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SUMMARY

Ef Igorithms are considered for the computation of a reduced-order model based on the proper
orthogond decomposition methodology for the solution of parameterized elliptic partial differential
equmessss® The method relies on partitioning the parameter space into subdomains based on the properties
of the solution space and then forming a reduced basis for each of the subdomains. This yields more

LISCT

ef fline and online stages for the proper orthogonal decomposition method. We extend these ideas for
ine jve adjoint based a posteriori error estimation of both the expensive finite element method solutions

and the reduced-order model solutions, for a single and multiple quantities of interest. Various numerical
res cate the efficacy of the approach. Copyright © 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

r

&

W igate efficient algorithms for the computation of a reduced-order model (ROM) and a
poNggig# error estimation strategies for the numerical solution of the parameterized nonlinear
convection-diffusion-reaction problem,

{—V c€u(x)Vuy(x) + bu(x) - Vuy, = fu(uy, x), x € Q, 0

UM(X) = Oa X € 89

-t

H R? (d = 2 or 3) and €u> by, and f, may depend on the parameter vector u in a bounded
domain g C RP. We consider the problem with ¢, Lipschitz and symmetric positive definite, b,,
divergence free and f,, Lipschitz for all values of p € D. The function f,, may be nonlinear. The
presented in this article also apply for nonlinear diffusion, that is if the diffusion coefficient
) depends on wu,. However, we avoid the issues related to the well posedness of such
probler™here. A numerical example considering this case is explored in §6.2]
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for a given 1) € Ly(Q). The QoI in () is a linear functional of the solution w,. Nonlinear Qols
require special treatment, and are often dealt by linearization of the QoI [1. 2]].

In this article we focus on the reduced modeling approach [3} 14 15 6. [7]], in particular on proper
orthogonal decomposition (POD) [, 9} [10} [11} [12]]. POD techniques form a reduced-order model
through expressing a solution in terms of a truncated spectral basis having a dimension much
lower than the actual solution space for, say, finite element approximations. Then, approximate
soition?belonging to the low-dimensional reduced basis are determined, most usually, through a

projection. We extend the classical POD algorithm which forms a single spectral basis to
a hj##mehical approach which forms multiple spectral bases adapted to the parameter dependence.
chniques have been applied to numerous science and engineering applications [[13} 14} 15|
16, 17, 18, [19]. They often have good approximation properties [20, 21]] and are naturally applied
% MM™MMne and nonlinear problems [22]. However, reduced basis methods for the solution of
pa%efized PDEs based on POD are not without their drawbacks [22]. POD techniques form the
reduced basis by sampling the parameter domain and then computing the full-order model (FOM)
solfftion% called snapshots. Generally, a large number of sample points, and hence a large number
of solves, are performed to ensure that the entire range of solution behavior is captured.
Howeygr, many of the FOM solutions may contribute only marginally towards the accuracy of the
thion, resulting in wasted computational effort. Further, a large dense eigenvalue matrix
problent; with dimension equal to the number of sample points, needs to be solved in forming the
re asis. Moreover, even after the reduced basis has been formed, the cost of assembling a
stmatﬁx corresponding to the reduced basis may be unacceptably high if the decay of the
eigenvalues is slow. This is because the truncation of the spectral basis is carried out based on the
demhe eigenvalues. Finally, to the best of our knowledge, no a posteriori error estimation
adjoint problems and computable residuals for Qols computed from numerical solutions
obtained _from POD techniques has been carried out. There has been recent work on a posteriori
|sing an optimization approach applied to global norms, see [23]].
article, we aim to address the drawbacks of POD techniques mentioned above. In particular,
se a sampling strategy which starts out with a crude sampling, then samples different
re f the parameter domain adaptively. This reduces the size of eigenvalue problem to be solved
an samples in regions where more information is needed to form accurate ROM solutions.
, a hierarchical reduced basis is formed, enabling the formation of the ROM solution more
efficiently than standard POD techniques. Finally, we carry out a posteriori error analysis of the
ROM solution obtained from POD techniques. The standard a posteriori analysis for reduced basis
tecgigues bounds the error between the ROM solution and the FOM solution [24]]. Such bounds
are not true error estimates, as the FOM solution is also computed numerically, and hence may
ha @ ge error itself. This is important in the context of multiscale, multiphysics problems which
ned e complex solutions techniques and thus have significant numerical error, even for the
FO tions [25]. As opposed to the previous a posteriori analysis, we derive representations for
theferror in the Qol between the true continuum solution and the ROM solution. Further, we develop
s for cheap a posteriori analysis for FOM solutions using POD techniques for computing
stimate. This in important in situations where the ROM solution has error beyond the
specified tolerance, and computing a FOM solution in unavoidable.
osteriori error analysis in this article is carried out using variational analysis, computable
resi and adjoint problems. Such a posteriori error estimates are widely used for finite element
methodgg26, 27, 28]]. The strategy relies on computing an adjoint solution based on the adjoint
r corresponding to (I). The key insight that makes error analysis using ROM efficient lies
bservation that the error in the solution, due to its subtractive nature, is a lower dimensional
entity t the solution itself. Further, Qols are lower dimensional quantities as well, and hence
this allows employing ROM for the adjoint solutions an attractive option, as we expect the adjoint
solution space to be lower dimensional than that of the PDE. Quite often there are multiple Qols
that need to evaluated. The classical analysis of such systems require an adjoint solution for the
Qol, and hence is quite expensive. We extend our ideas for using ROM for the adjoint solutions by
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treating the Qol as a parameter in the adjoint problem. This allows inexpensive computation of error
estimates for multiples Qols for both FOM solutions as well as solutions obtained using ROM.
There are other alternatives to the POD approach, e.g., greedy algorithms [24. |6, [12]. The greedy
algorithms construct the reduced basis space by adding one basis vector at every step. This new basis
vector is chosen as the one which exhibits the largest a posteriori error bound between the solution
computed from existing basis and a FOM solution. On the other hand, the POD algorithms construct
thegentirggreduced basis space, which typically involves solving a large eigenvalue problem. Thus the
[M; 1s are often more expensive to construct, though, we try to address the issue of solving large
ciggi®™yc problems by employing a hierarchical algorithm as mentioned earlier. We restrict our
alo the POD techniques as greedy algorithms are tailored towards affine linear problems,
though there are extensions to nonlinear problems as well [29].
" ™M rarchical approach proposed is similar to the “h”-type reduced basis methods based on
th%reedy strategy [30]. However, there are substantial differences in how we sample the domain

an m the hierarchical basis. There are also similarities to the recently introduced adaptive basis
spiffting¥nethods [31]. That method is focused on enriching the reduced basis in the online stage,
wh ur focus is on forming the hierarchical basis in the offline stage. Another method to
congtrggt POD basis efficiently based on interpolation and notions from differential geometry is
co@d in [32]. The main focus of that method is to interpolate between existing POD basis,

as we focus on forming hierarchical basis for the entire parameter space. Another approach

cting local POD basis for a system of ordinary differential equations is presented in [33]].
lm;lod is based on contiguous partititioning of the state space, whereas in our method local
basis are attached to non-contiguous regions in the parameter space. Moreover, our method has a
h1 of reduced basis whereas the method in [33]] partitions the state space only once.
er is organized as follows. In §2| we review the basic POD methodology. We introduce our
al POD algorithms in §3] We perform a posteriori analysis to quantify error in the FOM
ﬁ solutions using POD techniques to compute the adjoint solution in 4} We extend these
1de eat multiple Qols in §5] Some additional numerical examples are presented in §6]

2. REVIEW OF CLASSICAL POD

POD techniques reduce the dimension of a system by transforming the original variables onto a new
seﬁf uncorrelated variables such that the total norm of the spectrum present in all of the original
va is captured well by a few of the uncorrelated variables [22]]. This spectral decomposition
allgy™eenstruction of a reduced basis in which the solution is sought. We employ the method of
sn [8] to form the ROM model of the parameterized PDE (T]). Snapshots refer to the solution
of th®PDE (1) at a set of sample points.

ge element approximation

MCal setting, the exact solution to (I) is not available and needs to be approximated, which
w is carried out by a finite element method (FEM). The FEM approximation of the solution
s iven by U,, € VP satisfying

(VU VU) + (b - VUL, v) = (fu(Uy),v) Yo € VY, 3)

where V' C H(€2) denotes the standard space of continuous piecewise polynomials of order p and
(+,-) denotes the standard Lo(Q) inner product.

2.2. Formation of POD reduced basis

Let © = {pg,k=1,--- ,K} be a sampling of D and denote the corresponding FEM solutions

or snapshots by {U, =U,,,k=1,..., K}. POD computes a reduced basis of dimension M <
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dim(V}?) as the solution to the optimization problem

K M
1 2
{w;,i=1,--- , M} = argmin? Z HUj - Z(U]—,wi)xwi . “4)
j=1 =
Hege (-, -ax and || - || x with X = 0 and 1 respectively denote the L? and H* inner product and norm.

uced basis vectors w; are determined by computing the SVD of the matrix having columns
U; lently, determining the eigenvalues and eigenvectors of the correlation matrix C having
enfies J

1
o Cij = ?(Ujan)X~ (5)

Leh’_‘- -+ > Agq > 0 denote the positive eigenvalues of C' which, without loss of generality, can
be @d; also let vy, . .., vq denote the associated eigenvectors. Then the ith POD basis vector is
b

gi
| X
w; = (vi);Uj, (6)

where (vi) ; denotes the jth component of the vector v;. The dimension M of the reduced basis (RB)
sp y be specified, or chosen using some criteria. One such criteria is to choose a tolerance
Tt then choosing M to be the smallest integer such that

K

K Z \; < TOL. (7)
i=M+1

y, one can choose M to be the smallest integer such that

M
YN
Z;{;ﬂ > FRAC, 8)

i=1""

wl"&e F'RAC is chosen close to 1 [34]. These criteria are based on the observation that often the
first few POD vectors capture most of the energy of the system.

approximations

2.3.
Le enote the reduced basis space {w;,i = 1,..., M}. Then, for any ;1 € D, the ROM or POD
mmation of the solution of (I) is given by U, satisfying

(€,VU,, V) + (b, - VU,,v) = (f.(U,),v) Yo W. )

N

ne and online stages

{ting the ROM approximation has an offline and an online stage; the former is effected a

ime whereas the latter may be repeated many times. As a result, one is more willing to incur
a greater tost in the offline stage because it can be amortized over the many repetitions of the online
stage. On the other hand, because it is repeated many times, one would want the online stage to
be significantly less expensive to be effective. The reduced basis {w;,7 =1,..., M} is formed in
the offline stage. This involves determining FEM approximations at all K sample points and then
solving a K x K eigenvalue problem; this process can be expensive for large K. In the online
stage, the ROM approximation (9) is determined. If M is not too large, this can be inexpensive to
accomplish.
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3. SAMPLING OF THE PARAMETER DOMAIN AND HIERARCHICAL PROPER
ORTHOGONAL DECOMPOSITION

3.1. Parameter sampling strategy

In this section we outline the selective sampling of the parameter domain. We start with a coarse
sampling of K points in the parameter domain. Because the sampling is coarse, we do not expect
t ots to capture all possible behaviors of the PDE, and hence we need to sample additional
pointsdn the parameter domain. This is carried out by grouping samples which are correlated into
susee @ and then populating those subdomains so that the number of samples in each
Sub s again K. This process is then carried out for each subdomain till the parameter domain
eMely sampled.

condly, a local reduced basis is formed for each subdomain, forming the hierarchical reduced
ba od. In classical POD, the solution may require a large number of reduced basis vectors to
ac@gh accuracy, negating the main advantage of using ROM. The hierarchical reduced basis

od

rms accurate solutions with relatively few basis vectors. The subdomains are structured
s a ttee. The details of the algorithm are described below.

a
3. 2@ based structure

The ask structure of the hierarchical basis is a tree-like partition of the parameter domain
uced basis space attached to each node. The root node of the tree corresponds to the
entl ameter domain, D = D). This is partitioned into P(®) children subdomains D ; =
Then each subdomain D" may be further partitioned into P(:%) subdomalns
P9 and the process continued till some stopping criteria is met. A typical
is 1dent1ﬁed as D™ where 7; is an [ + 1-tuple of the form (0, 71, ..., 4;). It is possible for
odes in the tree to be at different levels, with the root node being at level 0, its children at
leve 1"80d so forth. This is illustrated in Figure|[T]

E

‘D(O,LO) ‘ ‘D(O,l,l) ‘ ‘D(oﬁzﬁo) ‘

: ‘ D0,2.2,0) ‘ ‘ D0.2:2,1) ‘
e

‘ D(OA,Zyl) ‘

Figure 1. Hierarchical partitioning of the parameter domain.

address the particulars of how a subdomain is represented, partitioned and sampled.

omain is defined by a subset of sampled parameter values of their parent node. We explain
e subdomains corresponding to the children of the root node D. Let puq,...,ux be
parameters in the sampling of D. The K parameters are identified together into P(®) sets denoted
as 209 (as described in the next section). Then the ith subdomain, 1 < i < P(®, D) s defined
implicitly by the parameter set Z(*:). Given an arbitrary u € D, the subdomain to which z belongs
is found by first finding the minimum gy, such that

pu = argmin [|g(u) — g(u)ll, (10)

1<I<K
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where ¢ is a function of y and | - || is the Euclidean norm. Then y is identified with the jth
subdomain such that y, € Z(0:7),

The process described above is repeated for all D™ that have children, and is terminated when
a leaf node is reached. This leaf node represents the subdomain to which the parameter belongs.
The function g may be chosen in multiple ways. The simplest option is to choose g as the identity
function, g(u) = u. Then (I0) represents the Euclidean distance between the parameters. Another
opgons g to choose g(u) = a = [ay,...,an,] where a; are the (spectral) coefficients of the
Masis corresponding to a ROM solution of dimension M,. That is, the a; are obtained

I
froyf i, — Zig «;;. This involves solving a POD problem. However, if M, is small, this is
in

S £=PiMitioning of a subdomain

Thhon explains the process of forming the sets Z(°%, and hence the subdomains D%,
forgghe mpot node, D. We assume that there are K parameter values in the sampling of the root
no@ k-means clustering algorithm is widely used for clustering algorithms and we employ it
here 0 1dentify points into the same subdomain [35]. The clustering algorithm is initialized using
th ns++ variant of the algorithm, which often is a more robust approach than random
ini on [36]]. Pearson’s correlation coefficient is used as the “distance” measure in the k-
m orithm. Given two vectors X ) and X ), j # k, of length N, the Pearson’s correlation
coefﬁcieit is defined as,

N (4) Ui k) ok
Yo xVY o xyx\ - x k)
C ria = el s I (1)
VEL (D - X0 S, (- xooye
1y
nt

wr@ is the ith component of X ) and X /) is the mean of the values of X (/).
I context of POD techniques, the vectors X /) are formed by the coefficients given in the
asis representation of the FEM snapshot U}, ;. That is, given K snapshots U,,,, we form a
redu asis of dimension M, where M is the number of positive eigenvalues of the correlation
C in (). Then U, = Zf‘il oy and XU = [aq,--- ,ap]". The length of each X ) is
s. bor each partitioning of a subdomain, the number of child subdomains need to be chosen, which
is also the k in the k-means algorithm. There are various heuristics to choose k. In this manuscript,
wihoose k = VK, that is square-root of the number of samples [37]. If this results in a cluster
tains just one sample point, then we reduce k by one, and repeat the process until all

w
clugpemmeontain more than one point.
@* it is important to note that a particular partition, D;, may not be spatially connected (that
is, pOMIs in D; may not be neighbors of each other).

@omain partitioning criteria

Wter subdomain, D7, is partitioned if two conditions are met:

j decay of the largest M, eigenvalues of the correlation matrix C;; for that subdomain is
|

er than a specified tolerance, toly. That is, if K Zfi(Mﬁl) A\; > toly.
2. The minimum value of the correlation coefficients, r; 1,1 < j, k < M, for that subdomain is
ow a threshold, mincorr.

Mor
level.

the partitioning may be optionally stopped if a node has reached a specified maximum

3.6. Sampling the new subdomains and formation of the reduced basis

Once the new subdomains are formed, they need to be sampled, FEM snapshots formed at those
sampled values, and reduced basis formed from those snapshots as described in §2] For simplicity,
we assume that all subdomains are sampled by K parameters values and the sample set associated
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with D™ is denoted O,. For efficiency, we assume the subdomain inherits the parameter values
from its parent. For example, the set Z(®¥) ¢ D which defines D1 is also part of its sampling,
that is, 209 ¢ D)), Rejection sampling is used to populate the new subdomains. Given a random
parameter p, we determine the leaf subdomain it belongs to using the process described in §3.3] If
the subdomain already has K sampled parameters, then the parameter p is rejected, otherwise the
1 1s added to the parameter sample for that subdomain. The process repeated until all subdomains

ha¥ K impled parameters.

3. 7@0”61’ online Stages

Thy ain tree and the reduced basis are constructed in the “Offline” stage. Note that the
Edueadhasis spaces corresponding to only the leaf nodes need to be saved. In the “Online” stage,
givgn a parameter value z, we locate the subdomain that £ belongs to, as outlined in §3.3] Then
we saie )/ basis vectors corresponding to the reduced basis of that subdomain, and form
the Jiewgrchical ROM or the hierarchical POD solution as discussed in (9). The Offline stage is
sm@ed in Algorithm[I} whereas the Online stage is summarized in Algorithm 2]

ﬁ@m 1: Hierarchical POD Offline Stage
£r®D into Subdomain Queue

s 1. bdomain Queue is not empty

Saghple subdomains in Subdomain List (

D™ .= Subdomain at front of Subdomain Queue

FEM snapshots and POD reduced basis for D™

Tt is to be partitioned ( i

Form children subdomains D7+ of D™ ( and

Insert all newly formed subdomains D7+! at the end of Subdomain Queue

Algortiam 2: Hierarchical POD Online Stage

w:  Parameter
return: Q(U,):  Qol value for hierarchical POD solution

into Subdomain Queue
Find leaf sub domain D™ to which 1 belongs (§3.6)
OD reduced basis space W corresponding to D™

te the POD solution, U,,, as in (@) and evaluate Q(U,,)

3.% Nuﬁerical Example

We illustrate the properties of the hierarchical algorithm with a numerical example. We consider a

rea@iffusion-convection problem,

{—V -Vu + [Acos(8), Asin(f)] - Vu +u = 10, x €,

12
u=~0 x € 0N. (12)

The do™™in 2 is the unit square [0, 1] x [0, 1] and p = [A, 6] denotes the random parameter vector.
The parameter domain, D is two dimensional, with A € [0, 40] and 6 € [0, 27]. The Qol is

Q(u):/xqudm. (13)
Q

where x, is the characteristic function of , = [0.05, 0.2] x [0.3, 0.5], that is x,(z) =1 if
x € Qg and x,(z) = 0 otherwise. We expect the sensitivity of the Qol to vary with 6. The direction
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of the vector field, [Acos(f), Asin(6)] , is shown for § = 7 and § = 7/4 in Figure 2] The 6 =
vector field creates a pseudo-inflow boundary near where the Qol is evaluated, and hence we expect
the Qol to have relatively large error for this value of 6. A regular triangular mesh with 20 x 20 x 2
elements is employed and the standard space of continuous piecewise linear polynomials, P!, is
employed to form the FEM snapshots. These numerical parameters were chosen to ensure that the
numerical error was not overly large.

t

1 . . . .
0.9 =— =— =— =-— -— — — — H 0.9 VARV A A SN S ANy ANV aav 4
0.8 =— =— =— —-— -— — — — - H 0. 8| VARV A A SN S ANy ANV aav 4
0.7 =— =— =— =— = — — — - H 0.7 VARV A A SN S ANy ANV aav 4
0.6 =— =— =— =— =— =— -— — —-— H . R A A A A A

205 =—— =— =— =— =— =— =— — — [ =058 7 7 S 7 7SS S
04f =— =— =— =— =— =— =— =— =— | N P A A A A A A S
0.3 =— =— =— =— — — — — — L 0. 3l VAV A A A SV A Ay v d
0.2 =— =— =— =— =— =— =— =— — | 0.2f S 7 A
P R ol A A A A A A A

. . . . 0 i i ' '
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
T T
(@) 0 = . (b) 6 = /4.

Figure 2. Plot of the vector field [A cos(f), Asin(6)].

pare the “Classical” POD approach with no partitioning with the “Hierarchical”
roach. For the classical approach, we perform two experiments, with the number of
or the parameter domain chosen as K =40 and K = 200, corresponding to “crude”
.’ sampling. For the Hierarchical POD, the number of parameter samples for each of
subdomains are K = 40 (for a total of randomly sampled 144 x 40 parameters) while the
otner numerical parameters used in forming the subdomains are set as toly = 1E — 4, M, = 10,
mincorr = 0.9 and g = Id where Id denotes the identity function. The subdomains at level 1
(DE?) are illustrated in Figure A particular subdomain may not be connected but have multiple

40

35
30
25
< 20
15
10

O I I I I I I I 1

0 1 2 3 4 5 6 7

0

dnt’

PO

r M

[=)}

W

Autho

W

Figure 3. Subdomains at level 1
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We present results for two parameters, 1 = [r, 39.8] and p = [7/4, 26.2] . These parameters are
different from the ones that were randomly sampled to form the ROM basis. The u = [m, 39.8]
is more difficult as this choice results in a convective vector field b = [—39.8, 0] T, and hence the
evaluation of the Qol near the left, pseudo-outflow boundary is challenging. This is also seen from
the error in the FEM solutions for the two parameters. The FEM solution for p = [r, 39.8] has an
error of -1.6958E-04 whereas the FEM solution for ;1 = [7/4, 26.2] has a much smaller error of
3.;;81E¥)6. The results for different number of basis vectors, M, to form the ROM solution are
S in Tables [I|and [II] for the parameters y = [, 39.8] and p = [7/4, 26.2] respectively. The
va the tables are the ratio of the POD solution error, Q(u uw—U, #), to the FEM solution error,
Qm. As the POD solution approaches the FEM solution in accuracy, the ratio of the POD
error and the FEM error approaches one, as seen in the results. The Hierarchical POD techniques
™M form a much an accurate solution with significantly fewer basis vectors in both cases.

Fo&the parameter i = [, 39.8] the Hierarchical solution has the same accuracy with four basis
vectors as the Classical techniques have with 18-20 vectors. We observe similar performance for
th@eter = [r/4, 26.2].
w M | Classical, K = 200 | Classical, K = 40 | Hierarchical, K = 40
2 -9.64 4.42 0.69
4 6.50 -6.01 1.17
i 6 1.59 7.85 1.01
8 2.94 3.09 0.97
10 2.83 3.15 1.00
! 12 2.65 1.12 1.00
14 1.68 1.35 1.00
16 1.31 1.66 1.00
18 1.20 1.60 1.00
20 1.07 1.12 1.00

Ratio of the POD error and FEM error in the Qol, Q(u, — Uu)/Q(uy — Uy), for p = [m, 39.8].

D solution approaches the FEM solution in accuracy, the ratio of the POD error and the FEM

roaches one. The POD solutions are computed with M basis vectors using the Classical and the

ical schemes, with the cardinality of the parameter sampling represented as K. The Hierarchical
solution was retrieved at level 2. The FEM error is Q(uy, — Uy) = —1.6958¢ — 04.

-

O M | Classical, K = 200 | Classical, K = 40 | Hierarchical, K = 40

2 436.88 -1456.48 -64.08

: 4 136.19 563.94 1.02

6 -94.23 -163.57 1.90

et | g 8.82 -103.39 2.18

10 -16.75 -37.03 1.02

i 12 3.65 -3.04 1.01

14 4.05 10.80 0.95

16 7.25 7.05 1.00

18 4.42 437 1.00

20 -0.06 1.09 1.00

Table II. Ratio of the POD error and FEM error in the Qol, Q(uy, — U,,)/Q(uy — Uy), for p = [r/4, 26.2].

The POD solutions are computed with M basis vectors using the Classical and the Hierarchical schemes,

with the cardinality of the parameter sampling represented as K. The Hierarchical solution was retrieved at
level 3. The FEM error is Q(uy, — Uy) = 3.5081E — 06.

Copyright © 0000 John Wiley & Sons, Ltd.
Prepared using nmeauth.cls

Int. J. Numer. Meth. Engng (0000)
DOI: 10.1002/nme

This article is protected by copyright. All rights reserved.



10

3.9. Computational Cost

The implicit assumption in forming the Hierarchical POD approach is that we are concerned with
efficiency in the Online stage. This is demonstrasted by the numerical example above, and also in
the examples in §6] In some cases, Offline cost may also be a concern. However, comparison of the
Offline cost for the classical and hierarchical approaches is not straightforward. The hierarchical
approach forms a large numbver of samples in order to distinguish different regimes of solution
sl The classical approach does not take this into account, and hence we cannot directly
compare the cost of the Offline costs for the two approaches.
pt to compare the sum of Offline and Online costs for the numerical example in §3.8]
Wollsballmmm that for this example the Offline stage of the Hierarchical POD approach involves
sicaidigantly more FEM solves than the Classical approach, and hence is more computationally
deganding in the Offline stage. If the only concern is the speed of the Online stage, then obviously
thiL a major issue. Moreover, the increased cost of the Offline stage for the Hierarchical POD
is eyenmjally amortized by the speedup obtained using fewer basis vectors in the Online stage. To
segthis, i'e define the amortized cost AC,, as,

AC, = Off,, + On,, (14)

where = C or H denotes classical or Hierarchical approaches, Off and On denote the offline and
ongsts respectively. For the classical approach we define the Offline and Online costs as,

Offc = (# Offline Samples) x (Cost of FEM solve) + (Cost to form eigenvalues of correlation matrix),

- -
an

On¢g = (# Online Samples) x (Cost of Classical ROM solve). (16)
h@sponding costs for the Hierarchical approach are,

g = (# Offline Samples) x (Cost of FEM solve) +
# Subdomains x (Cost to form eigenvalues of subdomain correlation matrix),

—

a7

g = # Online Samples x [Cost of Hierarchical ROM solve + Parameter searching cost]. (18)

For the numerical example in § 3.8] we compare the costs for Classical approach with total
salip = 40 to the Hierarchical approach with number of samples in each subdomain to be
K WgQafor a total of 144 x 40 samples. Since the matrices in the FEM solve are sparse, we assume
that the cost of a FEM solve is equal to the number of vertices in the mesh, which equals 441 in this
cadf. Moreover, we assume that the cost of forming eigenvalues and eigenvectors from a correlation

size K x Kto be K. This leads to a cost of 40? for the Classical approach, and a cost of
]W for the Hierarchical approach. Moreover, we assume that, on average, we need 12 vectors
to form an accurate ROM solution for the Classical approach. Since the matrices in the Online stage
arm this leads to a cost of 123 per sample. For the Hierarchical approach, we assume we need
4 to form an accurate Online solution. Moreover, we take the parameter searching cost to
be log 4Q,x 3, which arises from assuming a kd-tree structure [38] to compare parameters in each
ain, and the average depth for finding a parameter to be 3. The amortized costs for the two
hes are shown in Figure[d] As can be seen, the Classical algorithm has a lower initial cost
due to [8%s computationally intensive Offline stage. However, the Hierarchical approach becomes
computationally cheaper after around 7000 Online samples.

Finally, as observed in Tables|l|and |ll} increasing the sample size of the classical approach from
K =40 to K = 200 still meant a large number of basis vectors are needed in the Online stage for
an accurate solution. In fact, the results for KX = 40 and K = 200 are remarkably similar, indicating
that simply increasing the sample size in the Offline stage may not yield an efficiency improvement
in the Online stage. This happens as the classical approach, even for the large sample size, forms
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a spectral basis that decays slowly as it has to account for a wide range of solution behaviors,
whereas the Hierarchical approach is tailored to the characteristics of the solution, and hence is able
to form accurate solutions with relatively few basis vectors in the Online stage. We also observe
this behavior in Tables and[VIII)in §[6.1] Thus, simply increasing the sample size in the Offline
stage of the classical approach may not yield increased efficiency in the Online stage, whereas the
hierarchical approach forms accurate solutions with relatively few basis vectors.

+— N
Q.

- — 15 A

%10’

Cost
|_\

Classical
— == Hierarchical

1 1
0 5000 10000
Online Samples

C Figure 4. Comparison of Costs for Classical and Hierarchical approaches.

4. A POSTERIORI ERROR ESTIMATION USING HIERARCHICAL POD

y adjoint based a posteriori error estimation to quantify the error of numerical solutions.

view the basic concepts of adjoint based a posteriori error estimation, and then apply our
Hierarchical POD algorithm to the adjoint solution computation. This allows the inexpensive and
accurate formation of the error estimate, not just for ROM solutions, but higher dimensional FEM

Rigasas well.
@ int based a posteriori error estimation
e

)
4.
The ®801nt problem corresponding to the “forward” problem (T is,
7AT
: 7V'5uv¢u - (v'bu)¢u = f;L(umUu) ¢u+¢a (19)

* ?i (u, U “ fo af “(suy 4+ (1 — )U“)ds Here U, represents a numerical solution, e.g. the
mtlon U =U,or the POD solutlon U = U Standard a posteriori analysis (by integrating

(uy U ,.), using integration by parts, and using the fact that u,, satisfies (I))) leads to the
eITor re sentation,

Q(“u - Uu) = _(EIJ«VUIU V¢u) - (bu ’ VU/M ¢M) + (fu(Uu)7 ¢u) (20)

In practice, the adjoint solutions need to be approximated. Let ®, be the FEM solution
corresponding to (I9). Then the error representation (20) leads to the error estimate,

1(U,) = —(€,VU,, V®,) = (by - VU, @) + (fu(Uy), ). Q1)

Another error estimate is obtained by using POD techniques (Classical or Hierarchical) for
computing the adjoint solution. Here our conjecture is that the adjoint solutions do not vary greatly
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M | Classical: K = 200
5 —1.1859F — 3 M 1(Uy)
10 —4.803F — 4 5 | —2.672E —04
20 —1.808E — 4 10 | —1.848FE — 04
30 —1.568E — 04 20 | —1.339F — 04
40 —1.656E — 04 30 | —1.657F — 04
I '50 —1.698E — 04 40 | —1.697E — 04
(a) Error in the Qol, (b) Performance of the estimate 7(Uy, )

Qe
Ta ults for ;1o = [, 39.8] for the classical POD algorithm. The error estimate for the FEM solution

is n(Uy) = —1.696F — 04 and K = 200.
- is 7(Up) an

-

as glraMgter values change. Let ® .« represent the POD approximation to the adjoint solution. Then
thi estimate is,

m i7(U,) = (€YU, V®,) — (by - VUL, @) + (£u(Uy), B,0). (22)

i numerical solution U, o ﬁ(U ,,) is significantly less expensive to compute relative to the
estimate 3 (U,,). In this section we explore strategies for computing ®,, and hence 77(U,) efficiently.

4. for error estimation using classical POD

In wwmmmsction we explore the efficiency of using ROM for adjoint based error estimation, and
corgagkget with the efficiency of using ROM for computing the numerical solutions to (IJ). Since
@ is a much simpler entity than the solution to the PDE itself, we expect to use fewer basis
vectOrs®or error estimation as opposed to approximating a Qol. We illustrate this with the example
the classical POD algorithm using K = 200 for sampling the parameter domain for the

para w=[m, 39.8] in Table. The error in the Qol using different number of basis vectors for
forward solution, U,,, is shown in Table This shows we need around 40 basis vectors

D solution to approximate the error of the FEM solution up to two digits of accuracy. Now,

we show results for the number of basis vectors, M , in the construction of the POD solution, ) o for
thegadjoint equation. The adjoint FEM snapshots, ®,,, are approximated in the space of continuous
piL quadratic polynomials, P?. We investigate the accuracy of the estimate 7j(U,,) by varying
M mparing it with the estimate 1(U,) computed using the FEM adjoint approximation in

111

Tal J We see we need 30 vectors for an accurate (up to two digits) error estimate, which is 25%
less ¥ the number required for the accurate solution U,,. This example illustrates the potential of
usi for inexpensive forming error estimates, even for full order FEM solutions.

4.3. Hierarchical ROM for error estimation

In This section, we apply the ideas developed in 3| for approximation of the adjoint solution. That
is,cmrchical ROM for the adjoint solution is formed. We illustrate the efficacy of this approach
fo nvection-diffusion problem in One issue in the construction of the parameter
subdomgjns for the adjoint ROM is whether the partitioning is carried out based on the forward
ts U,, or the adjoint snapshots ®,,. Since the hierarchical ROM for the forward solutions,
already constructed, using the same partitioning for the adjoint ROM saves computational
show the results for partitioning based on both forward snapshots, U,,, and the adjoint
snapshots, ®,,, and these strategies are labeled as “Forward Samp.” and “Adjoint Samp.”. The
numerical parameters for the “Forward Samp.” are the same as in The numerical parameters
in the case of “Adjoint Samp.” were set as toly = 1E — 7, M, = 10, mincorr = 0.9 and g = Id for
the construction of the hierarchical ROM for the adjoint PDE.

Table [[V|shows the effectiveness of the estimate 77(U),) for the error analysis of the FEM solution
U, for the parameters [7, 39.8] and [r/4, 26.2]. The results indicate that we obtain an accurate
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error estimate using just 3 basis vectors for [7, 39.8] and 1 basis vectors for [7/4, 26.2] for both the
“Forward Samp.” and “Adjoint Samp.” strategies. Moreover, we again observe that very few basis
vectors are needed for accurate error estimate.

Table V| shows results for the error analysis of the forward hierarchical POD solutions U,,. The
solutions U, , were computed using M = 4 basis vectors. We see that we now need three basis vectors
for an accurate error estimate for both parameters.

Forward Samp. | Adjoint Samp. M | Forward Samp. | Adjoint Samp.
1.45 1.45 1 1.03 1.18
0.64 0.68 2 1.00 0.96
- 3 1.09 1.10 3 1.05 1.00
1.06 1.06 4 1.00 1.00
0.98 0.99 5 1.00 1.00
0.98 1.00 6 1.00 1.00
1.01 1.00 7 1.00 1.00
1.01 1.00 8 1.00 1.00
1.00 1.00 9 1.00 1.00
1.00 1.00 10 1.00 1.00
11 1.00 1.00 11 1.00 1.00
E 1.00 1.00 12 1.00 1.00
Q [r, 39.8], n(U,) = —1.6958E — 04 (b) pu = [n/4, 26.2], n(U,) = 3.5081E — 06

Table IV. Values of the ratio (U ) /n(Uy).

A1

lh[”orward Samp. | Adjoint Samp. M | Forward Samp. | Adjoint Samp.
1.83 1.83 1 0.92 0.72
0.66 0.69 2 0.93 0.87
1.08 1.08 3 0.99 1.02
1.04 1.02 4 1.00 1.02
5 0.97 0.97 5 1.00 1.00
6 0.97 1.00 6 1.00 1.00
1.01 1.00 7 1.00 1.01
8 1.01 1.00 8 1.00 1.00
1.00 1.00 9 1.00 1.00
1.00 1.00 10 1.00 1.00
11 1.00 1.00 11 1.00 1.00
2 1.00 1.00 12 1.00 1.00

= 39.8], n(Uu) = —1.9809E — 04 (b) u = [r/4, 26.2], n(U,.) = 3.5818E — 06

{

" Values of the ratio 77(U,)/n(Uy). The solutions U,, were computed using M = 4 basis vectors.

. HIERARCHICAL ROM FOR ERROR ESTIMATION OF MULTIPLE QOIS

AU

Quite often multiple Qols need to be evaluated, and this makes adjoint based error analysis
significantly expensive as a separate adjoint problem needs to be solved for each Qol. However,
we apply the ideas developed for error estimation using hierarchical POD for the case of multiple
parameterized Qols. That is, the Qols are represented as,

Q(uu) = (¢fuuu)a (23)
Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
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where i € D is the parameter defining the function ;. The adjoint equation becomes,

R
-V 5uv¢ﬁ, - (v b/L)¢/L = f (u/u ,u,) ¢ﬁ, + 1/)[1,- (24)

That is, the adjoint equation has two parameters now, i and /. In forming the hierarchical POD for
the adjoint solution, we consider these as one parameter, i = [y, i] € D x D. Now the partitioning
of Fe pa'ameter space is carried out using the adjoint snapshots ®, as the forward solutions Uu do
no®account for the parameter /.

Wesidliatgate the above scheme for the convection diffusion example is §3.8] The parameterized Qol

is gw defined as,
Qu) = / Yy ude,

1, p = 10022 (1 — z)?(exp(a(z — b)?) — c)y*(1 —y)%,0.1 <a < 10,0 < b < 1
an'(m‘< c< 10 The parameter space corresponding to the parameterized Qol, D, is three-

(25)

al. Line-plots of 1, along the z—axis for two parameters, /i = [10.0, 1.0, 10] and g =
10.0] are shown in Figures [5aand [5b]

—
3 0.2 9
254 0.1+
20 0
154 0.1
. 10 N 0.2
5 -0.3
0 -0.4
-5 T T T T 1 -0.5 T T T T 1
0 02 04 0.6 08 I 0 02 04 06 08 1
(a) o = [10.0, 1.0, 10] (b) 4 = [4.0, 0.1, 10.0]
L Figure 5. Line plots of ¢; along the x—axis.

plicity, we only consider the effect of employing ROM for the adjoint PDE to quantify the
erry Birious Qols for a particular FEM solution of (12)). This particular FEM solution is computed

with A = 30 and 6 = 7. The numerical parameters for Hierarchical POD for the adjoint PDE are
s K =40,toly =1FE — 7, M, = 5, mincorr = 0.9 and g = Id. The FEM adjoint problem has
rees of freedom and for each Qol a different adjoint problem needs to be solved. This is
q@nsive if FEM adjoint solutions are used for error estimation.
owever, we show results for error estimates computed using Hierarchical ROM in Table
Thmators N and 7j;, refer to the estimated error in the Qols using the FEM adjoint solution
an chical ROM adjoint solutions respectively. We observe that the error estimate using
the Hiergrchical ROM for adjoint is almost as accurate as the error estimate obtained using the
E joint solution using only 6 basis vectors for [10.0, 1.0, 10] and 4 for [4.0, 0.1, 10.0], hence
significant savings in computational effort.

6. NUMERICAL EXAMPLES

In this section we investigate the hierarchical POD ideas on two more examples. The results are
illustrated for some chosen parameters p, which are different from the randomly sampled parameters
used to form the ROM basis.
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M ﬁﬂ(Uu)/nﬂ(Uu) M | U)o/ 1(U,)
I 0.00 1 0.24
2 0.01 2 0.53
3 0.47 3 1.25
4 0.65 4 1.02
5 0.90 5 0.99
| © 0.98 6 1.00
7 1.02 7 1.00
3 1.02 8 1.00
1.01 9 1.00
" o1 10 1.00
) i = [10.0, 1.0, 10], 7(U,) = 4.3E — 2 (b) p=1[4.0,0.1, 10.0(])ZL np(Up) = 1L.7715E —

Table VI. Values of the ratio 7, (Uy) /14 (Up)-

1¥on Problem

SC

Consider the Poisson problem [24],

V-e(x)Vu=0 x€Q,
u =0, Xerdv

Nnu

26
% =0, x ey, 20
% =1, xeTl,.
wher the unit square [0, 1] x [0, 1], T, is the lower boundary, y = 0, and Ty is the top boundary,
Y= Ty, = 0Q\(T', UTy) . The diffusion coefficient, (x), is piecewise constant, as shown in
Here each ¢; € [0.1,10] for i = 1,--- , 3. That is, our parameter space is 3-dimensional,
D= 10]3. The value of the ¢ in the top right is set as 1. The Qol is,
Qu) = / Xqudz. 27
Q
whigre x, is the characteristic function of Q, = [0.0625, 0.25] x [0.0625, 0.25].
O 1.0
€3 1
€1 €2
3 0.0 0.5 1.0
{v’ Figure 6. Diffusion Coefficient, e(x), is piecewise constant.
The problems corresponding to the forward problem (26)) were solved on a regular triangular

mesh of 16 x 16 x 2 triangular elements whereas the adjoint solutions were solved on a a regular
triangular mesh of 32 x 32 x 2 triangular elements. These meshes gave reasonably accurate FEM
solution, while also ensuring that the elements align with the boundaries where the diffusion
coefficient jumps. Standard space of continuous piecewise linear polynomials, P! is employed to
form the FEM snapshots for (28) whereas the adjoint FEM snapshots ®,, are approximated on
the space of continuous piecewise quadratic polynomials, P2. The numerical parameters are set as
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tolg = 1E — 7, M, = 10, mincorr = 0.9 and g = Id. Further, the max-level of the tree is set at
three.

We show results for two parameters. The first parameter is [10.0, 0.1, 0.1], which has large
jumps in the diffusion coefficient, and hence is a relatively hard problem. The second parameter
is arbitrarily chosen as [2.6, 2.1, 3.2], representing an easier problem. The FEM solution for
= [10.0, 0.1, 0.1] has two orders of magnitude greater error (FEM error = 6.595¢ — 04) than the
solution gorresponding to p = [2.6, 2.1, 3.2] (FEM error = 6.601e — 06), indicating the relatively
Mature of the first problem The results for the ratio of POD error and the FEM error in the
Qojr® U.)/ Q(u# U,.), for different number of basis vectors, M, to form the POD solution
arn Tables and [VII] for the parameters p = [10.0, 0.1, 0.1] and x = [2.0, 3.0, 4.0]
respectively. The Classical POD solution is computed with K = 80 and K = 800, corresponding
% Mtude” and “fine” sampling of the parameter domain. The Hierarchical POD solution is

uted with K = 80 for each subdomain. We observe that the Hierarchical ROM solutions
have significantly lower error than the Classical ROM solutions for low value of M, indicating

@ncy of this approach. This is especially apparent for the harder problem corresponding to

M 0.1, 0.1].

m M | Classical, K = 800 | Classical, K = 80 | Hierarchical, KX = 80

1 7.62 7.93 1.00

2 5.40 8.25 2.01

3 3 5.26 4.59 1.03

4 3.54 4.63 1.01

C 5 3.33 3.57 1.00

6 1.38 3.12 1.00

7 1.25 1.48 1.00

cU 8 1.05 1.37 1.00

9 1.00 1.02 1.00

10 1.00 1.01 1.00
Tal .Ratio of the POD error and FEM error in the Qol, Q(u, — U,)/Q(uu — Uy), for p=
[10 >0.1]. The POD solutions are computed with M basis vectors using the Classical and the

al schemes, with the cardinality of the parameter sampling represented as K. The FEM error
is Q(uy — Uy) = 7.577TE — 03.

e
M | Classical, K = 800 | Classical, K = 80 | Hierarchical, K = 80
O 1 54.12 63.25 30.54
2 -1.56 -8.85 11.75
3 -10.59 -11.68 -2.61
c 4 -4.28 -7.54 -0.62
5 0.71 0.27 0.18
et | 0.84 1.04 111
7 0.85 1.00 0.99
i 8 0.93 0.94 1.00
9 0.93 0.95 1.00
10 1.00 1.00 1.00

IIL. Ratio of the POD error and FEM error in the Qol, Q(uy — U)/Q(uy — Uy), for p=
.0, 3%, 0]. The POD solutions are computed with M basis vectors using the Classical and the Hlerarchlcal
schemes with the cardinality of the parameter sampling represented as K. The FEM error is Q(uy — Uy) =
2.978F — 05.

Table[[X]shows the effectiveness of the estimate 7j(U,, ) for the error analysis of the FEM solution.
The results indicate that we obtain an accurate error estimate using very few basis vectors. Table
shows similar results for the error analysis of the forward hierarchical POD solutions U,,.
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N [ 7(U,)/0(0,) N [ #(0,)/n(U,)
1 0.42 1 0.51

2 0.85 2 0.81

3 0.86 3 1.03

4 0.95 4 1.03

5 0.99 5 1.00

6 0.99 6 0.99

7 1.00 7 1.01

0.0,0.1,0.1], n(U,) = 7.577TE — 03 (b) i = [2.0,3.0,4.0], n(U,.) = 2.978E — 05
Table IX. Values of the ratio 77(Uy)/n(Uy).

script

1(Uu)/nUy) M | 7(Uu)/nUy)
1 0.42 1 0.55
2 0.85 2 0.82
3 0.85 3 1.02
4 0.95 4 1.03
5 0.99 5 1.00
6 0.99 6 0.99
7 1.00 7 1.00

U

0.0,0.1,0.1], n(Uy) = 7.579E — 03 (b) = [2.0,3.0,4.0], n(Uy) = 3.292E — 05

" Values of the ratio 7(U,.)/n(Uy). The solutions U, were computed using M = 6 basis vectors.

inear Example

an

the nonlinear problem,

~V - (o1 +u?)Vu + 2 (e — 1) = 10sin(27z) sin(27y), x in £,
u=0 x €1y, (28)
%L =0 xel,.

wikre € is the unit square [0, 1] x [0, 1], T, is the lower boundary, y = 0, and T'y = OQ\T',,.

The parameter space, represented by u = [ay,az,a3] C D =[0.1,1.0] x [0.01,8.0]2, is three
di al. The Qol is,

Qu) = / Yudx. 29)
Q
w#ée ;2: = p*QeF’Q/ (P =IxI%) approximates the Dirac delta function as p — 0. We set p = 0.1.
€a Ioint problem corresponding to (28] is,
—Ve(w,U)Vo+€(u,U) - Vo+ f'(u,U)p =1

:j $=0 x € Ty, (30)
9¢

2=0 xel,.
1
e(u,U) = / o + (su+ (1 —s)U)%ds, (31)
0
1
€(u,U) = / 2(su+ (1 = s)U)V((su+ (1 —s)U)) ds, (32)
0
and )
f'(u,U) = / aoe3(sut1=9U) gq. (33)
0
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The definition (30) implies,
Qu—U) = (u—U,9) = —((a; + U VU, $) — (%(e“‘w —1),¢) + 10sin(27z) sin(27y).
’ (34)

The FEM problems are solved on a regular triangular mesh of 30 x 30 x 2 triangular elements.
Standard space of continuous piecewise linear polynomials, P! is employed to form the FEM

for whereas the adjoint FEM snapshots ®,, are approximated on the space of
continuous piecewise quadratic polynomials, P2. Other values of numerical parameters for the
Hi al ROM are K = 40, toly = 1E — 6, M, = 10, mincorr = 0.9 and g = Id. Further, the
madlanillead the tree is set as three.
= Bheagsults for 4 = [1.0,8.0,0.1] and p = [1.0,0.01,8.0] are shown in Table. The results
highlight how the Hierarchical ROM achieves a more accurate solution using fewer basis vectors
co to Classical ROM.

N

Classical | Hierarchical M | Classical | Hierarchical
2 -1.63 0.37
-2.26 -8.34
4 -0.13 1.09
-4.97 0.76
6 1.25 0.94
-4.97 2.90
8 1.07 1.00
6.83 1.09
10 1.08 1.00
-3.60 1.01
12 0.99 1.00
2 -4.53 1.09
14 0.99 1.00
-3.40 1.04
16 1.00 1.00
0.93 1.04
18 1.00 1.00
18 1.04 1.01
20 1.00 1.00
W | (a)O'SS[O 110 80(')?8 22 1.00 1.00
(U~ U) = ~T54TE — 04 (®) 1 = [1.0,0.01, 8.0],

Q(uy — Uy) = —4.52E — 04

Table atio of the POD error and FEM error in the Qol, Q(u;, — Uy)/Q(uyu — Uy). The POD solutions
ed with M basis vectors using the Classical and the Hierarchical schemes, with the cardinality of
the parameter sampling represented as K.

lh show results for the error estimate of the FEM solutions, U,,, using Hierarchical ROM in
Tabjeml]l Similar results for the error estimate of the Hierarchical POD solutions, U,, in Table
Ing $s, the error estimate using the Hierarchical ROM adjoint solution computes an accurate

0

err mate using a small number of basis vectors.

O M | (U, /(0,0
T 0.87 I 1.05
et | - 0.91 2 1.00
3 0.98 3 1.00
s 4 0.99 4 1.00
5 1.00 5 1.00
6 1.00 6 1.00
7 1.00 7 1.00
8 1.00 8 1.00
9 1.00 9 1.00
10 1.00 10 1.00

(a) 1 = [0.1,1.0,8.0], n(Uy) = —7.547E — 04 (b) v = [1.0,0.01,8.0], n(Up) = —4.520E — 04
Table XII. Values of the ratio 77(U,) /n(Uy).
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N [ 7(0,0)/0(0,) N[ #(0,)/1(0,)
1 0.97 1 1.05
2 0.96 2 1.00
3 0.99 3 1.00
4 0.99 4 1.00
5 1.00 5 1.00
6 1.00 6 1.00

H 7 1.00 7 1.00
8 1.00 8 1.00
9 1.00 9 1.00
10 1.00 10 1.00

1,1.0,8.0], n(U,) = —2.188F — 03 (b) u = [1.0,0.01,8.0], n(Uy) = —4.227E — 04

Values of the ratio 7(U,,) /n(U). The solutions U,, were computed using M = 6 basis vectors.

7. CONCLUSIONS

iy
@,
)

Wi p POD based algorithms for efficient solution of parameterized PDEs and a posteriori
error estimation. Our hierarchical POD algorithm samples the parameter domain based on the
pr s of the solution space, instead of uniform random sampling. Moreover, the parameter

do decomposed into sub-regions based on the solution behavior and a local reduced basis
is gmguted for each sub-region. This allows accurate yet inexpensive computation of solution in
the Online stage of the algorithm when computational resources are of vital importance. Our results
in gnificant saving of computational effort compared to the standard algorithm for a number
of S.
Reliable use of numerical simulations in science and engineering applications necessitate not
ast computation of the discrete solution, but also quantification of its error. In this regard
we € the hierarchical approach to the computation of the adjoint solutions, hence leading to
ign of accurate error estimates in a quantity of interest. Employing ROM for adjoint solutions
is also attractive as we expect the adjoint solution space to be of much lower dimensional than the
PDE solution space. We see this behavior in the numerical examples where relatively few vectors
in ge adjoint reduced basis provide a good error estimate. We also extend the idea of ROM for
ized PDEs to form error estimates for multiple Qols. The inexpensive error estimation
out for not only the ROM solutions but also high dimension FEM solutions. The latter
Aint in scenarios where computing a ROM solution for a PDE has too large an error so a
FEM solution in unavoidable. Employing hierarchical ROM for forming error estimates for multiple
mch a case yields significant savings in the computational budget as it avoids solving FEM
i lution multiple times for each Qol.

-t
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