhardtii*, Plant Cell Physiol, 49 (2008) 273-283.
- 14 [20] Y.J. Wang, M.H. Spalding, An inorganic carbon transport system responsible for
- acclimation specific to air levels of CO₂ in *Chlamlydomonas reinhardtii*, P Natl Acad Sci
- 16 USA, 103 (2006) 10110-10115.
- 17 [21] R. Sager, S. Granick, Nutritional studies with *Chlamydomonas reinhardi*, Annals of the
- 18 New York Academy of Sciences, 56 (1953) 831-838.
- 19 [22] H. Gao, D.A. Wright, T. Li, Y. Wang, K. Horken, D.P. Weeks, B. Yang, M.H. Spalding,
- TALE activation of endogenous genes in *Chlamydomonas reinhardtii*, Algal Research, 5
- 21 (2014) 52–60.

- 1 [23] W. Zhu, B. Yang, J.M. Chittoor, L.B. Johnson, F.F. White, AvrXa10 contains an acidic
- 2 transcriptional activation domain in the functionally conserved C terminus, Molecular
- 3 plant-microbe interactions: MPMI, 11 (1998) 824-832.
- 4 [24] K. Van, Y. Wang, Y. Nakamura, M.H. Spalding, Insertional mutants of *Chlamydomonas*
- 5 reinhardtii that require elevated CO₂ for survival, Plant physiology, 127 (2001) 607-614.
- 6 [25] K. Van, M.H. Spalding, Periplasmic carbonic anhydrase structural gene (Cah1) mutant in
- 7 *chlamydomonas reinhardtii*, Plant physiology, 120 (1999) 757-764.
- 8 [26] N. Fischer, J.D. Rochaix, The flanking regions of PsaD drive efficient gene expression in
- 9 the nucleus of the green alga Chlamydomonas reinhardtii, Molecular genetics and
- 10 genomics: MGG, 265 (2001) 888-894.
- 11 [27] M. Cao, Y. Fu, Y. Guo, J. Pan, Chlamydomonas (Chlorophyceae) colony PCR,
- 12 Protoplasma, 235 (2009) 107-110.
- 13 [28] D. Duanmu, Y. Wang, M.H. Spalding, Thylakoid lumen carbonic anhydrase (CAH3)
- mutation suppresses air-Dier phenotype of LCIB mutant in *Chlamydomonas reinhardtii*,
- 15 Plant physiology, 149 (2009) 929-937.
- 16 [29] A.G. Glaesener, S.S. Merchant, C.E. Blaby-Haas, Iron economy in *Chlamydomonas*
- 17 reinhardtii, Frontiers in plant science, 4 (2013) 337.
- 18 [30] R.J. Porra, W.A. Thompson, P.E. Kriedemann, Determination of accurate extinction
- coefficients and simultaneous equations for assaying chlorophylls a and b extracted with
- 20 four different solvents: verification of the concentration of chlorophyll standards by
- atomic absorption spectroscopy, Biochim Biophys Acta Bioenerg, 975 (1989) 384-394.
- 22 [31] W. Van Criekinge, R. Beyaert, Yeast Two-Hybrid: State of the Art, Biol Proced Online,
- 23 2 (1999) 1-38.

- 1 [32] Y. Wang, M.H. Spalding, LCIB in the *Chlamydomonas* CO₂-concentrating mechanism,
- 2 Photosynth Res, 121 (2014) 185-192.
- 3 [33] T. Yamano, A. Fujita, H. Fukuzawa, Photosynthetic characteristics of a multicellular
- 4 green alga Volvox carteri in response to external CO₂ levels possibly regulated by
- 5 CCM1/CIA5 ortholog, Photosynth Res, 109 (2011) 151-159.
- 6 [34] H. Gao, Y. Wang, X. Fei, D.A. Wright, M.H. Spalding, Expression activation and
- functional analysis of HLA3, a putative inorganic carbon transporter in *Chlamydomonas*
- 8 *reinhardtii*, The Plant journal: for cell and molecular biology, 82 (2015) 1-11.
- 9 [35] Y. Wang, I. Ladunga, A.R. Miller, K.M. Horken, T. Plucinak, D.P. Weeks, C.P. Bailey,
- The small ubiquitin-like modifier (SUMO) and SUMO-conjugating system of
- 11 Chlamydomonas reinhardtii, Genetics, 179 (2008) 177-192.
- 12 [36] Y. Shi, R.A. Mowery, J. Ashley, M. Hentz, A.J. Ramirez, B. Bilgicer, H. Slunt-Brown,
- D.R. Borchelt, B.F. Shaw, Abnormal SDS-PAGE migration of cytosolic proteins can
- identify domains and mechanisms that control surfactant binding, Protein science : a
- publication of the Protein Society, 21 (2012) 1197-1209.
- 16 [37] F. Bronner, A. Kleinzeller, Current Topics in Membranes and Transport, Carriers and
- Membrane Transport Proteins 1979, pp. 23-26.