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e Thermochemistry. e Electrochemistry.
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q'ydroGEN Advanced Water Splitting Materials Consortium
https://h2awsm.org (~*S10M FY18) H, Cost at Pump
H, as far as the eye can see... <>4/8ge
<$7/gge (early market)

gge = gallon of gas equivalent

Photoelectrochemical
Water Splitting

. 9 = h,

Lw nghTmp rature :  Solar Thermochemical
ced Electrolysis ; Water Splitting

e Multi-lab consortium investing in R&D of advanced water-
splitting technology pathways.
— Goal to produce H, renewably at large scale and low cost

— Address KEY@IS cha@o advancing TRL
4
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I’Simple Concept: Heat + HZO |N,m02 ouT -

R. Perret, SAND Report (SAND2011-3622), Sandia National Laboratories, 2011.
G. J. Kolb, R. B. Diver, SAND Report (SAND2008-1900), Sandia National Laboratories, 2008.
S. Abanades, P. Charvin, G. Flamant, P. Neveu, Energy. 31, 2805-2822 (2006).

(8-8,H,0

I
thermal reduction: : 0,

Thighi Piow i >

Concentrated Solar Power

e Direct storage of solar energy in a chemical bond.

e Many hundred cycles proposed.
— Multi-phase, multi-step _thermachemical-electrochemical hybrids

e CUS DOE investments focused on two-step, non-volatile MO.,.
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B e
-EETC H, vs Renewable Electro y5|s L

STC offers a simpler technology development pathway to high efficiency.
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1ge and Tr ransport

T—
='§TC H, Materials Theme: Oxygen EX

e Oxygen storage materials with a twist.

— Thermodynamics

= Kirati H,0 dissociation
netics O-atom incorporation
— Transport o7 TRl
l}}\l’“._f‘,g

— Gas-solid interactions f .

#
L]
— Solid-solid interactions !}

)
5

RSN “ ase"anﬁ!% ation &
Oxygen “storage”\ il evolution

material

e Materials in extreme env .
— High temperature and r: ' gy Chemical bond activation

— High thermal and chemica. oo cou

DOE is very interested in a “Materials Genome”
approach to material discovery and optimization
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(1) Sandia National Laboratories
Cycle Thermodynamics: Challenge Process Economics

Ad at target T, too small for CeO,
CeO,;

to meet cost and efficiency targets
2.00f H0:Hy=1, o mmmmsne ]
1.98 rd
1.96} 3 !
\Q s A
™ . 0 . 1273
i 1941 ¢ | o 1773
Process metrics (US DOE targets): : .
H, production rate 50-100mt/day 1.92) -
1 -90—1’; 4011408 10-5 10-2
H, production cost (US DOE) ~$3/kg 1077107077107 107 10
l0g+10[Po,]

Desired cycle metrics:
~1400°C 5 N Engineering challenge

Reduction Temperature (T+g)
Oxidation Temperature (Toy) _ k
Hyas ~10atm
<«— Material challenge

,ugas < Hsolid

“O” activity in reduction
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Cycle Thermodynamics:

"
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* Reduce at low Ty like (Sr,La)Mn, Al O; (AHgg,~300 ki/mol O).
e Oxidize at low H,0:H, ratio like CeO, (ASzp~250 J/K mol O).

spinel

FeZ*/Fe3* systems :

= High redox capacity (A6>0.1).
= Slow H,O oxidation kinetics.
= Deep reduction at 1400 °C.

= Oxide matrix required.

fluorite

Ce3*/Ce** systems:

= Low redox capacity (A5<0.08).
= Fast H,O oxidation kinetics.
= Shallow reduction at 1500 °C.

= Durable.

perovskite

TM?2*/TM3*/TM** systems:

‘ Tz;;?:;‘;ﬂlumﬂiai@ x-f

PP ey @ v

E B site atom

High redox capacity (A6>0.1).
Promising H,O oxidation kinetics.
Deep reduction at 1400 °C.

Vast material space!

A site atom 4

Adyax (1623K,~10 atm)
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. o © NoWs @1073K)
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8 SryLasMny Al,O,
= s =
°e 8 -
® \Q.
é S CeO,
B o N e
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one’ °H:Q%H
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mew Perovskite: Ba4CeMn3012 ( ;

'
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e BCM is UNIQUE when compared to known STCH perovskites.
— Reduces at LOW T & oxidizes at LOW H,0:H, ratio
— Itis a LINE COMPOUND not a solid solution
— Cerium substitutes on the B-SITE

10
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a4CeMn3012...or IS |t...BaSEI - ,sMng 75515?
12R

1‘:}’:—2“)

Reduction may be dependent on phase composition.

— Nonstoichiometric behavior is not known in this system

%

delta (mol O / mol BCM)
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ehavioflwith EELS

1) Sandia National Lahoratories
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"~ for HRTEM
Probe electron DOS for 12R and 10H “quenched” phases.
— Discover where electrons go when O atoms vanish

Does cerium participate in redox chemistry?
Derive fundamental understanding of redox behavior.

o
— Explain known materials
— Engineer better materials

12
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EELs Reveals: Effect of Thermal Reduction on O-M Bonding

12R 10H
WJWVW\WWWWMWWWWW— & charge ﬁWWWMM‘WVWWMWMAW &

O K-edge, oxidized O K-edge, reduced

g Beorfiy transferred to g | ]
8 hybridized 2p 8
g system g
decreases
hole DOS oy
500 525 550 575 600 625 5525 550 575 600 625
energy (eV) energy (eV)

Subtle variation in
extended edge
oscillations

ADb inito theory
required to fully
interpret spectra

norm. counts

3 — 12R (oxidized)
=== 10H (reduced)
1

520 530 540 550 560
energy (eV)
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—

— | TN
EELS Reveals: Manganese Oxidation State Changed?
12R 10H
e charge — . T
transferred to i \W\WW =
< hybridized 3d < Mn L; ,-edge, reduced
S system 5
& decreases £
2 hole DOS e
branching ratio = .
620 640 660 680 Mn REDUCED 620 640 660 680
energy (eV) — r energy (eV)
= Mn Mn L; ,-edge |

Ab inito theory
required to fully
interpret spectra

Peak shift =
Mn OXIDIZED

norm. counts

=~ 12R (oxidized)
=== 10H (reduced)
1

640 650 660
energy (eV)
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10H

WN\/W\W/J WW’MWW’\/‘W Vil

M; ,-edge, reduced

875 900 925
energy (eV)

EELS Reveals: Cerium Not Likely Redox Active on B-site
12R
jv‘ij l/A .
I \f\ﬂmﬂw\/\[/ WA Wl
@ Ce,M; 4-edge, oxidized 4f system @
= | does not show 3
c significant £
s L changes in 8
hole DOS
87SI 900 925
energy (eV) T T T
Ce M; 4-edge

Ab inito theory
required to fully
interpret spectra

norm. counts

— 12R (oxidized)
=== 10H (reduced)

1
870 880

1 1
890 900 910

energy (eV)

4f DOS is a very
strong indicator of
Ce oxidation state
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much orhe STCH Perbvsklt

H,0 dissociation
O-atom incorporation

SLOWLY marching towards
developing holistic design
rules for STCH materials

based on first principles

e Structural transformations.

— Exploit large entropy changes to promote water splitting favorability

— Exploit high [V&] defect concentration to promote high H, production
e Surface reaction and bulk transport kinetics.

— Enhance gas-exchange rates to promote fast cycle times

— Enhance bulk oxygen diffusion rates for to promote fast cycle times

e Material degradation.
e Material — radiation interactions.

16
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HydroGEN is an Energy Materials Network (EMN)

https://energy.gov/eere/energy-materials-network/energy-materials-network

N
‘w HydroGEN

Advanced Water Splitting Matevials. —

T
M . B Lawrence Livermone
> " R

iENREL o oy

|asboratories

Core Labs

bz Mol e | ey

Comprising more than 80 unique, world-class capabilities/expertise in materials
theory/computation, synthesis, and characterization & analysis:

Characterization & Analysis

Advanced Materials Synthesis
BT =

A3

High-throughput spray —
pyrolysis system for |

Bulk and interfacial
models of aqueous

electrolytes electrode fabrication Stagnation flow reactor to
evaluate kinetics of redox
material at high-T
LAMMPS classic molecular dynamics Conformal ultrathin TiO, ALD TAP reactor for extracting
modeling relevant to H,O splitting coating on bulk nanoporous gold quantitative kinetic data

HydroGEN fosters cross-cutting innovation using theory-qguided applied materials R&D

advance all emerging water-splitting pathways for hy
17
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STC H, Production Reactor Test Facility at Sandia

1600
1200
800

—— CeO, particles
SS plate
—— CPR2 wall

temperature (K)

40—

14:.00 15:00 16:00 17:00 18:00
CPR2 run time (HH:MM)
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THANK YOU

QUESTIONS?
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.Desired Material Behavior De?ined by Process

Economics

e Redox capacity (MO,/H,).

PROPERTY IDEAL
— Oxide heating and material inventory
) ) Redox Capacity HIGH <10:1 (MO,/H,)
e Redox kinetics. o
Evcle B 4 ol Redox Kinetics FAST ~sec (match flux)
= Im nam rial inventor
ycle time and material inventory Earth Abundance ~ HIGH  >10%10° Si
* Earth abundance. Tr @ Reduction ~ LOW ~1400°C
— Raw materials H,OH, @ Oxidation =~ LOW  <5:1 (H,0:H,)
e Reduction temperature (T1R). Durability HIGH >10 years

— Heliostats (solar concentration)
— Reactor construction materials
e Steam requirement (H,O:H.,). Commercial viability key driver
when competing against steam
methane reforming or electrolysis.

— Steam heating and water use
e Durability.
— Material replacement

J. E. Miller, A. H. McDaniel, M. D. Allendorf, Advanced Energy Materials. 4, 1300469 (2014).

20 I. Ermanoski, J. E. Miller, M. D. Allendorf, Physical Chemistry Chemical Physics. 16, 8418 (2014).



