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SUMMARY

Efficient algorithms are considered for the computation of a reduced-order model based on the proper
orthogonal decomposition methodology for the solution of parameterized elliptic partial differential
equations. The method relies on partitioning the parameter space into subdomains based on the properties
of the solution space and then forming a reduced basis for each of the subdomains. This yields more
efficient offline and online stages for the proper orthogonal decomposition method. We extend these ideas for
inexpensive adjoint based a posteriori error estimation of both the expensive finite element method solutions
and the reduced-order model solutions, for a single and multiple quantities of interest. Various numerical
results indicate the efficacy of the approach. Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .
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1. INTRODUCTION

We investigate efficient algorithms for the computation of a reduced-order model (ROM) and a
posteriori error estimation strategies for the numerical solution of the parameterized nonlinear
convection-diffusion-reaction problem,{

−∇ · εµ(x)∇uµ(x) + bµ(x) · ∇uµ = fµ(uµ,x), x ∈ Ω,

uµ(x) = 0, x ∈ ∂Ω.
(1)

Here Ω ⊂ Rd (d = 2 or 3) and εµ, bµ, and fµ may depend on the parameter vector µ in a bounded
domain D ⊂ Rp. We consider the problem with εµ Lipschitz and symmetric positive definite, bµ
divergence free and fµ Lipschitz for all values of µ ∈ D. The function fµ may be nonlinear. The
methods presented in this article also apply for nonlinear diffusion, that is if the diffusion coefficient
εµ(x, uµ) depends on uµ. However, we avoid the issues related to the well posedness of such
problems here. A numerical example considering this case is explored in §6.2.

The goal of the computation is to approximate the value of a quantity of interest (QoI) of the form

Q(uµ) =

∫
Ω

ψ uµ dx = (ψ, uµ) (2)
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for a given ψ ∈ L2(Ω). The QoI in (2) is a linear functional of the solution uµ. Nonlinear QoIs
require special treatment, and are often dealt by linearization of the QoI [1, 2].

In this article we focus on the reduced modeling approach [3, 4, 5, 6, 7], in particular on proper
orthogonal decomposition (POD) [8, 9, 10, 11, 12]. POD techniques form a reduced-order model
through expressing a solution in terms of a truncated spectral basis having a dimension much
lower than the actual solution space for, say, finite element approximations. Then, approximate
solutions belonging to the low-dimensional reduced basis are determined, most usually, through a
Galerkin projection. We extend the classical POD algorithm which forms a single spectral basis to
a hierarchical approach which forms multiple spectral bases adapted to the parameter dependence.

POD techniques have been applied to numerous science and engineering applications [13, 14, 15,
16, 17, 18, 19]. They often have good approximation properties [20, 21] and are naturally applied
to nonaffine and nonlinear problems [22]. However, reduced basis methods for the solution of
parameterized PDEs based on POD are not without their drawbacks [22]. POD techniques form the
reduced basis by sampling the parameter domain and then computing the full-order model (FOM)
solutions, called snapshots. Generally, a large number of sample points, and hence a large number
of FOM solves, are performed to ensure that the entire range of solution behavior is captured.
However, many of the FOM solutions may contribute only marginally towards the accuracy of the
ROM solution, resulting in wasted computational effort. Further, a large dense eigenvalue matrix
problem, with dimension equal to the number of sample points, needs to be solved in forming the
reduced basis. Moreover, even after the reduced basis has been formed, the cost of assembling a
stiffness matrix corresponding to the reduced basis may be unacceptably high if the decay of the
eigenvalues is slow. This is because the truncation of the spectral basis is carried out based on the
decay of the eigenvalues. Finally, to the best of our knowledge, no a posteriori error estimation
based on adjoint problems and computable residuals for QoIs computed from numerical solutions
obtained from POD techniques has been carried out. There has been recent work on a posteriori
analysis using an optimization approach applied to global norms, see [23].

In this article, we aim to address the drawbacks of POD techniques mentioned above. In particular,
we propose a sampling strategy which starts out with a crude sampling, then samples different
regions of the parameter domain adaptively. This reduces the size of eigenvalue problem to be solved
and also samples in regions where more information is needed to form accurate ROM solutions.
Moreover, a hierarchical reduced basis is formed, enabling the formation of the ROM solution more
efficiently than standard POD techniques. Finally, we carry out a posteriori error analysis of the
ROM solution obtained from POD techniques. The standard a posteriori analysis for reduced basis
techniques bounds the error between the ROM solution and the FOM solution [24]. Such bounds
are not true error estimates, as the FOM solution is also computed numerically, and hence may
have a large error itself. This is important in the context of multiscale, multiphysics problems which
necessitate complex solutions techniques and thus have significant numerical error, even for the
FOM solutions [25]. As opposed to the previous a posteriori analysis, we derive representations for
the error in the QoI between the true continuum solution and the ROM solution. Further, we develop
techniques for cheap a posteriori analysis for FOM solutions using POD techniques for computing
the error estimate. This in important in situations where the ROM solution has error beyond the
specified tolerance, and computing a FOM solution in unavoidable.

The a posteriori error analysis in this article is carried out using variational analysis, computable
residuals, and adjoint problems. Such a posteriori error estimates are widely used for finite element
methods [26, 27, 28]. The strategy relies on computing an adjoint solution based on the adjoint
operator corresponding to (1). The key insight that makes error analysis using ROM efficient lies
in the observation that the error in the solution, due to its subtractive nature, is a lower dimensional
entity than the solution itself. Further, QoIs are lower dimensional quantities as well, and hence
this allows employing ROM for the adjoint solutions an attractive option, as we expect the adjoint
solution space to be lower dimensional than that of the PDE. Quite often there are multiple QoIs
that need to evaluated. The classical analysis of such systems require an adjoint solution for the
QoI, and hence is quite expensive. We extend our ideas for using ROM for the adjoint solutions by
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treating the QoI as a parameter in the adjoint problem. This allows inexpensive computation of error
estimates for multiples QoIs for both FOM solutions as well as solutions obtained using ROM.

There are other alternatives to the POD approach, e.g., greedy algorithms [24, 6, 12]. The greedy
algorithms construct the reduced basis space by adding one basis vector at every step. This new basis
vector is chosen as the one which exhibits the largest a posteriori error bound between the solution
computed from existing basis and a FOM solution. On the other hand, the POD algorithms construct
the entire reduced basis space, which typically involves solving a large eigenvalue problem. Thus the
POD basis are often more expensive to construct, though, we try to address the issue of solving large
eigenvalue problems by employing a hierarchical algorithm as mentioned earlier. We restrict our
algorithms to the POD techniques as greedy algorithms are tailored towards affine linear problems,
though there are extensions to nonlinear problems as well [29].

The hierarchical approach proposed is similar to the “h”-type reduced basis methods based on
the greedy strategy [30]. However, there are substantial differences in how we sample the domain
and form the hierarchical basis. There are also similarities to the recently introduced adaptive basis
splitting methods [31]. That method is focused on enriching the reduced basis in the online stage,
whereas our focus is on forming the hierarchical basis in the offline stage. Another method to
construct POD basis efficiently based on interpolation and notions from differential geometry is
considered in [32]. The main focus of that method is to interpolate between existing POD basis,
whereas we focus on forming hierarchical basis for the entire parameter space. Another approach
for constructing local POD basis for a system of ordinary differential equations is presented in [33].
Their method is based on contiguous partititioning of the state space, whereas in our method local
basis are attached to non-contiguous regions in the parameter space. Moreover, our method has a
hierarchy of reduced basis whereas the method in [33] partitions the state space only once.

The paper is organized as follows. In §2 we review the basic POD methodology. We introduce our
hierarchical POD algorithms in §3. We perform a posteriori analysis to quantify error in the FOM
and ROM solutions using POD techniques to compute the adjoint solution in §4. We extend these
ideas to treat multiple QoIs in §5. Some additional numerical examples are presented in §6.

2. REVIEW OF CLASSICAL POD

POD techniques reduce the dimension of a system by transforming the original variables onto a new
set of uncorrelated variables such that the total norm of the spectrum present in all of the original
variables is captured well by a few of the uncorrelated variables [22]. This spectral decomposition
allows construction of a reduced basis in which the solution is sought. We employ the method of
snapshots [8] to form the ROM model of the parameterized PDE (1). Snapshots refer to the solution
of the PDE (1) at a set of sample points.

2.1. Finite element approximation

In a practical setting, the exact solution to (1) is not available and needs to be approximated, which
we assume is carried out by a finite element method (FEM). The FEM approximation of the solution
of (1) is given by Uµ ∈ V p satisfying

(εµ∇Uµ,∇v) + (bµ · ∇Uµ, v) = (fµ(Uµ), v) ∀v ∈ V ph , (3)

where V ph ⊂ H1
0 (Ω) denotes the standard space of continuous piecewise polynomials of order p and

(·, ·) denotes the standard L2(Ω) inner product.

2.2. Formation of POD reduced basis

Let Θ ≡ {µk, k = 1, · · · ,K} be a sampling of D and denote the corresponding FEM solutions
or snapshots by {Uk = Uµk , k = 1, . . . ,K}. POD computes a reduced basis of dimension M �
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dim(V ph ) as the solution to the optimization problem

{wi, i = 1, · · · ,M} = arg min
1

K

K∑
j=1

∥∥∥Uj − M∑
i=1

(Uj , wi)Xwi

∥∥∥2

X
. (4)

Here (·, ·)X and ‖ · ‖X withX = 0 and 1 respectively denote the L2 andH1 inner product and norm.
The reduced basis vectors wi are determined by computing the SVD of the matrix having columns
Uj or, equivalently, determining the eigenvalues and eigenvectors of the correlation matrix C having
entries

Cij =
1

K
(Uj , Ui)X . (5)

Let λ1 ≥ · · · ≥ λd > 0 denote the positive eigenvalues of C which, without loss of generality, can
be ordered; also let v1, . . . , vd denote the associated eigenvectors. Then the ith POD basis vector is
given by

wi =
1√
Kλk

K∑
j=1

(vi)jUj , (6)

where (vi)j denotes the jth component of the vector vi. The dimensionM of the reduced basis (RB)
space may be specified, or chosen using some criteria. One such criteria is to choose a tolerance
TOL and then choosing M to be the smallest integer such that

K

K∑
i=M+1

λi < TOL. (7)

Alternately, one can choose M to be the smallest integer such that∑M
i=1 λi∑K
i=1 λi

> FRAC, (8)

where FRAC is chosen close to 1 [34]. These criteria are based on the observation that often the
first few POD vectors capture most of the energy of the system.

2.3. POD approximations

Let W denote the reduced basis space {wi, i = 1, . . . ,M}. Then, for any µ ∈ D, the ROM or POD
approximation of the solution of (1) is given by Ũµ satisfying

(εµ∇Ũµ,∇v) + (bµ · ∇Ũµ, v) = (fµ(Ũµ), v) ∀v ∈W. (9)

2.4. Offline and online stages

Computing the ROM approximation has an offline and an online stage; the former is effected a
single time whereas the latter may be repeated many times. As a result, one is more willing to incur
a greater cost in the offline stage because it can be amortized over the many repetitions of the online
stage. On the other hand, because it is repeated many times, one would want the online stage to
be significantly less expensive to be effective. The reduced basis {wi, i = 1, . . . ,M} is formed in
the offline stage. This involves determining FEM approximations at all K sample points and then
solving a K ×K eigenvalue problem; this process can be expensive for large K. In the online
stage, the ROM approximation (9) is determined. If M is not too large, this can be inexpensive to
accomplish.
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3. SAMPLING OF THE PARAMETER DOMAIN AND HIERARCHICAL PROPER
ORTHOGONAL DECOMPOSITION

3.1. Parameter sampling strategy

In this section we outline the selective sampling of the parameter domain. We start with a coarse
sampling of K points in the parameter domain. Because the sampling is coarse, we do not expect
the snapshots to capture all possible behaviors of the PDE, and hence we need to sample additional
points in the parameter domain. This is carried out by grouping samples which are correlated into
subdomains (see §3.4), and then populating those subdomains so that the number of samples in each
subdomain is againK. This process is then carried out for each subdomain till the parameter domain
is effectively sampled.

Secondly, a local reduced basis is formed for each subdomain, forming the hierarchical reduced
basis method. In classical POD, the solution may require a large number of reduced basis vectors to
achieve high accuracy, negating the main advantage of using ROM. The hierarchical reduced basis
method forms accurate solutions with relatively few basis vectors. The subdomains are structured
as a tree. The details of the algorithm are described below.

3.2. Tree-based structure

The basic structure of the hierarchical basis is a tree-like partition of the parameter domain
with a reduced basis space attached to each node. The root node of the tree corresponds to the
entire parameter domain, D = D(0). This is partitioned into P (0) children subdomains D(0,i), i =
1, . . . , P (0). Then each subdomain D(0,i) may be further partitioned into P (0,i) subdomains
D(0,i,j), j = 1, . . . , P (0,i), and the process continued till some stopping criteria is met. A typical
subdomain is identified as Dτl where τl is an l + 1-tuple of the form (0, i1, . . . , il). It is possible for
two leaf nodes in the tree to be at different levels, with the root node being at level 0, its children at
level 1 and so forth. This is illustrated in Figure 1.

D = D(0)

D(0,0) D(0,1)

D(0,1,0) D(0,1,1)

D(0,2)

D(0,2,0) D(0,2,1) D(0,2,2)

D(0,2,2,0) D(0,2,2,1)

Figure 1. Hierarchical partitioning of the parameter domain.

Next we address the particulars of how a subdomain is represented, partitioned and sampled.

3.3. Subdomain representation

A subdomain is defined by a subset of sampled parameter values of their parent node. We explain
this for the subdomains corresponding to the children of the root node D. Let µ1, . . . , µK be
parameters in the sampling of D. The K parameters are identified together into P (0) sets denoted
as Ξ(0,i) (as described in the next section). Then the ith subdomain, 1 ≤ i ≤ P (0), D(0,i), is defined
implicitly by the parameter set Ξ(0,i). Given an arbitrary µ ∈ D, the subdomain to which µ belongs
is found by first finding the minimum µk such that

µk = arg min
1≤l≤K

‖g(µ)− g(µl)‖, (10)
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where g is a function of µ and ‖ · ‖ is the Euclidean norm. Then µ is identified with the jth
subdomain such that µk ∈ Ξ(0,j).

The process described above is repeated for all Dτl that have children, and is terminated when
a leaf node is reached. This leaf node represents the subdomain to which the parameter belongs.
The function g may be chosen in multiple ways. The simplest option is to choose g as the identity
function, g(µ) = µ. Then (10) represents the Euclidean distance between the parameters. Another
options is to choose g(µ) = α = [α1, . . . , αM2

] where αi are the (spectral) coefficients of the
reduced basis corresponding to a ROM solution of dimension M2. That is, the αi are obtained
from Ũµ =

∑M2

i=1 αiψi. This involves solving a POD problem. However, if M2 is small, this is
inexpensive.

3.4. Partitioning of a subdomain

This section explains the process of forming the sets Ξ(0,i), and hence the subdomains D(0,i),
for the root node, D. We assume that there are K parameter values in the sampling of the root
node. The k-means clustering algorithm is widely used for clustering algorithms and we employ it
here to identify points into the same subdomain [35]. The clustering algorithm is initialized using
the k-means++ variant of the algorithm, which often is a more robust approach than random
initialization [36]. Pearson’s correlation coefficient is used as the “distance” measure in the k-
means algorithm. Given two vectors X(j) and X(k), j 6= k, of length N , the Pearson’s correlation
coefficient is defined as,

rj,k =

∑N
i=1(X

(j)
i − ¯X(j))(X

(k)
i − X̄(k))√∑N

i=1(X
(j)
i − X̄(j))2

√∑N
i=1(X

(k)
i − X̄(k))2

, (11)

where X(j)
i is the ith component of X(j) and X̄(j) is the mean of the values of X(j).

In the context of POD techniques, the vectors X(j) are formed by the coefficients given in the
reduced basis representation of the FEM snapshot Uµj . That is, given K snapshots Uµj , we form a
reduced basis of dimension Ms where Ms is the number of positive eigenvalues of the correlation
matrix C in (5). Then Uµj =

∑Ms

i=1 αiψi and X(j) = [α1, · · · , αMs
]>. The length of each X(j) is

Ms. For each partitioning of a subdomain, the number of child subdomains need to be chosen, which
is also the k in the k-means algorithm. There are various heuristics to choose k. In this manuscript,
we choose k =

√
K, that is square-root of the number of samples [37]. If this results in a cluster

which contains just one sample point, then we reduce k by one, and repeat the process until all
clusters contain more than one point.

Finally, it is important to note that a particular partition, Di, may not be spatially connected (that
is, points in Di may not be neighbors of each other).

3.5. Subdomain partitioning criteria

A parameter subdomain, Dτ , is partitioned if two conditions are met:

1. The decay of the largest Me eigenvalues of the correlation matrix Cij for that subdomain is
larger than a specified tolerance, told. That is, if K

∑K
i=(Me+1) λi > told.

2. The minimum value of the correlation coefficients, rj,k, 1 ≤ j, k ≤Ms, for that subdomain is
below a threshold, mincorr.

Moreover, the partitioning may be optionally stopped if a node has reached a specified maximum
level.

3.6. Sampling the new subdomains and formation of the reduced basis

Once the new subdomains are formed, they need to be sampled, FEM snapshots formed at those
sampled values, and reduced basis formed from those snapshots as described in §2. For simplicity,
we assume that all subdomains are sampled by K parameters values and the sample set associated
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with Dτl is denoted Θτl . For efficiency, we assume the subdomain inherits the parameter values
from its parent. For example, the set Ξ(0,i) ⊂ D which defines D(0,1) is also part of its sampling,
that is, Ξ(0,i) ⊂ D(0,1). Rejection sampling is used to populate the new subdomains. Given a random
parameter µ, we determine the leaf subdomain it belongs to using the process described in §3.3. If
the subdomain already has K sampled parameters, then the parameter µ is rejected, otherwise the
µ is added to the parameter sample for that subdomain. The process repeated until all subdomains
have K sampled parameters.

3.7. Offline and online Stages

The subdomain tree and the reduced basis are constructed in the “Offline” stage. Note that the
reduced basis spaces corresponding to only the leaf nodes need to be saved. In the “Online” stage,
given a parameter value µ, we locate the subdomain that µ belongs to, as outlined in §3.3. Then
we retrieve M basis vectors corresponding to the reduced basis of that subdomain, and form
the hierarchical ROM or the hierarchical POD solution as discussed in (9). The Offline stage is
summarized in Algorithm 1, whereas the Online stage is summarized in Algorithm 2

Algorithm 1: Hierarchical POD Offline Stage
Insert D into Subdomain Queue
while Subdomain Queue is not empty

Sample subdomains in Subdomain List (§3.6)
Dτl := Subdomain at front of Subdomain Queue
Form FEM snapshots and POD reduced basis for Dτl
if Dτl is to be partitioned (§3.5)

Form children subdomains Dτl+1 of Dτl (§3.4 and §3.3)
Insert all newly formed subdomains Dτl+1 at the end of Subdomain Queue

Algorithm 2: Hierarchical POD Online Stage
Input: µ: Parameter
return: Q(Ũµ): QoI value for hierarchical POD solution

Insert D into Subdomain Queue
Find leaf sub domain Dτl to which µ belongs (§3.6)
Fetch POD reduced basis space W corresponding to Dτl
Compute the POD solution, Ũµ, as in (9) and evaluate Q(Ũµ)

3.8. Numerical Example

We illustrate the properties of the hierarchical algorithm with a numerical example. We consider a
reaction-diffusion-convection problem,{

−∇ · ∇u+ [A cos(θ) , A sin(θ)] · ∇u+ u = 10, x ∈ Ω,

u = 0 x ∈ ∂Ω.
(12)

The domain Ω is the unit square [0, 1]× [0, 1] and µ = [A, θ] denotes the random parameter vector.
The parameter domain, D is two dimensional, with A ∈ [0, 40] and θ ∈ [0, 2π]. The QoI is

Q(u) =

∫
Ω

χqu dx. (13)

where χq is the characteristic function of Ωq = [0.05, 0.2]× [0.3, 0.5], that is χq(x) = 1 if
x ∈ Ωq and χq(x) = 0 otherwise. We expect the sensitivity of the QoI to vary with θ. The direction
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of the vector field, [A cos(θ) , A sin(θ)] , is shown for θ = π and θ = π/4 in Figure 2. The θ = π
vector field creates a pseudo-inflow boundary near where the QoI is evaluated, and hence we expect
the QoI to have relatively large error for this value of θ. A regular triangular mesh with 20× 20× 2
elements is employed and the standard space of continuous piecewise linear polynomials, P1, is
employed to form the FEM snapshots. These numerical parameters were chosen to ensure that the
numerical error was not overly large.

x
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(a) θ = π.
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(b) θ = π/4.

Figure 2. Plot of the vector field [A cos(θ), A sin(θ)].

We compare the “Classical” POD approach with no partitioning with the “Hierarchical”
POD approach. For the classical approach, we perform two experiments, with the number of
samples for the parameter domain chosen as K = 40 and K = 200, corresponding to “crude”
and “fine” sampling. For the Hierarchical POD, the number of parameter samples for each of
the 144 subdomains are K = 40 (for a total of randomly sampled 144× 40 parameters) while the
other numerical parameters used in forming the subdomains are set as told = 1E − 4, Me = 10,
mincorr = 0.9 and g ≡ Id where Id denotes the identity function. The subdomains at level 1
(D(0,i)) are illustrated in Figure 3. A particular subdomain may not be connected but have multiple
pieces.
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Figure 3. Subdomains at level 1
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We present results for two parameters, µ = [π, 39.8] and µ = [π/4, 26.2] . These parameters are
different from the ones that were randomly sampled to form the ROM basis. The µ = [π, 39.8]
is more difficult as this choice results in a convective vector field b = [−39.8, 0]>, and hence the
evaluation of the QoI near the left, pseudo-outflow boundary is challenging. This is also seen from
the error in the FEM solutions for the two parameters. The FEM solution for µ = [π, 39.8] has an
error of -1.6958E-04 whereas the FEM solution for µ = [π/4, 26.2] has a much smaller error of
3.5081E-06. The results for different number of basis vectors, M , to form the ROM solution are
shown in in Tables I and II for the parameters µ = [π, 39.8] and µ = [π/4, 26.2] respectively. The
values in the tables are the ratio of the POD solution error, Q(uµ − Ũµ), to the FEM solution error,
Q(uµ − Uµ). As the POD solution approaches the FEM solution in accuracy, the ratio of the POD
error and the FEM error approaches one, as seen in the results. The Hierarchical POD techniques
are able to form a much an accurate solution with significantly fewer basis vectors in both cases.
For the parameter µ = [π, 39.8] the Hierarchical solution has the same accuracy with four basis
vectors as the Classical techniques have with 18–20 vectors. We observe similar performance for
the parameter µ = [π/4, 26.2].

M Classical, K = 200 Classical, K = 40 Hierarchical, K = 40
2 -9.64 4.42 0.69
4 6.50 -6.01 1.17
6 1.59 7.85 1.01
8 2.94 3.09 0.97

10 2.83 3.15 1.00
12 2.65 1.12 1.00
14 1.68 1.35 1.00
16 1.31 1.66 1.00
18 1.20 1.60 1.00
20 1.07 1.12 1.00

Table I. Ratio of the POD error and FEM error in the QoI, Q(uµ − Ũµ)/Q(uµ − Uµ), for µ = [π, 39.8].
As the POD solution approaches the FEM solution in accuracy, the ratio of the POD error and the FEM
error approaches one. The POD solutions are computed with M basis vectors using the Classical and the
Hierarchical schemes, with the cardinality of the parameter sampling represented as K. The Hierarchical

solution was retrieved at level 2. The FEM error is Q(uµ − Uµ) = −1.6958e− 04.

M Classical, K = 200 Classical, K = 40 Hierarchical, K = 40
2 436.88 -1456.48 -64.08
4 136.19 563.94 1.02
6 -94.23 -163.57 1.90
8 -8.82 -103.39 2.18

10 -16.75 -37.03 1.02
12 3.65 -3.04 1.01
14 4.05 10.80 0.95
16 7.25 7.05 1.00
18 4.42 4.37 1.00
20 -0.06 1.09 1.00

Table II. Ratio of the POD error and FEM error in the QoI, Q(uµ − Ũµ)/Q(uµ − Uµ), for µ = [π/4, 26.2].
The POD solutions are computed with M basis vectors using the Classical and the Hierarchical schemes,
with the cardinality of the parameter sampling represented as K. The Hierarchical solution was retrieved at

level 3. The FEM error is Q(uµ − Uµ) = 3.5081E − 06.
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3.9. Computational Cost

The implicit assumption in forming the Hierarchical POD approach is that we are concerned with
efficiency in the Online stage. This is demonstrasted by the numerical example above, and also in
the examples in §6. In some cases, Offline cost may also be a concern. However, comparison of the
Offline cost for the classical and hierarchical approaches is not straightforward. The hierarchical
approach forms a large numbver of samples in order to distinguish different regimes of solution
behavior. The classical approach does not take this into account, and hence we cannot directly
compare the cost of the Offline costs for the two approaches.

We attempt to compare the sum of Offline and Online costs for the numerical example in §3.8.
We observe that for this example the Offline stage of the Hierarchical POD approach involves
significantly more FEM solves than the Classical approach, and hence is more computationally
demanding in the Offline stage. If the only concern is the speed of the Online stage, then obviously
this is not a major issue. Moreover, the increased cost of the Offline stage for the Hierarchical POD
is eventually amortized by the speedup obtained using fewer basis vectors in the Online stage. To
see this, we define the amortized cost ACx as,

ACx = Offx + Onx, (14)

where x = C or H denotes classical or Hierarchical approaches, Off and On denote the offline and
online costs respectively. For the classical approach we define the Offline and Online costs as,

OffC = (# Offline Samples)× (Cost of FEM solve) + (Cost to form eigenvalues of correlation matrix),
(15)

and
OnC = (# Online Samples)× (Cost of Classical ROM solve). (16)

The corresponding costs for the Hierarchical approach are,

OffH = (# Offline Samples)× (Cost of FEM solve) +

# Subdomains× (Cost to form eigenvalues of subdomain correlation matrix),
(17)

and

OnH = # Online Samples× [Cost of Hierarchical ROM solve + Parameter searching cost] . (18)

For the numerical example in § 3.8, we compare the costs for Classical approach with total
samples K = 40 to the Hierarchical approach with number of samples in each subdomain to be
K = 40, for a total of 144× 40 samples. Since the matrices in the FEM solve are sparse, we assume
that the cost of a FEM solve is equal to the number of vertices in the mesh, which equals 441 in this
case. Moreover, we assume that the cost of forming eigenvalues and eigenvectors from a correlation
matrix of size K ×Kto be K3. This leads to a cost of 403 for the Classical approach, and a cost of
144× 403 for the Hierarchical approach. Moreover, we assume that, on average, we need 12 vectors
to form an accurate ROM solution for the Classical approach. Since the matrices in the Online stage
are dense, this leads to a cost of 123 per sample. For the Hierarchical approach, we assume we need
4 vectors to form an accurate Online solution. Moreover, we take the parameter searching cost to
be log 40× 3, which arises from assuming a kd-tree structure [38] to compare parameters in each
subdomain, and the average depth for finding a parameter to be 3. The amortized costs for the two
approaches are shown in Figure 4. As can be seen, the Classical algorithm has a lower initial cost
due to less computationally intensive Offline stage. However, the Hierarchical approach becomes
computationally cheaper after around 7000 Online samples.

Finally, as observed in Tables I and II, increasing the sample size of the classical approach from
K = 40 to K = 200 still meant a large number of basis vectors are needed in the Online stage for
an accurate solution. In fact, the results for K = 40 and K = 200 are remarkably similar, indicating
that simply increasing the sample size in the Offline stage may not yield an efficiency improvement
in the Online stage. This happens as the classical approach, even for the large sample size, forms

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
Prepared using nmeauth.cls DOI: 10.1002/nme

This article is protected by copyright. All rights reserved.



11

a spectral basis that decays slowly as it has to account for a wide range of solution behaviors,
whereas the Hierarchical approach is tailored to the characteristics of the solution, and hence is able
to form accurate solutions with relatively few basis vectors in the Online stage. We also observe
this behavior in Tables VII and VIII in § 6.1. Thus, simply increasing the sample size in the Offline
stage of the classical approach may not yield increased efficiency in the Online stage, whereas the
hierarchical approach forms accurate solutions with relatively few basis vectors.

Online Samples
0 5000 10000

C
os

t

#10 7

0

0.5

1

1.5

2

Classical
Hierarchical

Figure 4. Comparison of Costs for Classical and Hierarchical approaches.

4. A POSTERIORI ERROR ESTIMATION USING HIERARCHICAL POD

We employ adjoint based a posteriori error estimation to quantify the error of numerical solutions.
We first review the basic concepts of adjoint based a posteriori error estimation, and then apply our
Hierarchical POD algorithm to the adjoint solution computation. This allows the inexpensive and
accurate formation of the error estimate, not just for ROM solutions, but higher dimensional FEM
solutions as well.

4.1. Adjoint based a posteriori error estimation

The adjoint problem corresponding to the “forward” problem (1) is,

−∇ · εµ∇φµ − (∇ · bµ)φµ = f ′µ(uµ, Ûµ)
>
φµ + ψ, (19)

where f ′µ(uµ, Ûµ),=
∫ 1

0

∂fµ
∂u (suµ + (1− s)Ûµ) ds. Here Ûµ represents a numerical solution, e.g. the

FEM solution Ûµ = Uµ or the POD solution Ûµ = Ũµ. Standard a posteriori analysis (by integrating
(19) with (uµ − Ûµ), using integration by parts, and using the fact that uµ satisfies (1)) leads to the
error representation,

Q(uµ − Ûµ) = −(εµ∇Ûµ,∇φµ)− (bµ · ∇Ûµ, φµ) + (fµ(Ûµ), φµ) (20)

In practice, the adjoint solutions need to be approximated. Let Φµ be the FEM solution
corresponding to (19). Then the error representation (20) leads to the error estimate,

η(Ûµ) := −(εµ∇Ûµ,∇Φµ)− (bµ · ∇Ûµ,Φµ) + (fµ(Ûµ),Φµ). (21)

Another error estimate is obtained by using POD techniques (Classical or Hierarchical) for
computing the adjoint solution. Here our conjecture is that the adjoint solutions do not vary greatly
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M Classical: K = 200
5 −1.1859E − 3
10 −4.803E − 4
20 −1.808E − 4
30 −1.568E − 04
40 −1.656E − 04
50 −1.698E − 04

(a) Error in the QoI,
Q(uµ − Ũµ)

M̃ η̃(Uµ)
5 −2.672E − 04
10 −1.848E − 04
20 −1.339E − 04
30 −1.657E − 04
40 −1.697E − 04

(b) Performance of the estimate η̃(Uµ)

Table III. Results for µa = [π, 39.8] for the classical POD algorithm. The error estimate for the FEM solution
is η(Uµ) = −1.696E − 04 and K = 200.

as parameter values change. Let Φ̃µ represent the POD approximation to the adjoint solution. Then
this error estimate is,

η̃(Ûµ) := −(εµ∇Ûµ,∇Φ̃µ)− (bµ · ∇Ûµ, Φ̃µ) + (fµ(Ûµ), Φ̃µ). (22)

Given a numerical solution Ûµ, η̃(Ûµ) is significantly less expensive to compute relative to the
estimate η(Ûµ). In this section we explore strategies for computing Φ̃µ and hence η̃(Ûµ) efficiently.

4.2. ROM for error estimation using classical POD

In this section we explore the efficiency of using ROM for adjoint based error estimation, and
compare it with the efficiency of using ROM for computing the numerical solutions to (1). Since
the error is a much simpler entity than the solution to the PDE itself, we expect to use fewer basis
vectors for error estimation as opposed to approximating a QoI. We illustrate this with the example
in §3.8 for the classical POD algorithm using K = 200 for sampling the parameter domain for the
parameter µ = [π, 39.8] in Table III . The error in the QoI using different number of basis vectors for
the ROM forward solution, Ũµ, is shown in Table IIIa. This shows we need around 40 basis vectors
for the POD solution to approximate the error of the FEM solution up to two digits of accuracy. Now,
we show results for the number of basis vectors, M̃ , in the construction of the POD solution, Φ̃µ for
the adjoint equation. The adjoint FEM snapshots, Φµ, are approximated in the space of continuous
piecewise quadratic polynomials, P2. We investigate the accuracy of the estimate η̃(Uµ) by varying
M̃ and comparing it with the estimate η(Uµ) computed using the FEM adjoint approximation in
Table IIIb. We see we need 30 vectors for an accurate (up to two digits) error estimate, which is 25%
less than the number required for the accurate solution Ũµ. This example illustrates the potential of
using ROM for inexpensive forming error estimates, even for full order FEM solutions.

4.3. Hierarchical ROM for error estimation

In this section, we apply the ideas developed in §3 for approximation of the adjoint solution. That
is, a hierarchical ROM for the adjoint solution is formed. We illustrate the efficacy of this approach
for the convection-diffusion problem (12) in §3.8. One issue in the construction of the parameter
subdomains for the adjoint ROM is whether the partitioning is carried out based on the forward
snapshots Uµ or the adjoint snapshots Φµ. Since the hierarchical ROM for the forward solutions,
Uµ, is already constructed, using the same partitioning for the adjoint ROM saves computational
effort. We show the results for partitioning based on both forward snapshots, Uµ, and the adjoint
snapshots, Φµ, and these strategies are labeled as “Forward Samp.” and “Adjoint Samp.”. The
numerical parameters for the “Forward Samp.” are the same as in §3.8. The numerical parameters
in the case of “Adjoint Samp.” were set as told = 1E − 7, Me = 10, mincorr = 0.9 and g ≡ Id for
the construction of the hierarchical ROM for the adjoint PDE.

Table IV shows the effectiveness of the estimate η̃(Uµ) for the error analysis of the FEM solution
Uµ for the parameters [π, 39.8] and [π/4, 26.2]. The results indicate that we obtain an accurate
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error estimate using just 3 basis vectors for [π, 39.8] and 1 basis vectors for [π/4, 26.2] for both the
“Forward Samp.” and “Adjoint Samp.” strategies. Moreover, we again observe that very few basis
vectors are needed for accurate error estimate.

Table V shows results for the error analysis of the forward hierarchical POD solutions Ũµ. The
solutions Ũµ were computed usingM = 4 basis vectors. We see that we now need three basis vectors
for an accurate error estimate for both parameters.

M̃ Forward Samp. Adjoint Samp.
1 1.45 1.45
2 0.64 0.68
3 1.09 1.10
4 1.06 1.06
5 0.98 0.99
6 0.98 1.00
7 1.01 1.00
8 1.01 1.00
9 1.00 1.00

10 1.00 1.00
11 1.00 1.00
12 1.00 1.00

(a) µ = [π, 39.8], η(Uµ) = −1.6958E − 04

M̃ Forward Samp. Adjoint Samp.
1 1.03 1.18
2 1.00 0.96
3 1.05 1.00
4 1.00 1.00
5 1.00 1.00
6 1.00 1.00
7 1.00 1.00
8 1.00 1.00
9 1.00 1.00
10 1.00 1.00
11 1.00 1.00
12 1.00 1.00

(b) µ = [π/4, 26.2], η(Uµ) = 3.5081E − 06

Table IV. Values of the ratio η̃(Uµ)/η(Uµ).

M̃ Forward Samp. Adjoint Samp.
1 1.83 1.83
2 0.66 0.69
3 1.08 1.08
4 1.04 1.02
5 0.97 0.97
6 0.97 1.00
7 1.01 1.00
8 1.01 1.00
9 1.00 1.00

10 1.00 1.00
11 1.00 1.00
12 1.00 1.00

(a) µ = [π, 39.8], η(Ũµ) = −1.9809E − 04

M̃ Forward Samp. Adjoint Samp.
1 0.92 0.72
2 0.93 0.87
3 0.99 1.02
4 1.00 1.02
5 1.00 1.00
6 1.00 1.00
7 1.00 1.01
8 1.00 1.00
9 1.00 1.00
10 1.00 1.00
11 1.00 1.00
12 1.00 1.00

(b) µ = [π/4, 26.2], η(Ũµ) = 3.5818E − 06

Table V. Values of the ratio η̃(Ũµ)/η(Ũµ). The solutions Ũµ were computed using M = 4 basis vectors.

5. HIERARCHICAL ROM FOR ERROR ESTIMATION OF MULTIPLE QOIS

Quite often multiple QoIs need to be evaluated, and this makes adjoint based error analysis
significantly expensive as a separate adjoint problem needs to be solved for each QoI. However,
we apply the ideas developed for error estimation using hierarchical POD for the case of multiple
parameterized QoIs. That is, the QoIs are represented as,

Q(uµ) = (ψµ̂, uµ), (23)
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where µ̂ ∈ D̂ is the parameter defining the function ψµ̂. The adjoint equation becomes,

−∇ · εµ∇φµ̃ − (∇ · bµ)φµ̃ = f ′µ(uµ, Ûµ)
>
φµ̃ + ψµ̂. (24)

That is, the adjoint equation has two parameters now, µ and µ̂. In forming the hierarchical POD for
the adjoint solution, we consider these as one parameter, µ̃ = [µ, µ̂] ∈ D × D̂. Now the partitioning
of the parameter space is carried out using the adjoint snapshots Φµ̃, as the forward solutions Ûµ do
not account for the parameter µ̂.

5.1. Example

We illustrate the above scheme for the convection diffusion example is §3.8. The parameterized QoI
is now defined as,

Q(u) =

∫
Ω

ψµ̂ u dx, (25)

where µ̂ = [a, b, c] , ψµ̂ = 100x2(1− x)2(exp(a(x− b)2)− c)y2(1− y)2, 0.1 < a < 10, 0 < b < 1

and −10 < c < 10. The parameter space corresponding to the parameterized QoI, D̂, is three-
dimensional. Line-plots of ψµ̂ along the x−axis for two parameters, µ̂ = [10.0, 1.0, 10] and µ̂ =
[4.0, 0.1, 10.0] are shown in Figures 5a and 5b.
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(a) µ̂ = [10.0, 1.0, 10]
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(b) µ̂ = [4.0, 0.1, 10.0]

Figure 5. Line plots of ψµ̂ along the x−axis.

For simplicity, we only consider the effect of employing ROM for the adjoint PDE to quantify the
error in various QoIs for a particular FEM solution of (12). This particular FEM solution is computed
with A = 30 and θ = π. The numerical parameters for Hierarchical POD for the adjoint PDE are
set as K = 40, told = 1E − 7, Me = 5, mincorr = 0.9 and g ≡ Id. The FEM adjoint problem has
14641 degrees of freedom and for each QoI a different adjoint problem needs to be solved. This is
quite expensive if FEM adjoint solutions are used for error estimation.

However, we show results for error estimates computed using Hierarchical ROM in Table VI.
The estimators ηµ̂ and η̃µ̂, refer to the estimated error in the QoIs using the FEM adjoint solution
and hierarchical ROM adjoint solutions respectively. We observe that the error estimate using
the Hierarchical ROM for adjoint is almost as accurate as the error estimate obtained using the
FEM adjoint solution using only 6 basis vectors for [10.0, 1.0, 10] and 4 for [4.0, 0.1, 10.0], hence
yielding significant savings in computational effort.

6. NUMERICAL EXAMPLES

In this section we investigate the hierarchical POD ideas on two more examples. The results are
illustrated for some chosen parameters µ, which are different from the randomly sampled parameters
used to form the ROM basis.
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M̃ η̃µ̂(Uµ)/ηµ̂(Uµ)
1 0.00
2 0.01
3 0.47
4 0.65
5 0.90
6 0.98
7 1.02
8 1.02
9 1.01

10 1.01
(a) µ̂ = [10.0, 1.0, 10], η(Uµ) = 4.3E − 2

M̃ η̃µ̂(Uµ)µ̂/η(Uµ)
1 0.24
2 0.53
3 1.25
4 1.02
5 0.99
6 1.00
7 1.00
8 1.00
9 1.00
10 1.00

(b) µ = [4.0, 0.1, 10.0], ηµ̂(Uµ) = 1.7715E −
04

Table VI. Values of the ratio η̃µ̂(Uµ)/ηµ̂(Uµ).

6.1. Poisson Problem

Consider the Poisson problem [24],
∇ · ε(x)∇u = 0 x ∈ Ω,

u = 0, x ∈ Γd,
∂u
∂n = 0, x ∈ Γn,
∂u
∂n = 1, x ∈ Γo.

(26)

where Ω is the unit square [0, 1]× [0, 1], Γo is the lower boundary, y = 0, and Γd is the top boundary,
y = 1 and Γn = ∂Ω\(Γo ∪ Γd) . The diffusion coefficient, ε(x), is piecewise constant, as shown in
Figure 6. Here each εi ∈ [0.1, 10] for i = 1, · · · , 3. That is, our parameter space is 3-dimensional,
D = [0.1, 10]3. The value of the ε in the top right is set as 1. The QoI is,

Q(u) =

∫
Ω

χqu dx. (27)

where χq is the characteristic function of Ωq = [0.0625, 0.25]× [0.0625, 0.25].

ε1 ε2

ε3 1

0.0

0.5

1.0

0.5 1.0

Figure 6. Diffusion Coefficient, ε(x), is piecewise constant.

The FEM problems corresponding to the forward problem (26) were solved on a regular triangular
mesh of 16× 16× 2 triangular elements whereas the adjoint solutions were solved on a a regular
triangular mesh of 32× 32× 2 triangular elements. These meshes gave reasonably accurate FEM
solution, while also ensuring that the elements align with the boundaries where the diffusion
coefficient jumps. Standard space of continuous piecewise linear polynomials, P1 is employed to
form the FEM snapshots for (28) whereas the adjoint FEM snapshots Φµ are approximated on
the space of continuous piecewise quadratic polynomials, P2. The numerical parameters are set as
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told = 1E − 7, Me = 10, mincorr = 0.9 and g ≡ Id. Further, the max-level of the tree is set at
three.

We show results for two parameters. The first parameter is [10.0, 0.1, 0.1], which has large
jumps in the diffusion coefficient, and hence is a relatively hard problem. The second parameter
is arbitrarily chosen as [2.6, 2.1, 3.2], representing an easier problem. The FEM solution for
µ = [10.0, 0.1, 0.1] has two orders of magnitude greater error (FEM error = 6.595e− 04) than the
solution corresponding to µ = [2.6, 2.1, 3.2] (FEM error = 6.601e− 06), indicating the relatively
difficult nature of the first problem. The results for the ratio of POD error and the FEM error in the
QoI, Q(uµ − Ũµ)/Q(uµ − Uµ), for different number of basis vectors, M , to form the POD solution
are shown in Tables VII and VIII for the parameters µ = [10.0, 0.1, 0.1] and µ = [2.0, 3.0, 4.0]
respectively. The Classical POD solution is computed with K = 80 and K = 800, corresponding
to the “crude” and “fine” sampling of the parameter domain. The Hierarchical POD solution is
computed with K = 80 for each subdomain. We observe that the Hierarchical ROM solutions
have significantly lower error than the Classical ROM solutions for low value of M , indicating
the efficiency of this approach. This is especially apparent for the harder problem corresponding to
µ = [10.0, 0.1, 0.1].

M Classical, K = 800 Classical, K = 80 Hierarchical, K = 80
1 7.62 7.93 1.00
2 5.40 8.25 2.01
3 5.26 4.59 1.03
4 3.54 4.63 1.01
5 3.33 3.57 1.00
6 1.38 3.12 1.00
7 1.25 1.48 1.00
8 1.05 1.37 1.00
9 1.00 1.02 1.00

10 1.00 1.01 1.00
Table VII. Ratio of the POD error and FEM error in the QoI, Q(uµ − Ũµ)/Q(uµ − Uµ), for µ =
[10.0, 0.1, 0.1]. The POD solutions are computed with M basis vectors using the Classical and the
Hierarchical schemes, with the cardinality of the parameter sampling represented as K. The FEM error

is Q(uµ − Uµ) = 7.577E − 03.

M Classical, K = 800 Classical, K = 80 Hierarchical, K = 80
1 54.12 63.25 30.54
2 -1.56 -8.85 11.75
3 -10.59 -11.68 -2.61
4 -4.28 -7.54 -0.62
5 0.71 0.27 0.18
6 0.84 1.04 1.11
7 0.85 1.00 0.99
8 0.93 0.94 1.00
9 0.93 0.95 1.00

10 1.00 1.00 1.00
Table VIII. Ratio of the POD error and FEM error in the QoI, Q(uµ − Ũµ)/Q(uµ − Uµ), for µ =
[2.0, 3.0, 4.0]. The POD solutions are computed withM basis vectors using the Classical and the Hierarchical
schemes, with the cardinality of the parameter sampling represented as K. The FEM error is Q(uµ − Uµ) =

2.978E − 05.

Table IX shows the effectiveness of the estimate η̃(Uµ) for the error analysis of the FEM solution.
The results indicate that we obtain an accurate error estimate using very few basis vectors. Table X
shows similar results for the error analysis of the forward hierarchical POD solutions Ũµ.
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M̃ η̃(Uµ)/η(Uµ)
1 0.42
2 0.85
3 0.86
4 0.95
5 0.99
6 0.99
7 1.00

(a) µ = [10.0, 0.1, 0.1], η(Uµ) = 7.577E − 03

M̃ η̃(Uµ)/η(Uµ)
1 0.51
2 0.81
3 1.03
4 1.03
5 1.00
6 0.99
7 1.01

(b) µ = [2.0, 3.0, 4.0], η(Uµ) = 2.978E − 05

Table IX. Values of the ratio η̃(Uµ)/η(Uµ).

M̃ η̃(Ũµ)/η(Ũµ)
1 0.42
2 0.85
3 0.85
4 0.95
5 0.99
6 0.99
7 1.00

(a) µ = [10.0, 0.1, 0.1], η(Ũµ) = 7.579E − 03

M̃ η̃(Ũµ)/η(Ũµ)
1 0.55
2 0.82
3 1.02
4 1.03
5 1.00
6 0.99
7 1.00

(b) µ = [2.0, 3.0, 4.0], η(Ũµ) = 3.292E − 05

Table X. Values of the ratio η̃(Ũµ)/η(Ũµ). The solutions Ũµ were computed using M = 6 basis vectors.

6.2. Nonlinear Example

Consider the nonlinear problem,
−∇ · (α1 + u2)∇u+ α2

α3
(eα3u − 1) = 10 sin(2πx) sin(2πy), x in Ω,

u = 0 x ∈ Γd,
∂u
∂n = 0 x ∈ Γn.

(28)

where Ω is the unit square [0, 1]× [0, 1], Γn is the lower boundary, y = 0, and Γd = ∂Ω\Γn.
The parameter space, represented by µ = [α1, α2, α3] ⊂ D ≡ [0.1, 1.0]× [0.01, 8.0]2, is three
dimensional. The QoI is,

Q(u) =

∫
Ω

ψudx. (29)

where ψ = ρ−2eρ
2/(ρ2−|x|2) approximates the Dirac delta function as ρ→ 0. We set ρ = 0.1.

The adjoint problem corresponding to (28) is,
−∇ · ε(u, U)∇φ+ ε′(u, U) · ∇φ+ f ′(u, U)φ = ψ

φ = 0 x ∈ Γd,
∂φ
∂n = 0 x ∈ Γn.

(30)

where

ε(u, U) =

∫ 1

0

α1 + (su+ (1− s)U)2 ds, (31)

ε′(u, U) =

∫ 1

0

2(su+ (1− s)U)∇((su+ (1− s)U)) ds, (32)

and

f ′(u, U) =

∫ 1

0

α2e
α3(su+(1−s)U) ds. (33)
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The definition (30) implies,

Q(u− U) = (u− U,ψ) = −((α1 + U2)∇U, φ)− (
α2

α3
(eα3U − 1), φ) + 10 sin(2πx) sin(2πy).

(34)
The FEM problems are solved on a regular triangular mesh of 30× 30× 2 triangular elements.
Standard space of continuous piecewise linear polynomials, P1 is employed to form the FEM
snapshots for (28) whereas the adjoint FEM snapshots Φµ are approximated on the space of
continuous piecewise quadratic polynomials, P2. Other values of numerical parameters for the
Hierarchical ROM are K = 40, told = 1E − 6, Me = 10, mincorr = 0.9 and g ≡ Id. Further, the
max-level of the tree is set as three.

The results for µ = [1.0, 8.0, 0.1] and µ = [1.0, 0.01, 8.0] are shown in Table. XI. The results
highlight how the Hierarchical ROM achieves a more accurate solution using fewer basis vectors
compared to Classical ROM.

M Classical Hierarchical
2 -2.26 -8.34
4 -4.97 0.76
6 -4.97 2.90
8 6.83 1.09

10 -3.60 1.01
12 -4.53 1.09
14 -3.40 1.04
16 0.93 1.04
18 1.04 1.01
20 0.58 0.98

(a) µ = [0.1, 1.0, 8.0],
Q(uµ − Uµ) = −7.547E − 04

M Classical Hierarchical
2 -1.63 0.37
4 -0.13 1.09
6 1.25 0.94
8 1.07 1.00

10 1.08 1.00
12 0.99 1.00
14 0.99 1.00
16 1.00 1.00
18 1.00 1.00
20 1.00 1.00
22 1.00 1.00

(b) µ = [1.0, 0.01, 8.0],
Q(uµ − Uµ) = −4.52E − 04

Table XI. Ratio of the POD error and FEM error in the QoI, Q(uµ − Ũµ)/Q(uµ − Uµ). The POD solutions
are computed with M basis vectors using the Classical and the Hierarchical schemes, with the cardinality of

the parameter sampling represented as K.

Now we show results for the error estimate of the FEM solutions, Uµ, using Hierarchical ROM in
Table XII. Similar results for the error estimate of the Hierarchical POD solutions, Ũµ in Table XIII.
In all cases, the error estimate using the Hierarchical ROM adjoint solution computes an accurate
error estimate using a small number of basis vectors.

M̃ η̃(Uµ)/η(Uµ)
1 0.87
2 0.91
3 0.98
4 0.99
5 1.00
6 1.00
7 1.00
8 1.00
9 1.00

10 1.00
(a) µ = [0.1, 1.0, 8.0], η(Uµ) = −7.547E − 04

M̃ η̃(Uµ)/η(Uµ)
1 1.05
2 1.00
3 1.00
4 1.00
5 1.00
6 1.00
7 1.00
8 1.00
9 1.00

10 1.00
(b) µ = [1.0, 0.01, 8.0], η(Uµ) = −4.520E − 04

Table XII. Values of the ratio η̃(Uµ)/η(Uµ).
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M̃ η̃(Ũµ)/η(Ũµ)
1 0.97
2 0.96
3 0.99
4 0.99
5 1.00
6 1.00
7 1.00
8 1.00
9 1.00

10 1.00
(a) µ = [0.1, 1.0, 8.0], η(Ũµ) = −2.188E − 03

M̃ η̃(Ũµ)/η(Ũµ)
1 1.05
2 1.00
3 1.00
4 1.00
5 1.00
6 1.00
7 1.00
8 1.00
9 1.00

10 1.00
(b) µ = [1.0, 0.01, 8.0], η(Ũµ) = −4.227E − 04

Table XIII. Values of the ratio η̃(Ũµ)/η(Ũµ). The solutions Ũµ were computed using M = 6 basis vectors.

7. CONCLUSIONS

We develop POD based algorithms for efficient solution of parameterized PDEs and a posteriori
error estimation. Our hierarchical POD algorithm samples the parameter domain based on the
properties of the solution space, instead of uniform random sampling. Moreover, the parameter
domain is decomposed into sub-regions based on the solution behavior and a local reduced basis
is computed for each sub-region. This allows accurate yet inexpensive computation of solution in
the Online stage of the algorithm when computational resources are of vital importance. Our results
indicate significant saving of computational effort compared to the standard algorithm for a number
of problems.

Reliable use of numerical simulations in science and engineering applications necessitate not
just fast computation of the discrete solution, but also quantification of its error. In this regard
we extend the hierarchical approach to the computation of the adjoint solutions, hence leading to
formation of accurate error estimates in a quantity of interest. Employing ROM for adjoint solutions
is also attractive as we expect the adjoint solution space to be of much lower dimensional than the
PDE solution space. We see this behavior in the numerical examples where relatively few vectors
in the adjoint reduced basis provide a good error estimate. We also extend the idea of ROM for
parameterized PDEs to form error estimates for multiple QoIs. The inexpensive error estimation
is carried out for not only the ROM solutions but also high dimension FEM solutions. The latter
is important in scenarios where computing a ROM solution for a PDE has too large an error so a
FEM solution in unavoidable. Employing hierarchical ROM for forming error estimates for multiple
QoIs in such a case yields significant savings in the computational budget as it avoids solving FEM
adjoint solution multiple times for each QoI.

REFERENCES

1. Heuveline V, Rannacher R. A posteriori error control for finite element approximations of elliptic eigenvalue
problems. Advances in Computational Mathematics 2001; 15(1-4).

2. Carey V, Estep D, Tavener S. A posteriori analysis and adaptive error control for multiscale operator decomposition
solution of elliptic systems I: Triangular systems. SIAM Journal on Numerical Analysis Jan 2009; 47(1):740–761.

3. Noor AK, Peters JM. Reduced basis technique for nonlinear analysis of structures. Aiaa journal 1980; 18(4):455–
462.

4. Prudhomme C, Rovas DV, Veroy K, Machiels L, Maday Y, Patera AT, Turinici G. Reliable real-time solution of
parametrized partial differential equations: Reduced-basis output bound methods. Journal of Fluids Engineering
2002; 124(1):70–80.

5. Kunisch K, Volkwein S. Galerkin proper orthogonal decomposition methods for parabolic problems. Numerische
Mathematik 2001; 90(1):117–148.

6. Quarteroni A, Rozza G, Manzoni A. Certified reduced basis approximation for parametrized partial differential
equations and applications. Journal of Mathematics in Industry 2011; 1(1):1–49.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
Prepared using nmeauth.cls DOI: 10.1002/nme

This article is protected by copyright. All rights reserved.



20

7. Gunzburger MD. Finite Element Methods for Viscous Incompressible Flows: A guide to theory, practice, and
algorithms. Elsevier, 2012.

8. Sirovich L. Turbulence and the dynamics of coherent structures, parts i–iii. Quarterly of applied mathematics 1987;
45(3):561–571.

9. Holmes P, Lumley JL, Berkooz G. Turbulence, coherent structures, dynamical systems and symmetry. Cambridge
university press, 1998.

10. Kunisch K, Volkwein S. Control of the burgers equation by a reduced-order approach using proper orthogonal
decomposition. Journal of Optimization Theory and Applications 1999; 102(2):345–371.

11. Afanasiev K, Hinze M. Adaptive control of a wake flow using proper orthogonal decomposition. Lecture Notes in
Pure and Applied Mathematics 2001; :317–332.

12. Alfio Quarteroni FN Andrea Manzoni. Reduced Basis Methods for Partial Differential Equations. Springer
International Publishing, 2015. URL http://www.ebook.de/de/product/25073372/alfio_
quarteroni_andrea_manzoni_federico_negri_reduced_basis_methods_for_partial_
differential_equations.html.

13. Gunzburger MD, Peterson JS, Shadid JN. Reduced-order modeling of time-dependent pdes with multiple
parameters in the boundary data. Computer Methods in Applied Mechanics and Engineering 2007; 196(4):1030–
1047.

14. Burkardt J, Gunzburger M, Lee HC. Pod and cvt-based reduced-order modeling of navier–stokes flows. Computer
Methods in Applied Mechanics and Engineering 2006; 196(1):337–355.

15. Hall K, Thomas J, Dowell E. reduced-order modeling of unsteady small-disturbance flows using a frequency-
domain proper orthogonal decomposition technique. identity 1999; 5(679):8.

16. Hall KC, Thomas JP, Dowell EH. Proper orthogonal decomposition technique for transonic unsteady aerodynamic
flows. AIAA journal 2000; 38(10):1853–1862.

17. Amabili M, Sarkar A, Paıdoussis M. Reduced-order models for nonlinear vibrations of cylindrical shells via the
proper orthogonal decomposition method. Journal of Fluids and Structures 2003; 18(2):227–250.

18. Banks H, del Rosario R, Smith R. Reduced order model feedback control design: Computational studies for thin
cylindrical shells. IEEE Trans. Auto. Contr, Citeseer, 1998.
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