

1
2
3
4 Article type : Articles
5
6

7 **Annual climate variation modifies nitrogen induced carbon accumulation of *Pinus***
8 ***sylvestris* forests**
9

10 Hyungwoo Lim^{1,5} Ram Oren^{2,3} Sune Linder⁴ Fredrik From¹ Annika Nordin¹ Nils Fahlvik⁴ Tomas
11 Lundmark¹ Torgny Näsholm¹
12

13 ¹ Department of Forest Ecology & Management, Swedish University of Agricultural Sciences
14 (SLU), SE-901 83 Umeå, Sweden

15 ² Nicholas School of the Environment, Duke University, Durham, NC, USA

16 ³ Hydropheric-Atmospheric Research Center, Nagoya University, Nagoya, Japan

17 ⁴ Southern Swedish Forest Research Centre, SLU, P.O. Box 49, SE-230 53 Alnarp, Sweden
18

19 ⁵E-mail: hyungwoo.lim@slu.se
20

21 Running title: INTERACTION BETWEEN NITROGEN AND CLIMATE
22

23 *Abstract*

24 We report results from long-term simulated external nitrogen (N) input experiments in three
25 northern *Pinus sylvestris* forests, two of moderately-high and one of moderately-low
26 productivity, assessing effects on annual net primary production (NPP) of woody mass and its
27 inter-annual variation in response to variability in weather conditions. A sigmoidal response of
28 wood NPP to external N inputs was observed in the both higher and lower productivity stands,
29 reaching a maximum of ~65% enhancement regardless of the native site productivity, saturating

This is the author manuscript accepted for publication and has undergone full peer review but has
not been through the copyediting, typesetting, pagination and proofreading process, which may
lead to differences between this version and the [Version of Record](#). Please cite this article as [doi:
10.1002/eap.1571](https://doi.org/10.1002/eap.1571)

INTERACTION BETWEEN NITROGEN AND CLIMATE

30 at an external N input of $4 - 5 \text{ g N m}^{-2} \text{ yr}^{-1}$. The rate of increase in wood NPP and the N response
31 efficiency (RE_N , increase in wood NPP per external N input) were maximized at an external N
32 input of $\sim 3 \text{ g N m}^{-2} \text{ yr}^{-1}$, regardless of site productivity. The maximum RE_N was greater in the
33 higher productivity than the lower productivity stand (~ 20 *versus* $\sim 14 \text{ g C g}^{-1} \text{ N}$). The N induced
34 enhancement of wood NPP and its RE_N were, however, markedly contingent on climatic
35 variables. In both of the higher and lower productivity stands, wood NPP increased with growing
36 season precipitation (P), but only up to $\sim 400 \text{ mm}$. The sensitivity of the response to P increased
37 with increasing external N inputs. Increasing growing season temperature (T) somewhat
38 increased the N-induced drought effect, whereas decreasing T reduced the drought effect. These
39 responses of wood NPP infused a large temporal variation to RE_N , making the use of a fixed
40 value unadvisable. Based on these results, we suggest that regional climate conditions and future
41 climate scenarios should be considered when modeling carbon sequestration in response to N
42 deposition in boreal *P. sylvestris*, and possibly other forests.

43 *Key words:* *Carbon sequestration; Nitrogen deposition; Nitrogen Use Efficiency*
44 *Precipitation; Temperature; Climate change; Heureka model; Nitrogen gradient; Scots pine;*

INTRODUCTION

46 Increased nitrogen (N) deposition as a result of N fertilizer production and fossil fuel
47 combustion has been credited with enhancing net primary production (NPP) of woody mass in N
48 limited ecosystem (Townsend et al. 1996, Binkley and Högberg 1997, Pregitzer et al. 2008, de
49 Vries et al. 2009, Gundale et al. 2014). Despite increasing understanding of the impact of N
50 inputs on wood NPP (Tamm et al. 1999, Högberg et al. 2006, de Vries et al. 2014, Binkley and
51 Högberg 2016), it is still unclear how N-induced responses of wood NPP interact with a
52 changing climate.

53 Recently, a synthesis of data from N addition experiments suggested an increasing response of
54 NPP from low to intermediate rates of external N input (the sum of N fertilization and
55 background deposition) but a declining response of NPP at higher rates (de Vries et al. 2014).
56 This declining response of NPP possibly reflects a decline of forest health and productivity from
57 a nutritional imbalance (Oren et al. 1988, Oren and Schulze 1989). The different responses of
58 NPP over the range of N input rates were also reflected in a wide range of the N response
59 efficiency (RE_N , increase in wood NPP per external N input), serving as an index of the
60 quantitative response of NPP to N deposition (Townsend et al. 1996, de Vries et al. 2009). In

INTERACTION BETWEEN NITROGEN AND CLIMATE

61 boreal forests, reported values of RE_N range from 14 to 56 g C g⁻¹ N (Hyvönen et al. 2008,
62 Gundale et al. 2014; but see Magnani et al. 2007) and in temperate forests from 15 to 60 g C g⁻¹
63 N (Pregitzer et al. 2008, Thomas et al. 2010). These wide ranges were explained by not only a
64 changing responsiveness of NPP over the range of external N inputs, including a negligible
65 response at the low end of inputs (Gundale et al. 2011, de Vries et al. 2014), but also a species-
66 specific response to external N inputs in context of succession, mortality, and a symbiotic
67 relation with mycorrhizal fungi (Lilleskov et al. 2002, Magill et al. 2004, Thomas et al. 2010).

68 Although the empirically obtained shape of NPP response to external N inputs, and the
69 position of sensitivity ranges, provide the best available summary of the response to N inputs,
70 and account for the interactive effects of external N inputs and age on NPP (de Vries et al. 2014),
71 it does not account for possible interactions with climate factors. For example, in boreal and
72 temperate forests, natural and simulated variations in water availability alter the effect of N
73 inputs on forest growth (Linder et al. 1987, Lim et al. 2015, Dziedek et al. 2016). In addition, a
74 modeling experiment predicted (Thornton et al. 2007), and forest inventory data demonstrated
75 (Solberg et al. 2009) that the sensitivity of NPP to N deposition depends on temperature and
76 precipitation. Those findings are consistent with results from stable isotope analyses, indirectly
77 suggesting that water stress of boreal *Pinus sylvestris* trees increases with N fertilization (Betson
78 et al. 2007).

79 Both experimental and observational studies of N deposition suffer from inherent limitations
80 (Oren et al. 1989). Manipulation experiments suffer from attempting to reproduce, over a short
81 time period, an effect hypothesized to reflect a persistent low-dose burden. In observational
82 studies, assembled data representing large geographical areas and, often, periods sufficiently
83 long to capture the history of N deposition, may potentially lead to generalizable growth
84 response to N deposition. However, other temporally and spatially varying and co-varying
85 factors are likely to obscure or modify the response to N deposition when observational data are
86 synthesized over large regions and long periods (Solberg et al. 2009, Etzold et al. 2014).

87 Attempting to overcome the principle limitations of both experimental manipulations and
88 observational studies, a few studies were designed to mimic N deposition, adding N at low rates
89 (Tamm et al. 1999, Magill et al. 2004, Hyvönen et al. 2008, Pregitzer et al. 2008, Gundale et al.
90 2014). Such studies provide the most direct approach to investigating the effect of interaction
91 between additions of N and variation in weather on forest growth and carbon (C) accumulation

92 in plant biomass. These interactions can inform modelers what to expect as climate changes over
93 landscapes receiving a range of external N inputs from deposition and fertilization. However, the
94 scope of inference of each study is limited. A more generalized outcome can be generated
95 through a synthesis that does not allow any site undue influence on the outcome and accounts for
96 variables that can potentially affect the outcome (Norby et al. 2005, Stape et al. 2010; e.g., stand
97 age and density, inherent site productivity, and prevailing climate).

98 Only few experiments have been systematically maintained (in terms of sustained inputs and
99 measured response) over a long enough period to provide data for quantifying the interactive
100 effects of N inputs and inter-annual variation in weather on ecosystem carbon fluxes (but see
101 Mäkipää et al. 1999, Öquist et al. 2014). We combined results from three such studies on boreal
102 *P. sylvestris* forests to examine the response of wood NPP to a wide range of external N input
103 rates (spatial variability, 0.2 to 9.8 g N m⁻² yr⁻¹), and how the sensitivity of the response is further
104 affected by temperature and precipitation during the growing season (temporal variability). The
105 three experiments lasted seven to eight years, with annual N addition of two to four levels
106 (Nilsen and Abrahamsen 2003, From 2014, Lim et al. 2015). The multiple levels of N additions
107 and large inter-annual variations in growing season weather conditions allowed us to quantify the
108 response of productivity to a wide range of N input rates as the weather varies. Furthermore, the
109 very low background N deposition rate (~0.2 g N m⁻² yr⁻¹) in the study areas facilitated capturing
110 the response of wood NPP at the low end of N availability. Using natural site productivity and
111 stand age as covariates allowed synthesizing data across sites, providing a means to enlarge the
112 scope to a range of stand development stages (30 to 160 years old stands). We hypothesized that
113 (1) wood NPP will be responsive to external N inputs (spatial variability) in a non-linear form
114 with a negligible response at the low end of external N input rates, and (2) the response will be
115 more sensitive to precipitation (temporal variability) at higher rates of external N inputs than at
116 lower rates.

118 METHODS

119 *Setting*

120 Three sets of partially published data (Table 1) were supplemented with additional data
121 necessary to estimate net primary production (NPP) of woody mass to support the analyses. One
122 of the study stands was in Norway (Åmli, *Ps3*) and two were in Sweden (Rosinedal, *Ps8*;

INTERACTION BETWEEN NITROGEN AND CLIMATE

123 Åheden, *Ps*16). The *Ps* indicates *Pinus sylvestris* and the following number indicates stand age in
124 decades. Thus, stand ages were about 30, 80, and 160 years old, and site indices were T23, T20,
125 and T20 (T indicates species, *Pinus sylvestris*, and the following number is dominant height in
126 meters at 100 years of age; Hägglund and Lundmark 1981) for *Ps*3, *Ps*8, and *Ps*16, respectively.
127 The external nitrogen (N) input treatments were based on reference plots (background N
128 deposition only), and plots receiving two annual N addition rates in *Ps*3 and *Ps*8 (3 and 9 g N m⁻²
129 yr⁻¹ at *Ps*3, and 2 and 8.8 g N m⁻² yr⁻¹ at *Ps*8), and a reference and four N addition rates in *Ps*16
130 (0.3, 0.6, 1.25, and 5 g N m⁻² yr⁻¹). The background N deposition was ~0.8 g N m⁻² yr⁻¹ at *Ps*3
131 (SFT 1998) and ~0.2 g N m⁻² yr⁻¹ at *Ps*8 and *Ps*16 (Phil-Karlsson et al. 2009). Rates of external N
132 input were estimated as the sum of both N addition and background deposition, and the treatment
133 is identified by the amount of external N input in g N m⁻² yr⁻¹ (e.g., N9 indicates plots had
134 received an external N input of 8.8 + 0.2 = 9 g N m⁻² yr⁻¹). Each treatment was replicated in four
135 plots for eight years in *Ps*3, in three plots for eight years in *Ps*8, and in six or seven plots for
136 seven years in *Ps*16. Detailed information on stands is given in Table 1, and further information
137 on *Ps*3 can be found in Nilsen and Abrahamsen (2003), *Ps*8 in Lim et al. (2015), and *Ps*16 in
138 Gundale et al. (2011) and From (2014).

139 Climate data for *Ps*3 was obtained from the Nelaug observation station, ~20 km from the
140 experimental stand (Åmli municipality, Norwegian Meteorological Institute,
141 <http://sharki.oslo.dnmi.no>), and for *Ps*8 and *Ps*16 from the Svartbergets field station ~8 and 3 km
142 from each site (Laudon et al. 2013).

Net primary production of woody mass

143 In this study, wood NPP was defined as the sum of NPP of stem wood, branches, and coarse-
144 roots including stump.

145 Åmli (*Ps*3): Published data on annual volume increments (cf. Fig. 1 in Nilsen and Abrahamsen
146 2003) were obtained by image-digitalization using GraphClick (ver. 3.0.3, Arizona Software,
147 2012). Plots to which additional nutrients were added were used as replicates of the N addition,
148 after finding no interactive growth response to N × other nutrient (two-way ANOVA, minimum p
149 = 0.139 with Mg, n = 8). This provided a greater power to analyze the effect of external N inputs
150 (Table 1). The NPP of stem was obtained from stem volume production multiplied by wood
151 density and the carbon (C) content of wood of similar N treatments in *Ps*8 (N2.2 for N3.8 and N9
152 density and the carbon (C) content of wood of similar N treatments in *Ps*8 (N2.2 for N3.8 and N9

INTERACTION BETWEEN NITROGEN AND CLIMATE

153 for N9.8), and NPP of stem was converted to wood NPP using a biomass expansion factor for
154 each treatment obtained from the same stand (Vestgarden et al. 2004).

155 *Rosinedal (Ps8)*: Annual wood NPP in the reference and N9 was taken from Lim et al. (2015),
156 and wood NPP in N2.2 was estimated by analyzing raw data as in Lim et al. (2015). Briefly,
157 wood NPP was the sum of NPP of woody components estimated from annual measurements of
158 diameter at 1.3 m (DBH in m) and tree height (H in m) in mensuration plots (n = 3 for each
159 treatment), and derived site-specific allometric equations from harvested trees. The NPP of stem
160 wood was calculated by annual difference of stem volume multiplied by specific wood density in
161 each year and the C content of stem wood (0.52). The NPP of branches was estimated by the sum
162 of annual difference of branch biomass and annual branch replacement, determined based on the
163 rate of upward movement of the live crown and branch biomass per meter of the live crown in
164 the lowest stratum. The NPP of coarse-roots, including the stump, was estimated from annual
165 difference of root biomass and stump multiplied by the C content of stem wood.

166 *Åheden (Ps16)*: Wood NPP was estimated based on stem increment cores and national
167 allometric equations (Marklund 1988). Increment cores were taken from 30 or 35 trees (five per
168 plot, six or seven replications for each treatment, see Table 1) in each of four levels of N addition
169 and reference plots, reported as basal area increment (From 2014). For this study, measurements
170 of DBH and H, taken together with tree coring, were used to generate a relation of DBH-H for
171 each treatment. Using increment core-based annual DBH estimates, H was estimated for all trees.
172 Estimated DBH and H were used with allometric equations to estimate dry mass of stem, branch,
173 and coarse-root (including the stump) (Marklund 1988; a range of DBH in 0 – 45 cm). Wood
174 NPP of each year was estimated by the sum of annual difference in standing biomass of the three
175 woody components, multiplied by the wood C content of 0.52 as in *Ps8* (Lim et al. 2015).
176 Estimated wood NPP in plots receiving 5 g N m⁻² yr⁻¹ was reduced to 0.89 (cf. Lim et al. 2015)
177 because high N addition reduces wood density in *P. sylvestris* (Mäkinen and Hynynen 2014).

178 In a large-scale field experiment with replicated plots, a large unintended spatial variability
179 among plots may obscure the temporal (weather) and spatial (external N input) signals. In *Ps16*,
180 except for N0.5 (minimum p = 0.486), stand density varied among replications (280 – 1030
181 stems ha⁻¹), which affected biomass production within each treatment (minimum R² = 0.67,
182 maximum p = 0.040, Appendix S1: Table S1 and Fig. S1). The spatial standard deviation (SD) in
183 *Ps16* was 2.4 ± 0.4 times greater than the temporal SD, whereas in *Ps3* and *Ps8* it was only 0.46

INTERACTION BETWEEN NITROGEN AND CLIMATE

184 ± 0.5 of the temporal. To minimize the unintended variation, and thus reveal the climate and N
185 contributions to spatial and temporal variations of wood NPP, we normalized wood NPP to the
186 mean stand density (494 stems ha^{-1}) based on the relation of wood NPP-to-stand density in each
187 treatment and year (Appendix S1: Fig. S1). When no significant relation with stand density
188 emerged, the mean wood NPP across replications was used for normalizing. The mean relative
189 stand density index for *Ps*16 (accounting for mean biomass of trees and stand density, Reineke
190 1933, Lim et al. 2015) was 0.58, similar to that for the other two stands ($p = 0.124$). Moreover,
191 the decline of stand density from 80 to 160 year-old stand (45%) was similar to that predicted
192 based on a stand dynamics model (47.5%, the Heureka, see *age related wood NPP* section). The
193 normalization for density differences and predictability of behavior facilitate synthesis of data
194 across sites.

195 *Age related wood NPP*

196 To account for age-related wood NPP dynamics between site indices, and thus further hone
197 the comparison among the three stands of different developmental stage, we generated age-
198 related wood NPP dynamics for the two site indices of the study stands (T20 and 23) and stands
199 representing low (T15) and high (T23) site fertilities, using the Heureka Forestry Decision
200 Support System (Wikström et al. 2011, Fahlvik et al. 2014). The growth simulator in the Heureka
201 includes a set of empirical sub-models for predicting growth and mortality based on data mainly
202 from the National Forest Inventory in Sweden. An individual-tree dataset from pre-commercial
203 thinning experiments in *P. sylvestris* forests was used as inputs to the growth simulator (Karlsson
204 and Ulvcrona 2010). Input variables were an initial stand density of 2500 stems ha^{-1} , a mean
205 height of 3.5 m, and stand age of 14 years for T28 and of 33 years for T15. Stand development
206 was simulated up to an age of 160 years without any additional management.

207 *Statistical analyses*

208 We examined the two sources of variability of wood NPP (Fig. 1) – spatial variability in
209 relation to external N inputs (hypothesis 1) and temporal variability in relation to growing season
210 temperature (T) and precipitation (P) (hypothesis 2) – after the three stands were categorized as
211 moderately-high and moderately-low productivities based on the age-site index curves (Fig. 2)
212 and comparison of wood NPP in reference plots among the stands using analysis of variance
213 (ANOVA) with a significance level at $p < 0.05$ (Eq. 1).

$$214 NPP_{ijk} = \mu + \alpha_i + \varepsilon_{ijk} \quad (Eq. 1)$$

INTERACTION BETWEEN NITROGEN AND CLIMATE

215 where NPP_{ijk} is the wood NPP of k th reference plot ($k = 1 - 4$ for $Ps3$, $1 - 3$ for $Ps8$, and $1 - 6$ for $Ps16$) in site i ($i = Ps3$, $Ps8$, and $Ps16$) in j th year, μ is a grand population mean, α is the
216 effect of site, and ε is the residual.

218 For spatial variability, determining the form of response of wood NPP to external N inputs,
219 the response was fitted using a four-parameter logistic growth function to determine the response
220 along continuous external N inputs (Eq. 2).

221
$$NPP_{ijk} = \gamma_0 + \frac{\gamma - \gamma_0}{1 + e^{-\alpha \cdot (N_i - \beta)}} + \varepsilon_{ijk} \quad (\text{Eq. 2})$$

222 where NPP_{ijk} is the wood NPP in k th of replication at a rate of external N input of i ($i = 0.8, 3.8,$
223 and $9.8 \text{ g N m}^{-2} \text{ yr}^{-1}$ for $Ps3$, $0.2, 2.2$, and $9 \text{ g N m}^{-2} \text{ yr}^{-1}$ for $Ps8$, and $0.2, 0.5, 0.8, 1.45$, and 5.2 g
224 $\text{N m}^{-2} \text{ yr}^{-1}$ for $Ps16$) in year j . The γ_0 is the minimum asymptote, γ is the maximum asymptote, α
225 is the growth rate, β is the point of inflection when a rate of increase in wood NPP is maximized,
226 and ε is the residual. Observed minimum and maximum wood NPP were used for initial values
227 of γ_0 and γ , respectively, and then initial values for α and β were approximated using a linearized
228 Eq. 2 $[\ln \left(\frac{\gamma - \gamma_0}{NPP_{ijk} - \gamma_0} \right) - 1] = \alpha \cdot \beta - \alpha \cdot N_{ijk}]$. When the logistic growth function in each stand
229 was not different from the function of data pooled across sites (ANOVA with a significance level
230 at $p < 0.05$), sites were merged into a single population.

231 For temporal variability, determining the interactive effect between a rate of external N input
232 and climate variables (T and P), we analyzed the variability using a multiple linear regression
233 after setting the external N input as a categorical variable (N) (Eq. 3). In the regression, the
234 interactive effects between T and P , and T and N in each site were removed after verifying that
235 these interactions did not occur based on at $p < 0.05$ (minimum $p = 0.230$ for $T \times P$, 0.720 for $T \times$
236 N).

237
$$NPP_{ijk} = \alpha + \beta_N \cdot N_i + \beta_T \cdot T_j + \beta_P \cdot P_j + \beta_{NP} \cdot N_i \cdot P_j + \varepsilon_{ijk} \quad (\text{Eq. 3})$$

238 where NPP_{ijk} is the wood NPP in k th replication at a rate of external N input (N) of i ($i =$ six
239 levels for the higher productivity, and five levels for the lower productivity stand) in year j ($j = 1$
240 – 8 for the higher productivity, and 1 – 7 for the lower productivity stand), $N \cdot P$ is the interaction
241 between N and P , α is intercept, β are coefficients to be estimated, and ε is the residual. To
242 quantify each impact of T and P on NPP , we discriminated Eq. 3 into Eq. 4 for T and Eq. 5 for P .

243
$$NPP_{ijk} = \alpha_1 + \beta_{N1} \cdot N_i + \beta_T \cdot T_j + \varepsilon_{Tijk} \quad (\text{Eq. 4})$$

244 where $\varepsilon_{Tijk} = \alpha_2 + \beta_{N2} \cdot N_i + \beta_P \cdot P_j + \beta_{NP} \cdot N_i \cdot P_j + \varepsilon_{ijk}$ (Eq. 5)

INTERACTION BETWEEN NITROGEN AND CLIMATE

245 When an intercept was not different among levels of external N input (determined by the
246 coefficient, β_{NI} in Eq. 4), the levels were merged into a single population.

247 Residuals bias of each function was checked using predicted values. Parameters were
248 estimated using R (ver. 3.2.2) with the *nls* function for the logistic growth function, the *aov* for
249 analysis of variance, the *HSD.test* in the *agricolae* package for multiple comparisons using the
250 Tukey test, and the *lm* for multiple linear regressions.

RESULTS

Response of wood NPP to external N inputs

253 Net primary production (NPP) of woody mass in reference plots was not different between
254 *Ps3* and *Ps8*, but wood NPP of these stands was greater than that of the much older stand, *Ps16*
255 (Fig. 2, Eq. 1, $p < 0.001$; $177.6 \pm 45.0 \text{ g C m}^{-2} \text{ yr}^{-1}$ for *Ps3*, 169.4 ± 31.8 for *Ps8*, and 84.3 ± 4.4
256 for *Ps16*, mean \pm SD). Wood NPP of reference plots in *Ps3* and *Ps8* positioned at a similar rate,
257 one before and the other after the peak wood NPP due to the age difference and a slight
258 difference in site index. The much older stand (*Ps16*) had a lower wood NPP, as expected based
259 on the generic age-related dynamics irrespective of site index (Fig. 2). Therefore we considered
260 *Ps16* as an example of moderately-low productivity stands, likely caused by advanced age.
261 Based on both stand development dynamics and wood NPP of reference plots in *Ps3* and *Ps8*, we
262 considered these to represent moderately-high productivity stands. We note that, although both
263 age and site quality affect stand productivity, if these two stands of different age and site quality
264 respond similarly to external N inputs and weather, it would suggest that the potential of wood
265 NPP to response to external N inputs depends on the current production rate.

266 Wood NPP at the three stands responded to external N inputs in a sigmoidal fashion, showing
267 negligible responses to a low level of external N input, well fitted with a logistic growth function
268 (Fig. 3a). Because the individual functions of *Ps3* and *Ps8* were not different from the function
269 of their pooled data ($p = 0.501$), we used a single logistic growth function for the higher
270 productivity stands, keeping a separate function for the lower productivity stand (*Ps16*, $p < 0.001$
271 for model difference between the higher and lower productivity stand). The two curves were
272 similarly shaped (Fig. 3a) but displaced downward for the lower productivity stand. The fit for
273 the higher productivity stands generated a minimum asymptote (γ_0) of $152.1 \text{ g C m}^{-2} \text{ yr}^{-1}$, a
274 maximum asymptote (γ) of $262.8 \text{ g C m}^{-2} \text{ yr}^{-1}$, a growth rate (α) of $0.83 \text{ g C g}^{-1} \text{ N}$, and a point of
275 inflection (β) at an external N input of 2.3 g N m^{-2} ($R^2 = 0.42$, $p < 0.001$). The fit for the lower

INTERACTION BETWEEN NITROGEN AND CLIMATE

productivity stand, *Ps*16, produced γ_0 of $73.8 \text{ g C m}^{-2} \text{ yr}^{-1}$, γ of $149.7 \text{ g C m}^{-2} \text{ yr}^{-1}$, α of $0.93 \text{ g C g}^{-1} \text{ N}$, and β of $2.5 \text{ g N m}^{-2} \text{ yr}^{-1}$ ($R^2 = 0.79$, $p < 0.001$). The response of wood NPP to external N inputs, in both relative and absolute terms, reached maximum rates at a similar N input rate, $\sim 5 \text{ g N m}^{-2} \text{ yr}^{-1}$, in the intermediate-age (*Ps*8) and the older (*Ps*16) stands, both of which shared an age-related wood NPP curve (Fig. 3a, $81.9 \pm 27.2 \text{ g C m}^{-2} \text{ yr}^{-1}$ in *Ps*8 vs. $58.4 \pm 19.2 \text{ g C m}^{-2} \text{ yr}^{-1}$ in *Ps*16 for absolute; $48.2 \pm 13.8 \%$ vs. $68.7 \pm 24.5 \%$ for relative).

Using the parameter values from the logistic fits, we calculated the response efficiency (RE_N) over increasing external N inputs (de Vries et al. 2009). Because wood NPP at an external N input of 0 cannot be defined – all sites received N through atmospheric deposition (Table 1) – we calculated the differences from wood NPP of reference plots, and related it to N added through treatments ($\Delta C/\Delta N$). The RE_N of the higher productivity stands showed a peak of $19.6 \text{ g C g}^{-1} \text{ N}$ near the point of inflection at an external N input of $3.2 \text{ g m}^{-2} \text{ yr}^{-1}$, whereas that of the lower productivity stand had a similar pattern with a peak of $14.0 \text{ g C g}^{-1} \text{ N}$ at an external N input of $3.5 \text{ g N m}^{-2} \text{ yr}^{-1}$ (Fig. 3b).

Interactive effect of external N inputs and climate variations on wood NPP

Regardless of stand productivity, wood NPP increased with increasing T , ($p < 0.001$ for the higher and $p = 0.044$ for the lower productivity stand; Table 2, Fig. 4a, b), but the sensitivity of NPP to T was unrelated to the rate of external N input; coefficients were not different among the populations within each productivity stand (minimum $p = 0.316$). The magnitude of the sensitivity was, however, a six-fold greater in the higher than that in the lower productivity stand ($25.9 \text{ g C per } 1 \text{ }^\circ\text{C}$ for the higher productivity vs. 4.7 for the lower productivity stand). The relations in the lower productivity stand were statistically grouped into two populations ($N0.2 - N1.45$ and $N5.2$, $p < 0.001$ for the difference between populations, Table 2), with an offset of $57.03 \pm 5.21 \text{ g C m}^{-2} \text{ yr}^{-1}$ (Fig. 4a). In the higher productivity stands, the relations were grouped into three populations ($N0.2 - N0.8$, $N2.2 - N3.8$, and $N9 - N9.8$, $p = 0.310$, 0.187 , and 0.656 for the difference among external N inputs within a population, respectively; $p < 0.001$ for the difference among populations, Table 2), with an offset of $50.8 \pm 8.0 \text{ g C m}^{-2} \text{ yr}^{-1}$ between $N0.2 - N0.8$ and $N2.2 - N3.8$, and an additional offset of $39.0 \pm 8.0 \text{ g C m}^{-2} \text{ yr}^{-1}$ between the latter population and $N9 - N9.8$ (Fig. 4b). In both productivity stands, the remaining temporal variations after that explained by T were greater in higher rates of external N input than in lower rates (see RMSE in Table 2).

307 Using the slopes to normalize the temperature-dependent response to that expected at the
308 mean growing season T (12.2 °C in $Ps3$, and 11.5 in $Ps8$ and $Ps16$), remaining temporal
309 variations were assessed against the variation in P . In both $Ps8$ and $Ps16$ (Fig. 4c, d, and Table
310 2), where $P < \sim 400$ mm, wood NPP was sensitive to P under high external N inputs, but not
311 under low external N inputs (< 2.2 g N m⁻² yr⁻¹). The slope under N9 was steeper (0.97 ± 0.21 g
312 C m⁻² mm⁻¹, $p = 0.014$) than those under N2.2 and N5.2, whereas slopes under N2.2 and N5.2
313 were similar (0.50 ± 0.10 vs. 0.36 ± 0.11 g C m⁻² mm⁻¹, $p = 0.686$). At $P > 400$ mm ($Ps3$), the
314 inter-annual variation of wood NPP was unrelated to P (Fig. 4d).

315

DISCUSSION

316 The long-term effect of N deposition on biomass production in forest ecosystems has been
317 studied extensively, with the effects ranging from negative to positive (Oren et al. 1989, Schulze
318 1989, Tamm et al. 1999, de Vries et al. 2009, Thomas et al. 2010). In a recent comprehensive
319 synthesis, de Vries et al. (2014) have shown that the response to external N inputs (the sum of N
320 fertilization and background deposition) varies with forest age, reflecting the age-dependence of
321 forest growth (Vitousek and Reiners 1975, Goulden et al. 2011), and that increasing external N
322 inputs may generate a positive, roughly sigmoidal response. Our results (Figs. 2 and 3a) for
323 stands in moderately-high productivity, intermediate-age stage ($Ps3$ and $Ps8$), as well as
324 moderately-low productivity, older stage ($Ps16$), principally support these observations. The
325 production in the old stand was less sensitive to site fertility than in the young stands (Fig. 2),
326 and the response to external N inputs was grouped by annual net primary production (NPP) of
327 woody mass under reference conditions (Fig. 3a), rather than by age or site fertility (these were
328 dissimilar in the two intermediate-age stands). Indeed, the results suggest that the *absolute* wood
329 NPP response to external N inputs, and interactive effects with temperature and precipitation
330 (Fig. 4), depend on the current production of a stand, which may serve as an index of production
331 capacity. Thus, we searched for interactive effects on wood NPP between external N inputs and
332 the two temporal climate variables of the two higher productivity stands combined *versus* the
333 lower productivity stand. We note that our three stands, regardless of age and site quality,
334 represent production rates ranging from moderately low observed in poorer sites to moderately
335 high in more fertile sites (Fig. 2). Our scope of inference, however, does not include highly
336 productive stands below 100 years of age because such productive stands are not common in this
337

INTERACTION BETWEEN NITROGEN AND CLIMATE

338 region (Nilsson et al. 2010). We also note that soil N mineralization rates were not incorporated
339 into the investigation of the response of wood NPP. Many studies have shown that available soil
340 N for plant-use in these forests is dominated by organic rather than inorganic N (Näsholm et al.
341 1998, Inselsbacher and Näsholm 2012). Further, an earlier study of *Ps8* demonstrated the
342 dominance of organic N in these forests (Inselsbacher et al. 2014). Thus, data on N
343 mineralization rates would not be helpful because such data would only provide information on a
344 small fraction of the soil N supply to trees.

345 In order to generalize the outcome, we synthesized data from three studies using different
346 approaches to estimating wood NPP; in *Ps8* wood NPP was estimated based on site-specific
347 derived allometric equations (Lim et al. 2015), whereas in *Ps3* and *Ps16*, wood NPP was based
348 on national allometric equations (Marklund 1988, cf. Vestgarden et al. 2004). We examined a
349 potential bias between the two approaches by comparing biomass estimates from the two
350 methods using the same mensuration measurements of DBH and H obtained in the nine plots of
351 *Ps8* (three replicated plots in each of N0.2, N2.2, and N9). The estimated woody biomass was
352 not different between the two methods (Appendix S1: Fig. S2, 10.46 kg dry mass m⁻² for the
353 national vs. 10.50 for the site-specific equations, paired t-test, $p = 0.386$) and the relative
354 difference (mean = $0.19 \pm 0.97\%$, $n = 9$) was unrelated to mean diameter at plot level ($p =$
355 0.094). These results suggest that estimates of wood NPP across the sites were not biased by the
356 methodologies used.

Age-related wood NPP dynamics

357 Stand age and site quality may affect productivity, making it difficult to synthesize data across
358 stands (Fig. 2). From the modeled age-related wood NPP dynamics, we confirmed that two
359 stands (*Ps3* and *Ps8*) were of similar productivity due to a combination of age and site index,
360 while older stands (here, *Ps16*) are less productive, regardless of site index.

361 Stem growth (and wood NPP) of managed even-aged stands follows a pattern whereby
362 current annual increment rises after stand establishment, peaks when maximum leaf area is
363 attained, and then declines (Assmann 1970). The age-related dynamics of wood NPP, modeled
364 based on the Heureka Forestry Decision Support System (Wikström et al. 2011; Fig. 2), peaked
365 at about one-third of the maximum age of *P. sylvestris*, similar to other expressions of
366 productivity (Vitousek and Reiners 1975, Goulden et al. 2011). Maximum wood NPP is reached
367

368 earlier and attains higher rates at sites of better quality (Assmann 1970), and differences in wood
369 NPP among sites become very small as stands age.

370 The estimated wood NPP of *Ps8* and *Ps16* (located only 8 km apart) fell on the simulated line
371 describing the age-dependent dynamics of wood NPP for a site of similar quality. The age-related
372 decline in production observed was $\sim 80 \text{ g C m}^{-2} \text{ yr}^{-1}$, with the older stand producing $\sim 50\%$ of the
373 younger forest (Fig. 2), a reduction similar to previously reported in coniferous boreal forests
374 (Ryan et al. 1997, Luyssaert et al. 2008). The decreased production with age has been variably
375 attributed to declining soil nutrient availability as a result of nutrient immobilization, changing
376 forest structures associated with decreasing leaf area and its efficiency, increased competition
377 among individuals, and hydraulic resistance of vertical growth (Gower et al. 1996, Ryan et al.
378 1997, Smith and Resh 1999, Binkley et al. 2002, Martínez-Vilalta et al. 2007).

379 Although the native productivity over the T20 site index declined from intermediate-age (*Ps8*)
380 to the older stand (*Ps16*), both relative and absolute enhancements of wood NPP by external N
381 inputs were marginally different ($p = 0.074$ for absolute and 0.052 for relative). Nevertheless, as
382 the maximum external N input was less in *Ps16* than that in *Ps8*, it is possible that, had a higher
383 external N input been administered in that stand, a greater wood NPP might have been observed.
384 However, considering (i) the lack of response of *Ps3* and *Ps8* – bracketing the age of peak
385 production – to higher external N inputs, (ii) lack of evidence for growth limitation by other
386 nutrients (Lim et al. 2015), and (iii) the convergence of age-related wood NPP curves with age
387 across all site indices, the age-induced growth limitations in *Ps16* appear unrelated to nutrition,
388 but rather imposed by other age-related changes.

389 *Response of wood NPP to external N inputs*

390 We note that response of wood NPP to external N inputs vary considerably among studies,
391 due not only to stand age (de Vries et al. 2009), but also to the fact that the shape of the response
392 relates to the range of external N inputs. For example, a more linear response was shown in a
393 *Picea abies* stand where external N inputs ranged from 0.2 to $5.2 \text{ g N m}^{-2} \text{ yr}^{-1}$ (Gundale et al.
394 2014), consistent with a less defined sigmoidal pattern that would have emerged in our study, had
395 we focused on the same external N input range (Fig. 3a). Considering the full range of external N
396 inputs in the present study, and consistent with the first hypothesis, wood NPP responded to
397 external N input rates following a sigmoidal fit, with a point of inflection at $\sim 3 \text{ g N m}^{-2} \text{ yr}^{-2}$ (Fig.
398 3a). A negligible response of wood NPP was observed at rates below $\sim 1 \text{ g N m}^{-2} \text{ yr}^{-1}$ and a more

INTERACTION BETWEEN NITROGEN AND CLIMATE

continuous wood NPP response up to a maximum at $4 - 5 \text{ g N m}^{-2} \text{ yr}^{-1}$. The response pattern was similar in the three stands regardless of stand productivity, but displaced downwards in the lower productivity stand (Fig. 3a). Such a response is implied in de Vries et al. (2014), although in that analysis, the lack of response over the broader range of external N inputs was attributed to growth limitation by the availability of other nutrients (e.g., Oren et al. 1988). However, having no limitation from other nutrients in *Ps3* (Nilsen and Abrahamsen 2003) and *Ps8* (Lim et al. 2015) suggests that the absence of growth enhancement observed beyond a threshold of external N inputs is related to factors other than nutrition (Fig. 3a).

Soil microbes and, in particular, ectomycorrhizal fungi might access and immobilize N entering forest floor efficiently, restricting the uptake of N into trees (Näsholm et al. 2013, Hasselquist et al. 2016). This effect would be expected to hamper the response of wood NPP at low N input rates. A restricted wood NPP response to external N input at low rates is consistent with the “bryophyte effect”, whereby components of the understory attenuate anthropogenic N input in boreal forests (Gundale et al. 2011). In similar forests, the bryophyte effect is saturated at about the rate at which our forests begin to respond ($\sim 0.5 \text{ g N m}^{-2} \text{ yr}^{-1}$, see Gundale et al. 2011), below the maximum response efficiency (RE_N , increase in wood NPP per external N input), suggesting additional understory and soil processes competing with trees for N. It is also plausible that the lack of response of wood NPP to low N input rates is caused by N utilization in a greater belowground production of fine-roots and mycorrhizal fungi (Hasselquist et al. 2012). As the capacity of these processes and components is progressively met, N availability to trees would increase with increasing N input, allowing an increase in wood NPP.

At the other end of the N input scale, exceeding a certain level of N addition may not result in a greater biomass production (Aber et al. 1995, de Vries et al. 2014). Indeed, as external N inputs reached $4 - 5 \text{ g N m}^{-2} \text{ yr}^{-1}$ (Fig. 3a), the increase in wood NPP saturated. The lack of response of wood NPP to external N inputs above this rate is consistent with findings showing no growth response in *P. sylvestris* stands to fertilization increasing from $3.4 \text{ to } 6.8 \text{ g N m}^{-2} \text{ yr}^{-1}$ (Tamm et al. 1995, Högberg et al. 2006). In a previous study (Lim et al. 2015), $67 \text{ g C m}^{-2} \text{ y}^{-1}$ increased wood production at the highest external N input (N9) was almost entirely achieved through a $104 \text{ g C m}^{-2} \text{ y}^{-1}$ reduction in C partitioning to fine-root and mycorrhizal fungi. This mechanism, however, must reach a limit at lower external N inputs (say, $4 - 5 \text{ g N m}^{-2} \text{ yr}^{-1}$) because a minimum amount of C, depending on site and species, must be invested in fine-root and mycorrhizal fungi. Further

INTERACTION BETWEEN NITROGEN AND CLIMATE

430 increase of N supply would not result in a higher wood production, suggesting that trees
431 accumulate excess N as amino acids, mainly in the form of arginine (Näsholm and Ericsson
432 1990). As external N inputs increased above the point at which production responds, N leaching
433 may have increased as well (Dise and Wright 1995, Andersson et al. 2002).

Interactive effect of external N inputs and climate variations on wood NPP

435 Although wood NPP did not respond to external N inputs at low and high external N inputs (<
436 ~1 and >~4.5 g N m⁻² yr⁻¹), we found that the temporal variations (cf. error bars, Fig. 3a) mask a
437 more complex response to external N inputs driven by inter-annual variation of climatic
438 variables. As expected based on a previous analysis of *Ps8* (Lim et al. 2015, using only the
439 reference and the high N addition treatment), both *Ps3* and *Ps8* showed a similar sensitivity of
440 wood NPP to temperature during the growing season (*T*, Fig. 4b), with the response simply
441 shifted in parallel upwards to higher values with increasing external N inputs. However, a lesser
442 *T* sensitivity of wood NPP was observed in *Ps16* (Fig. 4a), consistent with Kellomäki et al.
443 (1982), who investigated the response of growth to temperature in slow-growing, nutrient limited
444 forests. Alternatively, the less sensitivity to *T* in *Ps16* may simply reflect a difficulty in detecting
445 effects of inter-annual variation in *T* when production rates are low (Castagneri et al. 2012).

446 Although wood NPP of both low and high productivity stands responded positively to
447 increasing *T*, the inter-annual variability was much greater under higher than under lower
448 external N inputs (Table 3, Figs. 4a, b). The reason is that the variation in precipitation during the
449 growing season (*P*) infused an additional inter-annual variation to wood NPP where N limitation
450 to growth was reduced or eliminated, and wood NPP was high. Thus, after accounting for *T*-
451 induced variation of wood NPP, *P* explained about half of the remaining variation, but only when
452 and where water availability was generally low (*P* < ~400 mm in *Ps8* and *Ps16*), and where
453 growth potential increased with external N inputs (Figs. 4b, d). Even in *Ps16*, where *T*
454 marginally explained the inter-annual variation of wood NPP, *P* contributed significantly to
455 reduction in the remaining variation in plots where growth potential was enhanced by external N
456 input (Figs. 4a, c).

457 In *Ps8*, the sensitivity of wood NPP to *P* increased with increased external N inputs (Table 2,
458 Figs. 4c, d). It is interesting to note that in *Ps16*, N5.2 produced a similar wood NPP sensitivity
459 to *P* as in N2.2 of *Ps8* (0.36 vs. 0.50 g C m⁻² mm⁻¹, *p* = 0.686). Trees relieved from nutrient
460 limitation by N addition may be subjected to a greater water limitation (Betson et al. 2007, Lim

INTERACTION BETWEEN NITROGEN AND CLIMATE

461 et al. 2015) because N addition reduces C partitioning to fine roots and mycorrhizal fungi while
462 increasing leaf area index and foliage biomass (Linder 1987, Linder et al. 1987, Ewers et al.
463 2000, Palmroth et al. 2006). Thus, increased N addition may result in a greater sensitivity of trees
464 to soil water availability.

465 Not only will wet years allow trees to meet their growth potential more easily, but also in such
466 years the potential for growth may increase as well because water uptake greatly affect nutrient
467 uptake (Cramer et al. 2008, Matimati et al. 2014, Oyewole et al. 2014). In *Ps8*, this resulted in a
468 positive relation between foliage N contents and *P* ($R^2 = 0.36$, $p = 0.004$, data not shown), with
469 potential enhancements of photosynthesis and growth processes (Linder 1987). However, as
470 previously stated, the enhancement of wood NPP by N addition in *Ps8* resulted mainly from
471 shifting C allocation rather than increasing photosynthesis (Lim et al. 2015, Tarvainen et al.
472 2016). The interactive effect of water and N on wood NPP observed here corroborates the notion
473 that only when water and N are in abundant supply will trees shift allocation from preferential
474 growth of fine roots and mycorrhizal fungi, to preferential growth of woody components.

475 Given the complexity of the interactions, we synthesized the results described above into a
476 simple representation of the relative response of wood NPP to variations in external N inputs and
477 *P* in the higher productivity stands (Fig. 5), quantifying the impact of external N inputs on C
478 accumulation in tree wood biomass over a range of *P*. The response is relativized to wood NPP
479 of reference stands (N0.2), in which wood NPP did not respond to *P* (Figs. 4c, d). In the higher
480 productivity stands, the temperature-induced changes in wood NPP reflect the same *absolute*
481 sensitivity to *T* at all external N inputs and *P* conditions (Fig. 4b), showing a similar increase
482 with *T*. The *relative* changes in wood NPP may, however, reflect a decreased N-induced drought
483 stress in cooler years and increased N-induced drought stress in warmer years, perhaps owing to
484 the effect of temperature variation on vapor pressure deficit (Katul et al. 2009). Under improved
485 N supply, stands may be particularly sensitive to increased vapor pressure deficit with
486 temperature, because a lower fine root-to-leaf area ratio (Linder et al. 1987; Ewers et al. 2000)
487 reduces water uptake capacity relative to the transpiration needs, resulting in lower conductance
488 and photosynthesis.

489 N-induced drought stress may affect production not only during the drought, but also in the
490 following years when trees may experience a large increase in litterfall, reducing stand leaf area
491 index and, thus, potentially canopy photosynthesis (Linder et al. 1987, Bergh et al. 1999). In this

492 study, however, the reduction of canopy leaf area with drought was small with no effect on the
493 amount of light captured, transpiration, and canopy conductance (Lim et al. 2015, Tor-ngern et
494 al. 2016). It is therefore not surprising that neither P nor T in previous years explain the variation
495 in current wood NPP in any of the sites.

496 Our values of RE_N to external N inputs were within the range shown in previous studies and
497 maximized between external N inputs of ~ 2 and $4 \text{ g N m}^{-2} \text{ yr}^{-1}$ (Fig. 3b), reaching in the higher
498 productivity stands near the maximum RE_N reported for studies in boreal forests (Hyvönen et al.
499 2008, Gundale et al. 2014). Previous studies, however, have reported linear relations between
500 annual growth and external N inputs (Gundale et al. 2014, From 2014), but in our study wood
501 NPP responded in a sigmoidal fashion to increasing external N inputs. Therefore, our RE_N values
502 reflect the negligible response of wood NPP to external N input below and above the sensitive
503 range. In addition to the spatial variation of RE_N , associated with stand developmental stage and
504 external N inputs (Fig. 3b), the temporal variation of wood NPP, produced by the variation of P ,
505 is likely to infuse additional variation in RE_N . Using the results shown in Fig. 5a, we produced
506 estimates of the temporal (inter-annual) variation of RE_N , showing a high sensitivity to P (Fig.
507 5b). Thus, accounting for both sources of systematic variation, the spatial variation of RE_N in
508 relation to external N inputs (Fig. 3b), and temporal variations in relation to P and T , results in
509 better estimates of wood NPP than using a temporally fixed RE_N in conjunction with spatially
510 varying external N inputs (de Vries et al. 2014). The results of these analyses highlight the fact
511 that there is no simple way to account for the effect of N deposition on forest growth, and that it
512 is necessary to develop and test models that couple C and N cycling with ecosystem physiology,
513 thus explicitly incorporating the effects of climatic and environmental factors (Thornton et al.
514 2007).

515

516

ACKNOWLEDGEMENTS

517 The Rosinedalsheden research site was established with support from the Kempe Foundation
518 and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning,
519 (FORMAS) and is since 2014 part of the “Swedish Infrastructure for Ecosystem Science”
520 (SITES) sponsored by the Swedish Science Foundation (VR). This study received support from
521 the research programs “Future Forests” (Swedish Foundation for Strategic Environmental –
522 MISTRA), “Trees and Crops for the Future” (Swedish Governmental Agency for Innovation

INTERACTION BETWEEN NITROGEN AND CLIMATE

523 Systems – VINNOVA), Knut and Alice Wallenberg Foundation (#2015.0047) and “Nitrogen and
524 Carbon in Forests” (FORMAS). Ram Oren was sponsored by the United States Department of
525 Agriculture through the Agriculture and Food Research Initiative (2011-67003-30222), and
526 Department of Energy through the Office of Biological and Environmental Research, Terrestrial
527 Ecosystem Science program (DE-SC0006967). We specially thank Svarterget Field Station for
528 providing meteorological data and staff for fieldwork. Professor Michael Grossman is
529 acknowledged for the valuable comments on statistical analyses.

530

REFERENCES

531

532 Aber, J. D., A. Magill, S. G. McNulty, R. D. Boone, K. J. Nadelhoffer, M. Downs, and R.
533 Hallett. 1995. Forest biogeochemistry and primary production altered by nitrogen saturation.
534 Water, Air and Soil Pollution 85: 1665–1670.

535 Andersson, P., D. Berggren, and I. Nilsson. 2002. Indices for nitrogen status and nitrate leaching
536 from Norway spruce (*Picea abies* (L.) Karst.) stands in Sweden. Forest Ecology and
537 Management 157: 39–53.

538 Assmann, E. 1970. The Principles of Forest Yield Studies. Pergamon Press.

539 Bergh, J., S. Linder, T. Lundmark, and B. Elfving. 1999. The effect of water and nutrient
540 availability on the productivity of Norway spruce in northern and southern Sweden. Forest
541 Ecology and Management 119: 51–62.

542 Betson, N. R., C. Johannisson, M. O. Löfvenius, H. Grip, A. Granström, and P. Höglberg. 2007.
543 Variation in the $\delta^{13}\text{C}$ of foliage of *Pinus sylvestris* L. in relation to climate and additions of
544 nitrogen: analysis of a 32-year chronology. Global Change Biology 13: 2317–2328.

545 Binkley, D., and P. Höglberg. 1997. Does atmospheric deposition of nitrogen threaten Swedish
546 forests? Forest Ecology and Management 92: 119–152.

547 Binkley, D., J. L. Stape, M. G. Ryan, H. R. Barnard, and J. Fownes. 2002. Age-related decline in
548 forest ecosystem growth: An individual-tree, stand-structure hypothesis. Ecosystems 5: 58–
549 67.

550 Binkley, D., and P. Höglberg. 2016. Tamm Review: Revisiting the influence of nitrogen
551 deposition on Swedish forests. Forest Ecology and Management 368: 222–239.

INTERACTION BETWEEN NITROGEN AND CLIMATE

552 Castagneri, D., P. Nola, P. Cherubini, and R. Motta. 2012. Temporal variability of size-growth
553 relationships in a Norway spruce forest: the influences of stand structure, logging, and
554 climate. *Canadian Journal of Forest Research* 42: 550–560.

555 Cramer, M. D., V. Hoffmann, and G. A. Verboom. 2008. Nutrient availability moderates
556 transpiration in *Ehrharta calycina*. *New Phytologist* 179: 1048–1057.

557 Dziedek, C., W. Härdtle, G. von Oheimb, and A. Fichtner. 2016. Nitrogen addition enhances
558 drought sensitivity of young deciduous tree species. *Frontiers in Plant Science* 7: 1100.

559 Dise, N. B., and R. F. Wright. 1995. Nitrogen leaching from European forests in relation to
560 nitrogen deposition. *Forest Ecology and Management* 71: 153–161.

561 Etzold, S., P. Waldner, A. Thimonier, M. Schmitt, and M. Dobbertin. 2014. Tree growth in
562 Swiss forests between 1995 and 2010 in relation to climate and stand conditions: Recent
563 disturbances matter. *Forest Ecology and Management* 311: 41–55.

564 Ewers, B. E., R. Oren, and J. S. Sperry. 2000. Influence of nutrient versus water supply on
565 hydraulic architecture and water balance in *Pinus taeda*. *Plant, Cell & Environment* 23:
566 1055–1066.

567 Fahlvik, N., B. Elfving, and P. Wikström. 2014. Evaluation of growth functions used in the
568 Swedish Forest Planning System Heureka. *Silva Fennica* 48 id 1013. ISSN 2242-4075
569 (Online)

570 From, F. 2014. Long-term effects of nitrogen (N) fertilizer and simulated N deposition on boreal
571 forest growth. Licentiate Thesis, Swedish University of Agricultural Sciences, Umeå, 49 pp.
572 ISBN (electronic version) 978-91-576-9226-9

573 Goulden, M. L., A. M. S. McMillan, G. C. Winston, A. V. Rocha, K. L. Manies, J. W. Harden,
574 and B. P. Bond-Lamberty. 2011. Patterns of NPP, GPP, respiration, and NEP during boreal
575 forest succession. *Global Change Biology* 17: 855–871.

576 Gower, S. T., R. E. McMurtrie, and D. Murty. 1996. Aboveground net primary production
577 decline with stand age: potential causes. *Trends in Ecology & Evolution* 11: 378–382.

578 Gundale, M. J., T. H. Deluca, and A. Nordin. 2011. Bryophytes attenuate anthropogenic nitrogen
579 inputs in boreal forests. *Global Change Biology* 17: 2743–2753.

580 Gundale, M. J., F. From, L. H. Bach, and A. Nordin. 2014. Anthropogenic nitrogen deposition in
581 boreal forests has a minor impact on the global carbon cycle. *Global Change Biology* 20:
582 276–286.

INTERACTION BETWEEN NITROGEN AND CLIMATE

583 Hägglund, B., and J.-E. Lundmark. 1981. Handledning i bonitering med Skogshögskolans
584 boniteringssystem. National Board of Forestry, Jönköping, Sweden. 124 pp. (In Swedish)

585 Hasselquist, N.J., P. Högberg, and D.B. Metcalfe. 2012. Contrasting effects of low and high
586 nitrogen additions on soil CO₂ flux components and ectomycorrhizal fungal sporocarp
587 production in a boreal forest. *Global Change Biology* 18: 3596–3605.

588 Hasselquist, N. J., D. B. Metcalfe, E. Inselsbacher, Z. Stangl, R. Oren, T. Näsholm, and P.
589 Högberg. 2016. Greater carbon allocation to mycorrhizal fungi reduces tree nitrogen uptake
590 in a boreal forest. *Ecology* doi: 10.1890/15-1222.

591 Högberg, P., H. B. Fan, M. Quist, D. Binkley, and C. O. Tamm. 2006. Tree growth and soil
592 acidification in response to 30 years of experimental nitrogen loading on boreal forest.
593 *Global Change Biology* 12: 489–499.

594 Hyvönen, R., T. Persson, S. Andersson, B. A. Olsson, G. I. Ågren, and S. Linder. 2008. Impact
595 of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe.
596 *Biogeochemistry* 89: 121–137.

597 Inselsbacher, E., and T. Näsholm. 2012. The below-ground perspective of forest plants: soil
598 provides mainly organic nitrogen for plants and mycorrhizal fungi. *New phytologist* 195:
599 329–334.

600 Inselsbacher, E., O.A. Oyewole, and T. Näsholm. 2014. Early season dynamics of soil nitrogen
601 fluxes in fertilized and unfertilized boreal forests. *Soil Biology and Biochemistry* 74: 167–
602 176.

603 Karlsson, K., and T. Ulvcrona. 2010. Field experiment data available for studies of pre-
604 commercial thinnings. Swedish University of Agricultural Sciences, Unit for Field-based
605 Forest Research, Vindeln Experimental Forests. *Skog & Trä* 2: 1–33. ISSN 1403-6398.

606 Katul, G.G., S. Palmroth, and R. Oren. 2009. Leaf stomatal responses to vapour pressure deficit
607 under current and CO₂-enriched atmosphere explained by the economics of gas exchange.
608 *Plant, Cell & Environment* 32: 968–979.

609 Kellomäki, S., P. Puttonen, H. Tamminen, and C. J. Westman. 1982. Effect of nitrogen
610 fertilization on photosynthesis and growth in young Scots pines. *Silva Fennica* 16, 363–371.

611 Laudon, H., I. Taberman, A. Ågren, M. Futter, M., Ottosson Löfvenius, and K. Bishop. 2013.
612 The Krycklan catchment study—a flagship infrastructure for hydrology, biogeochemistry,
613 and climate research in the boreal landscape. *Water Resources Research* 49, 7154–7158.

INTERACTION BETWEEN NITROGEN AND CLIMATE

614 Lilleskov, E. A., T. J. Fahey, T. R. Horton, and G. M. Lovett. 2002. Belowground
615 ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska.
616 Ecology 83: 104–115.

617 Lim, H., R. Oren, S. Palmroth, P. Tor-ngern, T. Mörling, T. Näsholm, T. Lundmark, H-S.
618 Helmisaari, J. Leppälämmi-Kujansuu, and S. Linder. 2015. Inter-annual variability of
619 precipitation constrains the production response of boreal *Pinus sylvestris* to nitrogen
620 fertilization. Forest Ecology and Management 348: 31–45.

621 Linder, S. 1987. Responses to water and nutrients in coniferous ecosystems. Pages 180–202 in E.
622 Schulze, and H, Zwölfer, editors. Potentials and Limitations of Ecosystem Analysis,
623 Ecological Studies 61. Springer-Verlag Berlin Heidelberg New York Tokyo.

624 Linder, S., M. L. Benson, B. J. Myers, and R. J. Raison. 1987. Canopy dynamics and growth of
625 *Pinus radiata*: I. effects of irrigation and fertilization during a drought. Canadian Journal of
626 Forest Research 17: 1157–1165.

627 Luyssaert, S., E. D. Schulze, A. Börner, A. Knöhl, D. Hessenmöller, B. E. Law, P. Ciais, and J.
628 Grace. 2008. Old-growth forests as global carbon sinks. Nature 455: 213–215.

629 Magill, A. H., J. D. Aber, W. S. Currie, K. J. Nadelhoffer, M. E. Martin, W. H. McDowell, J. M.
630 Melillo, and P. Steudler. 2004. Ecosystem response to 15 years of chronic nitrogen additions
631 at the Harvard Forest LTER, Massachusetts, USA. Forest Ecology and Management 196: 7–
632 28.

633 Magnani, F., et al. 2007. The human footprint in the carbon cycle of temperate and boreal
634 forests. Nature 447: 849–851.

635 Mäkinen, H., and J. Hynynen. 2014. Wood density and tracheid properties of Scots pine:
636 responses to repeated fertilization and timing of the first commercial thinning. Forestry 87:
637 437–447.

638 Mäkipää, R., T. Karjalainen, A. Pussinen, and S. Kellomäki. 1999. Effects of climate change and
639 nitrogen deposition on the carbon sequestration of a forest ecosystem in the boreal zone.
640 Canadian Journal of Forest Research 29: 1490–1501.

641 Marklund, L. G. 1988. Biomassafunktioner för tall, gran och björk i Sverige. Sveriges
642 lantbruksuniversitet, Institutionen för skogstaxering, Rapport 45: 1–73. (In Swedish)

643 Martínez-Vilalta, J., D. Vanderklein, and M. Mencuccini. 2007. Tree height and age-related
644 decline in growth in Scots pine (*Pinus sylvestris* L.). Oecologia 150: 529–544.

INTERACTION BETWEEN NITROGEN AND CLIMATE

645 Matimati, I., G. A. Verboom, and M. D. Cramer. 2014. Nitrogen regulation of transpiration
646 controls mass-flow acquisition of nutrients. *Journal of Experimental Botany* 65: 159–168.

647 Näsholm, T., and A. Ericsson. 1990. Seasonal changes in amino acids, protein and total nitrogen
648 in needles of fertilized Scots pine trees. *Tree Physiology* 6: 267–281.

649 Näsholm, T., A. Ekblad, A. Nordin, R. Giesler, M. Höglberg, and P. Höglberg. 1998. Boreal forest
650 plants take up organic nitrogen. *Nature* 392: 914–916.

651 Näsholm, T., P. Höglberg, O. Franklin, D. B. Metcalfe, S. G. Keel, C. D. Campbell, V. Hurry,
652 Linder, S., and M. Höglberg. 2013. Are ectomycorrhizal fungi alleviating or aggravating
653 nitrogen limitation of tree growth in boreal forests? *New Phytologist* 198: 214–221.

654 Nilsen, P., and G. Abrahamsen. 2003. Scots pine and Norway spruce stands responses to annual
655 N, P and Mg fertilization. *Forest Ecology and Management* 174: 221–232.

656 Nilsson, U., E. Akestam, P.-M. Ekö, B. Elfving, N. Fahlvik, U. Johansson, K. Karlsson, T.
657 Lundmark, and C. Wallentin. 2010. Thinning of Scots pine and Norway spruce
658 monocultures in Sweden. *Studia Forestalia Suecica* 219: 1–46.

659 Norby, R.J., et al. 2005. Forest response to elevated CO₂ is conserved across a broad range of
660 productivity. *Proceedings of the National Academy of Sciences* 102: 18052–18056.

661 Oren, R., and E.-D. Schulze. 1989. Nutritional disharmony and forest decline: a conceptual
662 model. Pages 425–443 in E.-D. Schulze, O. L. Lange, and, R. Oren, editors. *Forest Decline*
663 and Air Pollution: A study of spruce (*Picea abies*) on acid soils. *Ecological Studies* 77.
664 Springer-Verlag Berlin Heidelberg New York.

665 Oren, R., K. S. Werk, E.-D. Schulze, J. Meyer, B.U. Schneider, and P. Schramel. 1988.
666 Performance of two *Picea abies* (L.) Karst. stands at different stages of decline: VI. nutrient
667 concentration. *Oecologia* 77: 151–162.

668 Oren, R. Werk, K .S. Meyer, E.-D- Schulze. 1989. Potentials and limitations of field studies on
669 forest decline associated with anthropogenic pollution. Pages 23–36 in E.-D. Schulze, O. L.
670 Lange, and R. Oren, editors. *Forest Decline and Air Pollution: A study of spruce (*Picea*
671 *abies*) on acid soils. *Ecological Studies* 77. Springer-Verlag Berlin Heidelberg New York.*

672 Oyewole, O. A., E. Inselsbacher, and T. Näsholm. 2014. Direct estimation of mass flow and
673 diffusion of nitrogen compounds in solution and soil. *New Phytologist* 201: 1056–1064.

674 Öquist, M. G., K. Bishop, A. Grelle, L. Klemedtsson, S. J. Köhler, H. Laudon, A. Lindroth, M.
675 Ottosson Löfvenius, M.B. Wallin, and M. B. Nilsson. 2014. The full annual carbon balance

INTERACTION BETWEEN NITROGEN AND CLIMATE

676 of boreal forests is highly sensitive to precipitation. *Environmental Science & Technology*
677 Letters 1: 315–319.

678 Palmroth, S., R. Oren, H. McCarthy, K. H. Johnsen, A. C. Finzi, J. R. Butnor, M. G. Ryan, and
679 W. H. Schlesinger. 2006. Aboveground sink strength in forests controls the allocation of
680 carbon below ground and its [CO₂]-induced enhancement. *Proceedings of the National
681 Academy of Sciences* 103: 19362–19367.

682 Phil-Karlsson G., C. Akselsson, S. Hellsten, P. E. Karlsson, and G. Malm. 2009. Vol. IVL
683 rapport B 1851. IVL. Svenska Miljöinstitutet. (In Swedish)

684 Pregitzer, K. S., A. J. Burton, D. R. Zak, and A. F. Talhelm. 2008. Simulated chronic nitrogen
685 deposition increases carbon storage in northern temperate forests. *Global Change Biology*
686 14: 142–153.

687 Reineke, L. H. 1933. Perfecting a stand-density index for even-aged forests. *Journal of
688 Agricultural Research* 46: 627–638.

689 Ryan, M. G., D. Binkley, and J. H. Fownes. 1997. Age-related decline in forest productivity:
690 pattern and process. *Advances in Ecological Research* 27: 213–262.

691 Schulze, E.-D. 1989. Air pollution and forest decline in a spruce (*Picea abies*) forest. *Science*
692 244: 776–783.

693 SFT, 1998. *Overvåking av langtransportert forurensset luft og nedbør. Årsrapport—Effekter*
694 1997. SFT-Report 748/98 (in Norwegian).

695 Smith, F. W., and S. C. Resh. 1999. Age-related changes in production and below-ground carbon
696 allocation in *Pinus contorta* forests. *Forest Science* 45: 333–341.

697 Solberg, S., M. Dobbertin, G. J. Reinds, H. Lange, K. Andreassen, P. G. Fernandez, A.
698 Hildingsson, and W. de Vries. 2009. Analyses of the impact of changes in atmospheric
699 deposition and climate on forest growth in European monitoring plots: a stand growth
700 approach. *Forest Ecology and Management* 258: 1735–1750.

701 Stape, J.L., et al. 2010. The Brazil Eucalyptus Potential Productivity Project: Influence of water,
702 nutrients and stand uniformity on wood production. *Forest Ecology and Management* 259:
703 1684–1694.

704 Tamm, C. O., A. Aronsson, and B. Popovic. 1995. Nitrogen saturation in a long-term forest
705 experiment with annual additions of nitrogen. *Water, Air and Soil Pollution* 85: 1683–1688.

INTERACTION BETWEEN NITROGEN AND CLIMATE

706 Tamm, C. O., A. Aronsson, B. Popovic, and Flower-Ellis, J. 1999. Optimum nutrition and
707 nitrogen saturation in Scots pine stands. *Studia Forestalia Suec* 206: 1–126.

708 Tarvainen, L., M. Lutz, M. Räntfors, T. Näsholm, and G. Wallin. 2016. Increased needle
709 nitrogen contents did not improve shoot photosynthetic performance of mature nitrogen-
710 poor Scots pine trees. *Frontiers in Plant Science* 7: 1051.

711 Thomas, R. Q., C. D. Canham, K. C. Weathers, and C. L. Goodale. 2010. Increased tree carbon
712 storage in response to nitrogen deposition in the US. *Nature Geoscience* 3: 13–17.

713 Thornton, P. E., J. F. Lamarque, N. A. Rosenbloom, and N. M. Mahowald. 2007. Influence of
714 carbon-nitrogen cycle coupling on land model response to CO₂ fertilization and climate
715 variability. *Global Biogeochemical Cycles* 21: 1–15.

716 Tor-ngern, P., R. Oren, A.C. Oishi, J.M. Uebelherr, S. Palmroth, L. Tarvainen, M. Ottosson-
717 Löfvenius, S. Linder, J-C. Domec, and T. Näsholm. 2016. Ecophysiological variation of
718 transpiration of pine forests: synthesis of new and published results. *Ecological Applications*
719 27: 118–133

720 Townsend, A. R., B. H. Braswell, E. A. Holland, and J. E. Penner. 1996. Spatial and temporal
721 patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen. *Ecological
722 Applications* 6: 806–814.

723 Tveite, B. 1980. Samband mellom svensk boniteringssystem (H₁₀₀) og norsk boniteringssystem
724 (H₄₀). (Relationship between Swedish site index system (H₁₀₀) and Norwegian site index
725 system H₄₀.) Internal note, Norwegian Forest Research Institute, 17/1–1980 (In Norwegian).

726 Vestgarden, L. S., P. Nilsen, and G. Abrahamsen. 2004. Nitrogen cycling in *Pinus sylvestris*
727 stands exposed to different nitrogen inputs. *Scandinavian Journal of Forest Research* 19: 38–
728 47.

729 Vitousek, P. M., and W. A. Reiners. 1975. Ecosystem succession and nutrient retention -
730 hypothesis. *Bioscience* 25: 376–381.

731 de Vries, W., S. Solberg, M. Dobbertin, H. Sterba, D. Laubhann, M. van Oijen, C. Evans, P.
732 Gundersen, J. Kros, G. W. W. Wamelink, G. J. Reinds, and M. A. Sutton. 2009. The impact
733 of nitrogen deposition on carbon sequestration by European forests and heathlands. *Forest
734 Ecology and Management* 258: 1814–1823.

INTERACTION BETWEEN NITROGEN AND CLIMATE

735 de Vries, W., E. Du, and K. Butterbach-Bahl. 2014. Short and long-term impacts of nitrogen
 736 deposition on carbon sequestration by forest ecosystems. *Current Opinion in Environmental
 737 Sustainability* 9-10: 90–104.

738 Wikström, P., L. Edénius, B. Elfving, L. O. Eriksson, T. Lämås, J. Sonesson, K. Öhman, J.
 739 Wallerman, C. Waller, and F. Klintebäck. 2011. The Heureka forestry decision support
 740 system: an overview. *Mathematical and Computational Forestry and Natural-Resource
 741 Sciences* 3: 87–95.

742 Table 1. Summary of the characteristics of the three stands used in the study.

Stand	Åmli (<i>Ps3</i>) (Nilsen et al. 2003)	Rosinedal (<i>Ps8</i>) (Lim et al. 2015)	Åheden (<i>Ps16</i>) (Gundale et al. 2011)
Location	58°54'N, 08°34'E	64°10'N, 19°45'E	64°14'N, 19°46'E
Growing season temperature (°C) (Annual temperature)	12.2 (5.6)	11.5 (1.2)	11.5 (1.2)
Growing season precipitation (mm) (Annual precipitation)	592 (1225)	325 (600)	325 (600)
Soil	Medium sandy and fluvial deposit Haplic Arenosol	Fine sandy and silty glacial outwash sediments Typic Haplolyods	Fine sandy and silty glacial outwash sediments Typic Haplolyods
Understory vegetation	<i>Vaccinium myrtillus</i> <i>Vaccinium vitis-idaea</i> <i>Calluna vulgaris</i> <i>Cladonia</i> spp.	<i>Vaccinium myrtillus</i> <i>Vaccinium vitis-idaea</i> <i>Pleurozium schreberi</i> <i>Hylocomium splendens</i> <i>Cladonia</i> spp.	<i>Vaccinium vitis-idaea</i> <i>Calluna vulgaris</i> <i>Pleurozium schreberi</i> <i>Dicranum</i> sp. <i>Cladina rangiferina</i> <i>Cladina arbuscula</i> <i>Cladonia</i> spp.
Initial age (year)	~30	~80	~160

INTERACTION BETWEEN NITROGEN AND CLIMATE

Stand density (trees ha^{-1})	1470	888 ± 136	494 ± 187
Site index	¹ T23 (² F15)	T20	T20
Mean diameter at 1.3 m (cm, min – max)	11.2	16.6 (4.8 – 27.5)	22.2 (4.7 – 45.2)
Mean tree height (m, min – max)	9.8	14.9 (8.1 – 19.0)	17.4 (7.2 – 27.2)
Expressed productivity	Stem volume ($m^3 ha^{-1} yr^{-1}$)	Wood NPP ($g C m^{-2} yr^{-1}$)	Basal area at 1.3 m ($m^2 ha^{-1} yr^{-1}$)
Method to estimate wood NPP	³ National allometric equations (Vestgarden et al. 2004)	Site specific allometric equations (Lim et al. 2015)	National allometric equations (Marklund 1988)
Background N deposition ($g N m^{-2} yr^{-1}$)	0.8	0.2	0.2
N addition levels (External N inputs) ($g N m^{-2} yr^{-1}$)	0, 3, 9 (N0.8, N3.8, N9.8)	0, 2, 8.8 (N0.2, N2.2, N9)	0, 0.3, 0.6, 1.25, 5 (N0.2, N0.5, N0.8, N1.45, N5.2)
Study period (year)	8 (1991 – 1998)	8 (2006 – 2013)	7 (2005 – 2011)
Number of replicates	4	3	6 (7 for N0.5 and N5.2)

743 ¹Dominant height in meters at total age of 100 years (H₁₀₀)

744 ²Dominant height in meters at age of 40 years (H₄₀); this can be converted to H₁₀₀ by a relation

745 (H₁₀₀ = 1.351 × H₄₀ + 2.61, Tveite 1980).

746 ³Authors estimated biomass expansion factors using the national allometric equations (Marklund 1988)

747

INTERACTION BETWEEN NITROGEN AND CLIMATE

748

749 Table. 2. Coefficient of determinants and estimated parameters for the multiple linear regressions (Eq. 4 – 6) for the higher
 750 productivity and lower productivity stand.

Stand	External N inputs (g N m ⁻² yr ⁻¹)	² Intercept (SE)	² T (SE)	² RMSE	² p-value	³ P (SE)	³ p-value
Higher productivity (<i>Ps</i> 3 and <i>Ps</i> 8)	0.2	-128.90 (40.94) a	25.86 (3.47)	26.21	< .001	.036 (.141)	.799
	0.8	-138.30 (11.73) a	25.86 (3.47)	33.72	< .001	.129 (.086)	.142
	2.2	-92.42 (12.28) b	25.86 (3.47)	27.77	< .001	.499 (.105)	< .001
	3.8	-76.69 (11.73) b	25.86 (3.47)	36.33	< .001	.091 (.094)	.344
	9.0	-47.06 (12.28) c	25.86 (3.47)	54.87	< .001	.969 (.210)	< .001
	9.8	-42.40 (11.73) c	25.86 (3.47)	57.46	< .001	-.063 (.151)	.679
Lower productivity (<i>Ps</i> 16)	0.2	35.12 (37.12) d	4.73 (2.25)	3.19	.044	.004 (.037)	.923
	0.5	29.50 (43.99) d	4.73 (2.25)	7.45	.044	-.017 (.086)	.852
	0.8	47.21 (43.99) d	4.73 (2.25)	9.31	.044	-.018 (.107)	.875
	1.45	78.11 (43.99) d	4.73 (2.25)	6.84	.044	-.102 (.064)	.172
	5.2	-29.11 (43.99) e	4.73 (2.25)	16.62	.044	.346 (.114)	.029

751 ¹Eq. 4: wood NPP response to the growing season temperature (T) and precipitation (P) over rates of external N input.

752 ²Eq. 5: wood NPP response to T.

753 ³Eq. 6: response of residuals produced from the Eq.5 to P.

754 The RMSE is root mean square error.

755 Different letters in the intercept column indicate intercepts are different among external N inputs in each productivity stand (p < 0.05).

756

757 **Figure Legends**

758

759 Fig. 1. A flow diagram of data analyses; rectangles indicate variations in net primary production
760 (NPP) of woody mass and rounded rectangles indicate models explaining the variations. Three
761 types of variation of wood NPP were discriminated into *i*) variation induced by site-specific
762 factors – age-site index related wood NPP; process 1, *ii*) variation by spatial factors – ε_s , external
763 N inputs; process 2, and *iii*) variation by temporal factors – ε_t , temperature and precipitation;
764 process 3. Results of each process are presented in Fig. 2 – 4, and explained variations were
765 synthesized for modeling wood NPP (Fig. 5). Further details on each of the three stands are
766 given in Table 1, equations are given in the Material and Methods section, and estimated
767 parameters in Eq. 3 are given in Table 2.

768

769 Fig. 2. Dynamics of net primary production (NPP) of woody mass in response to stand age for
770 reference plots in each of the three study stands. Using the Heureka Forestry Decision Support
771 System (Wikström et al. 2011), dynamics were generated based on site indices (SI); the letter 'T'
772 denotes *P. sylvestris* and the following number indicates a dominant height in meter at 100 years
773 of age. Thus, T15 is sites of very low productivity and T28 of very high productivity for this
774 species. Error bars are combined spatiotemporal standard deviation.

775

776 Fig. 3. (a) Net primary production (NPP) of woody mass in response to external N inputs (the
777 sum of N fertilization and background deposition) for a combination of moderately-high
778 productivity stands (*Ps3* and *Ps8*), and a moderately-low productivity stand (*Ps16*). Lines are fits
779 from a logistic function (Eq. 1); dotted lines indicate the individual responses for *Ps3* and *Ps8*,
780 and the dashed extension indicates projected values for *Ps16*; the standard deviation of the
781 annual values (error bars), representing temporal variability of wood NPP, increased within a
782 population with external N inputs. (b) The response efficiency of wood NPP (RE_N , increase in
783 wood NPP per external N input) in response to external N inputs, produced based on the fits in
784 (a).

785

786 Fig. 4. Net primary production (NPP) of woody mass in response to temperature during the
787 growing season (T) for (a) moderately-low productivity stand (*Ps16*), and (b) a combination of

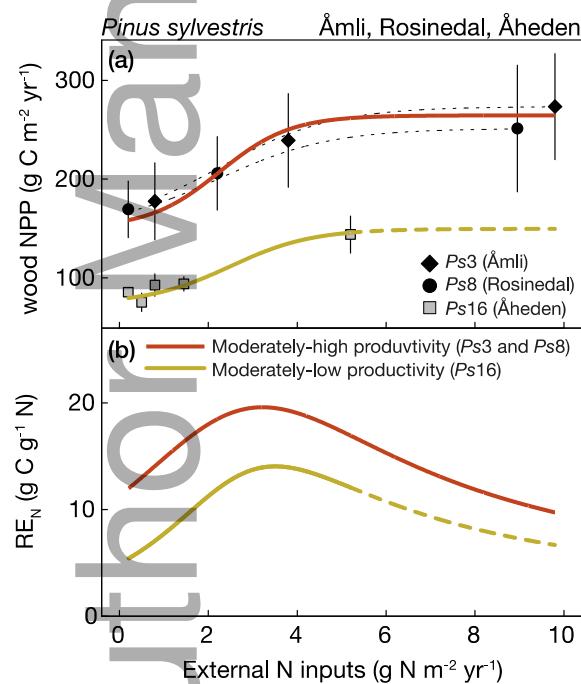
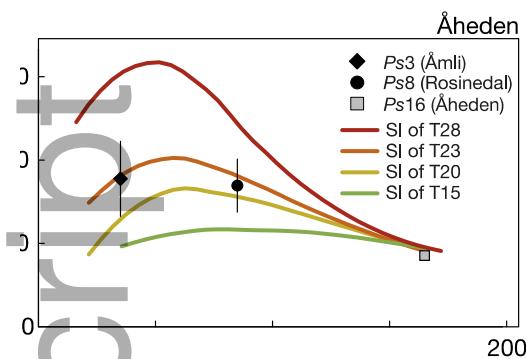
INTERACTION BETWEEN NITROGEN AND CLIMATE

the both moderately-high productivity stands (*Ps3* and *Ps8*) (diamonds for *Ps3*; circles for *Ps8*; values for external N input rates are in g N m⁻² yr⁻¹. Statistically, populations in moderately-low productivity stand were N5.2 and rest of external N inputs, and in moderately-high productivity stands were N0.2 with N0.8, N2.2 with N3.8, and N9 with N9.8. Wood NPP, at mean *T* (averages over 33-year record), in response to precipitation during the growing season (*P*) in (c) moderately-low productivity stand and (d) moderately-high productivity stands. Wood NPP was similar in N0.2 of *Ps8* and N0.8 of *Ps3*, and higher than that of *Ps16*, and did not respond to *P*. Where N was added, plots responded to *P* only below ~400 mm (with N2.2 and N5.2 sharing a similar response). Error bars are spatial standard deviation (among replicates).

797

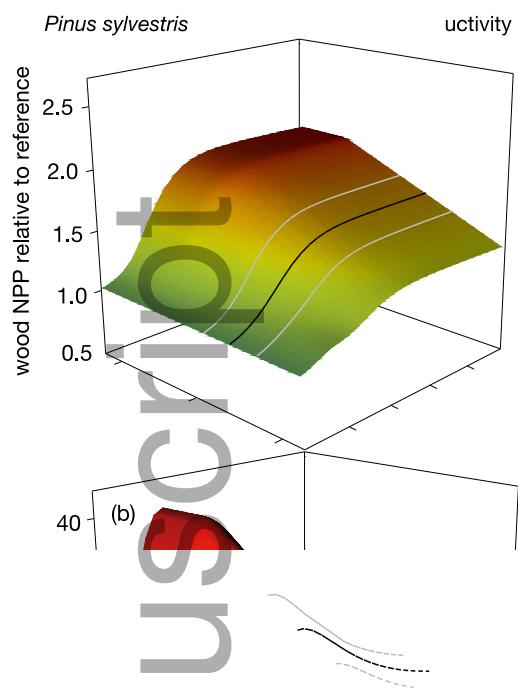
Fig. 5. Estimated (a) net primary production (NPP) of woody mass relative to reference condition (N0.2) and (b) the response efficiency of wood NPP (RE_N, increase in wood NPP per external N input), in response to a combination between external N inputs (the sum of N fertilization and background deposition) and growing season precipitation (*P*) for a combination of two moderately-high productivity stands (*Ps3* and *Ps8*). The response was simulated based on results shown in Fig. 4, and limited to the range in which *P* affected the response to N supply.

804



805

806

Fig. 1.


807

816
817 Fig. 4.
818

INTERACTION BETWEEN NITROGEN AND CLIMATE

819

820 Fig. 5.

Author Manuscript