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21 Sandia Additive Manufacturing Overview
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31 Outline E•1
Model materials: Soft ferromagnetic alloys and High Entropy alloys

Soft Ferromagnetic Alloys: 
• Exceptional functional properties but poor mechanical properties
• Conventional mitigation tactic: modifr the alloy chemistry

• Ternary additives to binary Fe-Co (e.g., Fe-Co-X)
• Low Si content in Fe-Si alloys (e.g., Fe-4wt%Si vs. ideal Fe-6.5wt%Si)
• Functional performance is limited!

High Entropy alloys: 
• Unusual microstructure and properties —> attractive candidates for layer-by-

layer AM processes
• Materials-centric solution to enabling structural AM applications?

Theme: Utilize AM processes to enable improved material performance OR use
advanced materials to enable the promise of AM for structural applications
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4 I Attributes of soft ferromagnetic alloys

Excellent soft magnetic properties:
• High saturation induction
• High permeability (High B for

low 11)
• Low coercivity (narrow loops)
• Low core loss (narrow loops)
• Electric motors, transformers,

switches, etc.

- However -

Poor mechanical properties:

Small
00011CA ea Force

H

"Soft" Ferromagnel- " Harcr Ferromagnetic-
Material Material

https: / /www.electronics-tutorials.ws/electromagnetism /magnetic-hysteresis. html

Al Brittle fracture
surface

• Result of ordered a2 (B2) and al High silicon content

(D03) phase transformations
• Low yield strength
• Low ductility
• High notch sensitivity
• Low fracture toughness
• Low fatigue resistance

electrical steel (Fe-6.5wt%Si)
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51 Additive Manufacturing: a processing solution?

Hypothesis: The unique thermal history of layer-by-layer AM will inhibit ordered phase
transformations in a controlled and predictable way.

Through AM, avoid workability issues that arise in conventional thermomechanical
processes through a solidification-based processing solution — enabling ideal compositions
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61 Additive Manufacturing tools
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• Open architecture LENS systern on Tormach CNC
770 frarne.

• YLS-2000 Laser frorn IPG Photonics with 2 kW
output at 1064 nrn.

• Control the powder feed through feed wheel and
carrier gas (independently) to fluidize the powder.

Laser

Beam

Delivery

Optics

Se(ective Laser Melting-

Renishaw AM400 pulsed laser
(Lehigh University)

.

• Cornrnercial SLM systern with a 400 W laser.

• 70 rnicron bearn diarneter with a 250 rnrn x 250
rnrn x 300 rnrn build volume.

• Enclosed inert atrnosphere.
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7 1 AM processed soft ferromagnetic alloys
Ell

LENS°

As-built
Fe-Co-1.

Fe-Cc

Fe-6wt%S

Hiperco

III Machined
Fe-Co-1.5V

Fe-6wt%Si

10 mm

Se(ective Laser Me(ting

Binary Fe-Co

Hypothesis Validated
• Bulk structures were produced from Fe-Co and

Fe-Si alloys via LENS and SLM
• Conventional Hiperco (Fe-Co-1.5V)
• Binary Fe-Co and Fe-6%Si, too brittle for

conventional thermomechanical processes!

• Fe-Co alloy structures were 40-70% ordered
relative to annealed condition and were controlled
by AM processing parameters.
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8 Preliminary properties are promising
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• Soft ferromagnetic performance in as-built
condition.

• AM processed binary Fe-Co showed high
strength and ductility compared to conventional
(commercial) Hiperco with extensive necking
and ductile fracture.

En
gi
ne
er
in
g 
St
re
ss
 (
M
p
a
)
 

800

700

600

500

400

300

200

100

0
0

AM Binary FeCo

Conventional

Hiperco

(Fe-Co-2V)

10 15 20 25 30

Engineering Strain (%)

Conventional Hiperco

Brittle fracture

35

AM binary FeCo

Ductile fracture



I9 Implications for next-generation electromagnetic devices
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• AM opens the door for processing of ideal soft ferromagnetic alloy
compositions that are impractical with conventional methods.

• Preliminary results suggest revolutionary performance with
opportunities to tailor microstructure and magnetic/mechanical
properties.



I Attributes of High Entropy Alloys
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I

HEAs have properties exceeding most conventional
alloys, suggesting improved resistance to failures

associated with defects in AM parts.

Goal: demonstrate these alloys as a materials-based
solution to achieve the promise of metals AM, i.e.
insertion into structural applications.



1 1 I What are HEAs?
High Entropy Alloys: primarily solid solutions* containing 5+ alloying constituents, where the
solutions have high configurational entropy (AS„,1 > 1.4R , approx. 12 J/mol-K) .

High configurational entropy is believed to thermodynamically suppresses phase separation, a
primary route for degradation of mechanical properties.

Competition between Gibbs energy for solid
solution and intermetallic formation
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Disordered solid solution
D. Miracle et al., Acta Mat., 2017

Thermodynamically stable and predictable solid
solution microstructure, independent of processing!

Ideal for layer-by-layer melting/re-melting of AM...

This hypothesis remains controversial and highly-
debated, and why the proposed work has high

300 Temperature (K) Tm scientific impact potential.

D. Miracle et al., Entropy, 2014



12 Conventionally cast HEAs

• Challenge with conventional processing (i.e., casting): Difficult to ensure sufficient
mixing of elements to develop homogeneous microstructures — microsegregation.

• Example alloy: CoCrFeMnNi HEA — segregation of Mn and Cr and porosity.

EHT =20.00 kV VVD = 11.3 rnrn Signal A= VP BSD1 Width = 114.3 prn
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13 I Additive
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Manufacturing of CoCrFeMnNi HEA

Asc-1-43
-754rn +4510.

Pre-alloyed CoCrFeMnNi powder
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LENS processed CoCrFeMnNi
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14 AM — enabling refined homogeneous microstructures

100 pm
EHT = 20.00 kV WD = 5.2 mm Signal A = VP BSD1 Width = 705.7 pm

Predominately a fine cellular
solidification substructure with
significantly refined spatial
partitioning of constituents.

Small voids and oxides.

Single phase FCC solid solution

EHT = 20.00 kV WD = 5.2 mm Signal A = VP BSD1 Width = 114.3 pm
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Preliminary mechanical properties are robust in AM
15 solidification
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161 Implications and future work

• AM enables more effective mixing of alloy constituents for complex HEA
compositions — critical to avoid undesired phase transformations.

• Preliminary data is promising for enabling structural AM applications via HEAs.

Molecular Dynamics (MD) effort to develop "big data" tool to enable parametric
alloy optimization
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1,1 Summary

• AM was shown to enable ideal soft ferromagnetic alloy compositions in bulk
form that are impractical to produced with conventional thermomechanical
processing.

• AM processed soft ferromagnetic alloys retained a soft magnetic performance
with high saturation induction, which could then be tuned via annealing.

• Mechanical properties of the soft magnetic alloys were superior to available data
on the binary Fe-Co alloy.

• Metal Additive Manufacturing was shown to promote more ideal microstructures
in both soft ferromagnetic alloys and High Entropy alloys
• For magnetic materials, atomic ordering was reduced.
• For HEAs, a cellular solidification microstructure developed with refined spatial

partitioning of elements.

• Preliminary mechanical properties of the HEAs were generally insensitive to AM
solidification — a promising outcome for AM structural applications.



18 Why? Physical metallurgy tells us
• Phase transformations from ot-BCC—> sot2 (B2) or sal (D03) lead to low ductility
• Conventional mitigation tactic: modift the alloy chemistry
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