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INTRODUCTION

Architectures for high performance computing (HPC) are
shifting to higher degrees of parallelism on-node
Evidence of this: Intel Xeon Phi, Nvidia GPU

Why 1s this being done? Why is this important?

As architectures get more exotic this brings about more
application code complexity

This work and this presentation 1s entirely focused on CFD in
the context ot high performance computing

No discussion of aerodynamic flow for our use-cases — this is intentionally
nondescript



3 MOTIVATION

Trinity at Los Alamos National Lab, USA I

> Phase I: Intel Xeon Haswell nodes (~10 petaflop/s)
> 32 cores, 2 threads/core, 90 GB/s DDR bandwidth, ~360W/node TDP
> Phase II: Intel Xeon Knights Landing nodes (~30 petaflop/s) |

° 68 cores, 4 threads/cote, wider vector units, 90 GB/s DDR bandwidth, 480 GB/s on-package
memory bandwidth, ~260W/node TDP




«1 MOTIVATION

Sierra at Lawrence Livermore National Lab, USA

> IBM Power9/Volta 100 nodes (~125 petaflop/s aggregate)
> Power9: 44 cores, 8 threads/core, 90 GB/s DDR bandwidth
> Volta: ~900 GB/s on-package memory bandwidth, ~160W/GPU TDP
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, | MOTIVATION _

Astra at Sandia National Lab, USA M

HPE ARM Thunder X2 nodes (~2 petaflop/s aggregate)
56 cores, higher bandwidth on-package memory, unknown TDP
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PERFORMANCE PORTABILITY

What 1s performance portability?

Why should we care about performance portability?

Why should you care about performance portability?

What are the challenges and what are our options?
Disparate set of architectures and an unknown future
The challenge of heterogeneous systems (litke ATS-2)
Many programming models

Separation of data layout from the programming models



7| KOKKOS and SPARC

Kokkos — Sandia developed programming model
github.com/kokkos/kokkos

Combines data layout with portable parallel constructs (parallel_for, parallel_reduce)
Backends for: serial execution, OpenMP, CUDA, ROCm, etc.

Sandia Parallel Aerodynamics and Reentry Code (SPARC)

Solves compressible Navier-Stokes equations

Perfect and reacting gas models

Laminar and RANS turbulence models

Primary discretization 1s cell-centered finite volume

Research on high-order finite difference and discontinuous Galerkin discretizations
Uses Kokkos for performance portable implementation

Goal: solve aerodynamics problems for Sandia on ‘leadership’ class supercomputers



s . CORE DESIGN ELEMENTS: DATA LAYOUT L I

Data layout has a huge effect on architecture performance I
Roughly speaking: row-major for CPUs and column-major for GPUs |

‘functor’ construct to implement the loop body of a parallel for

void operator() (int k, int j, int i) const;



9

CORE DESIGN ELEMENTS:

Function dispatch selects between run-time (dynamic) and
compile-time (static) invocation

GPU requires static invocation (in our implementation)

CPU has a mix of dynamic and static invocation (balance
compile time and run-time performance)

template <bool is_dynamic> struct Dispatcher
{
template <typename Type>
static void computeFlux (Typex object) {
object—->computeFlux () ;
}
}i

Dispatcher<true>::computeFlux<Flux> (object);




0| CORE DESIGN ELEMENTS:

Kernels apply a parallel construct over a mesh to do work

template <typename Scalar, typename GasModelType, typename KokkosExeSpace>

class ComputeResidualVolumeKernel
public GasModelKernel<Scalar, GasModelType,
public MeshTraverserKernel<ComputeResidualVolumeKernel<Scalar,

KokkosExeSpace>, KokkosExeSpace>

KokkosExeSpace>,
GasModelType,

{

private:
typedef MeshTraverserKernel<ComputeResidualVolumeKernel<Scalar, GasModelType,

KokkosExeSpace>, KokkosExeSpace> MeshTraverser;
const Array4D<Scalar> cell primitive_ vars;

public:
ComputeResidualVolumeKernel (const StructuredBlock& blk, const

MaterialCompFluid<Scalar>& gasmodel, const Array4D<Scalar>& cell_V,
GasModelKernel<Scalar, KokkosExeSpace, GasModelType> (gasmodel),
MeshTraverser (blk.kmin, blk.kmax, blk.jmin, blk.jmax, blk.imin,

cell_primitive_vars(cell_V),

blk.imax),

{ /+ constructor code */ }

KOKKOS_FORCEINLINE_FUNCTION
void compute (const Indexé& k,
{ /% kernel functor code */ }

const Index& 7, const Index& 1) const

void Run () const

{
this->MeshTraverser::Run(); // traverse through the current mesh block,

running the above kernel functor code for each mesh entity




n | CORE DESIGN ELEMENTS:

Performance portable linear solvers are immensely important

Solve typically takes ~50% of execution time

SPARC uses many solvers from the Trilinos package
github.com/Trilinos/ Trilinos

Primary solvers for hypersonics are block Jacobi and block Tri-Diagonal solvers

KokkosKernels provides threaded/vectorized versions of these
SIMD vectorization achieved through compact BLLAS layout and operations



2 | PERFORMANCE ANALYSIS: INTRODUCTION

Performance analysis on 3 primary architecture types:

Intel Xeon systems

Haswell nodes — ATS-1/HSW (Ttinity)
Broadwell nodes — CTS-1/BDW (‘commodity cluster”)

Intel Xeon Phi
Knight’s Landing nodes — ATS-1/KNL (Trinity)
Nvidia GPU
Broadwell/Pascal 100 nodes — CTS-1/P100 (GPU testbed)

Power8/Pascal 100 nodes — ATS-2/P100 (ATS-2 eatly-access testbed)
Power9/Volta 100 nodes — ATS-2/V100 (ATS-2 look-alike testbed)

2 primary cases:
Perfect gas: ~Mach 6 flow around a sphere-cone geometry

Reacting gas: ~Mach 9 flow around same geometry with 5-species ari model
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PERFECT GAS: STRONG SCALING
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Compute Residual: Interior Terms
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REACTING GAS: STRONG SCALING
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REACTING GAS:
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»| CONCLUSIONS AND ON-GOING WORK _

SPARC i1s a single CFD code base that is running efficiently on I
multiple architectures

Built on Kokkos for performance portability

Accomplishments:
All computational functions have been implemented as Kokkos kernels

Solver performance on KNL is ~2x faster than CPU
Assembly performance on P100/V100 is ~2-4x faster than CPU/KNL

On-going work:
Optimizing assembly on KNL via SIMD vectorization

Optimizing solver performance for GPU
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