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.1 Sandia Additive Manufacturing Overview

Ceramic AM
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;1 Outline

Model materials: Soft ferromagnetic alloys and High Entropy alloys

Soft Ferromagnetic Alloys:

* Exceptional functional properties but poor mechanical properties

* Conventional mitigation tactic: modify the alloy chemistry
« Ternary additives to binary Fe-Co (e.g., Fe-Co-X)
* Low Si content in Fe-Si alloys (e.g., Fe-4wt%Si vs. ideal Fe-6.5wt%S1)
* Functional performance 1s limited!

* Unusual microstructure and properties — attractive candidates for layer-by-
layer AM processes
* Materials-centric solution to enabling structural AM applications?

High Entropy alloys: |

Theme: Utilize AM processes to enable improved material performance OR use
advanced materials to enable the promise of AM for structural applications |



4‘ Attributes of soft ferromagnetic alloys
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Excellent soft magnetic properties: B =
* High saturation induction ;
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e Electric motors, transformers, v
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Material Material
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Poor mechanical properties: 600 |

* Result of ordered o, (B2) and a; High silicon content
electrical steel (Fe-6.5wt%Si)

(DO;) phase transformations )
* Low yield strength

* Low ductility

* High notch sensitivity

* Low fracture toughness A
* Low fatigue resistance e == g
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5‘ Additive Manufacturing: a processing solution?

Hypothesis: The unique thermal history of layer-by-layer AM will inhibit ordered phase
transformations in a controlled and predictable way.

Through AM, avoid workability issues that arise in conventional thermomechanical
processes through a solidification-based processing solution — enabling ideal compositions
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6‘ Additive Manufacturing tools

L ENS® Selective Laser Melting-

' Renishaw AM400 pulsed laser
(Lehigh University)
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=  Open architecture LENS system on Tormach CNC

770 frame. =  Commercial SLM system with a 400 W laser.

=  YLS-2000 Laser from IPG Photonics with 2 kW = 70 micron beam diameter with a 250 mm x 250
output at 1064 nm. mm x 300 mm build volume.

=  Control the powder feed through feed wheel and = Enclosed inert atmosphere.

carrier gas (independently) to fluidize the powder.



7‘ AM processed soft ferromagnetic alloys

LENS® Selective Laser Melting

As-built
Fe-Co-1.

Machined Binary Fe-Co
Fe-Co-1.5V .

Fe-Co

Fe-6wt%S

Hypothesis Validated
* Bulk structures were produced from Fe-Co and
Fe-Si alloys via LENS and SLM
e Conventional Hiperco (Fe-Co-1.5V)
* Binary Fe-Co and Fe-6%3i, too brittle for
conventional thermomechanical processes!

Hiperco f

* Fe-Co alloy structures were 40-70% ordered
relative to annealed condition and were controlled
by AM processing parameters.




‘ Preliminary properties are promising

AM Hiperco (Fe-Co-1.5V)
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= Soft ferromagnetic performance in as-built
condition.

*  AM processed binary Fe-Co showed high ;,, (; s N
strength ar}d dugtlllty compared to.convent.lonal bRl s AN isiary Felo
(commercial) Hiperco with extensive necking o T ——— O ——
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s | Implications for next-generation electromagnetic devices
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= AM opens the door for processing of ideal soft ferromagnetic alloy
compositions that are impractical with conventional methods.

= Preliminary results suggest revolutionary performance with
opportunities to tailor microstructure and magnetic/mechanical
properties.




‘ Attributes of High Entropy Alloys
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HEASs have properties exceeding most conventional
alloys, suggesting improved resistance to failures
associated with defects in AM parts.
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1‘ What are HEASs!?

R

High Entropy Alloys: primarily solid solutions* containing 5+ alloying constituents, where the
solutions have high configurational entropy (AS,,,, >1.4R , approx. 12 J/mol-K)

High configurational entropy is believed to thermodynamically suppresses phase separation, a
primary route for degradation of mechanical properties.

Competition between Gibbs energy for solid
solution and intermetallic formation
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Disordered solid solution

D. Miracle et al., Acta Mat., 2017

Thermodynamically stable and predictable solid
solution microstructure, independent of processing!

Stable solid solution microstructure

Ideal for layer-by-layer melting/re-melting of AM...

This hypothesis remains controversial and highly-
debated, and why the proposed work has high
300 ITIeIInp ératﬁre (K) "'t scientific impact potential.

D. Miracle et al., Entropy, 2014




2 | Conventionally cast HEAs

= (Challenge with conventional processing (i.e., casting): Difficult to ensure sufficient
mixing of elements to develop homogeneous microstructures — microsegregation.

= Example alloy: CoCrFeMnNi HEA — segregation of Mn and Cr and porosity.
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13‘ Additive Manufacturing of CoCrFeMnNi HEA

20 kg pre-alloyed HEA

Pre-alloyed CoCrFeMnNi powder
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u | AM — enabling refined homogeneous microstructures
Single phase FCC solid solution

By
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EHT = 20.00 kV WD = 52mm Signal A=VP BSD1  Width = 705.7 ym | I EHT =20.00 kV WD = 52mm Signal A=VP BSD1  Width=114.3 ym

Predominately a fine cellular
solidification substructure with
significantly refined spatial
partitioning of constituents.

Small voids and oxides. g i R
e D AM HEA  Cast HEA




Preliminary mechanical properties are robust in AM
s | solidification
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12% lower hardness in AM solidified sample compared to conventional
casting




16‘ Implications and future work

* AM enables more effective mixing of alloy constituents for complex HEA
compositions — critical to avoid undesired phase transformations.

* Preliminary data is promising for enabling structural AM applications via HEAs.

Molecular Dynamics (MD) effort to develop “big data” tool to enable parametric
alloy optimization
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71 Summary

 AM was shown to enable ideal soft ferromagnetic alloy compositions in bulk
form that are impractical to produced with conventional thermomechanical
processing.

* AM processed soft ferromagnetic alloys retained a soft magnetic performance
with high saturation induction, which could then be tuned via annealing.

e Mechanical properties of the soft magnetic alloys were superior to available data
on the binary Fe-Co alloy.

* Metal Additive Manufacturing was shown to promote more ideal microstructures

in both soft ferromagnetic alloys and High Entropy alloys
* For magnetic materials, atomic ordering was reduced.
* For HEAs, a cellular solidification microstructure developed with refined spatial
partitioning of elements.

* Preliminary mechanical properties of the HEAs were generally insensitive to AM ‘
solidification — a promising outcome for AM structural applications. |



18‘ Why? Physical metallurgy tells us

Phase transformations from a-BCC— a, (B2) or a, (DO;) lead to low ductility
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* Conventional mitigation tactic: modify the alloy chemistry
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