
LA-UR-19-26386
Approved for public release; distribution is unlimited.

Title: SYCL for Monte Carlo Transport

Author(s): Burke, Timothy Patrick

Intended for: Report

Issued: 2019-07-08

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

SYCL for Monte Carlo Transport

Timothy P. Burke

XCP-3 Monte Carlo Codes, Methods, and Applications
Los Alamos National Laboratory

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

SYCL
“SYCL is a cross-platform abstraction layer that builds on the underlying
concepts, portability and efficiency of OpenCL that enables code for
heterogeneous processors to be written in a “single-source” style using
completely standard C++.”

AMD GPUs
Nvidia GPUs
ARMs
Intel Graphics (on-chip graphics)
Anything that uses OpenCL

“Completely standard”

SYCL is a standard specified by Khronos that is implemented by Codeplay
(ComputeCPP) and intel

This talk focuses on Codeplay’s implementation of the standard
Codeplay has implemented SYCL in an number of projects, including
Tensorflow and Eigen (link)

Slide 2

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf
https://www.khronos.org/sycl/
https://www.codeplay.com/products/computesuite/computecpp
https://www.codeplay.com/products/computesuite/computecpp
https://github.com/intel/llvm
https://developer.codeplay.com/home/

SYCL Overview
SYCL provides an API for executing algorithms in parallel using
parallel_for and buffers

parallel_for iterates over indices in N dimensions

1 constexpr s i z e _ t N = 2000;
2 constexpr s i z e _ t M = 3000;
3 . . .
4 cgh . p a r a l l e l _ f o r <c lass foo >(range <2> {N, M} , [=] (id <2> index) {
5 s td : : cout << " (i , j) (" << index [0] << " , " << index [1] << ") \ n ") ;
6 }) ;

Buffers hold allocatable-data to be used in SYCL kernels

1 constexpr s i z e _ t N = 1000;
2 std : : vector <double > data {N } ;
3 c l : : s yc l : : bu f fe r <double , 1> da taBuf fe r { data . data () , c l : : s yc l : : range <1>{N}

– SYCL manages the location of the data (host or device memory)

Work is submitted to the device using queues and command groups
Slide 3

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

SYCL Basics - Adding two vectors
1 . . .
2 s i z e _ t N = 100;
3 s td : : vector <T> VA(N, 1 .0) ;
4 s td : : vector <T> VB(N, 2 .0) ;
5 s td : : vector <T> VC(N) ;
6 c l : : s yc l : : range <1> numOfItems {N} ;
7 { / / scoping c u r l y brackets
8 c l : : s yc l : : bu f fe r <T , 1> buf fe rA (VA. data () , numOfItems) ;
9 c l : : s yc l : : bu f fe r <T , 1> buf fe rB (VB. data () , numOfItems) ;

10 c l : : s yc l : : bu f fe r <T , 1> buf ferC (VC. data () , numOfItems) ;
11 auto queueFunc = [&] (c l : : s yc l : : handler& cgh) {
12 auto accessorA = buf fe rA . template get_access < c l : : s yc l : : access : : mode : :

read >(cgh) ;
13 auto accessorB = buf fe rB . template get_access < c l : : s yc l : : access : : mode : :

read >(cgh) ;
14 auto accessorC = buf ferC . template get_access < c l : : s yc l : : access : : mode : :

read_wr i te >(cgh) ;
15 auto pa ra l l e lFunc = [=] (c l : : s yc l : : id <1> wiID) {
16 accessorC [wiID] = accessorA [wiID] + accessorB [wiID] ;
17 } ;
18 cgh . p a r a l l e l _ f o r <c lass SimpleVadd >(numOfItems , pa ra l l e lFunc) ;
19 } ;
20 c l : : s yc l : : queue deviceQueue (c l : : s yc l : : gpu_selector { }) ;
21 deviceQueue . submit (queueFunc) ;
22 } / / scoping c u r l y brackets
23 f o r (auto& va l : VC) s td : : cout << va l << " \ n " ;
24 . . .

Figure: SYCL program to add two vectors together.

Slide 4

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

SYCL Basics

Create buffers from pre-allocated host data

1 std::vector <T> VA(N, 1.0);
2 cl::sycl::buffer <T, 1> bufferA(VA.data(), numOfItems);

Create a sycl queue targeting the device you want to run on

1 cl::sycl::queue deviceQueue(cl::sycl:: gpu_selector {});

Create and submit a functor to the queue

1 deviceQueue.submit(queueFunc);

Slide 5

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

SYCL Basics
Queue functor
– takes a SYCL control group handle as an argument

1 auto queueFunc = [&](cl::sycl:: handler& cgh) {

– Creates accessors to the sycl buffers

1 auto accessorA = bufferA.template get_access <cl::sycl::
access ::mode::read >(cgh);

– Creates a functor to do the parallel work

1 auto parallelFunc = [=] (cl::sycl::id <1> wiID){
2 accessorC[wiID] = accessorA[wiID] + accessorB[wiID]; };

– Calls parallel_for

1 cgh.parallel_for <class SimpleVadd >(numOfItems ,
parallelFunc);

Slide 6

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

SYCL Gotchas

Buffers synchronize with the data they were created from when they go
out of scope
– but not if they were constructed from iterators!

1 { // scoping curly brackets
2 cl::sycl::buffer <T, 1> bufferA(VA.data(), numOfItems);
3 cl::sycl::buffer <T, 1> bufferB(VB.begin(), VB.end());
4 ... // work on bufferA and bufferB
5 } // end scoping curly brackets
6 for (auto& val : VA) {
7 std::cout << val << "\n"; // reflects updates to VA
8 }
9 for (auto& val : VB) {

10 std::cout << val << "\n"; // VB unchanged!
11 }

Slide 7

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

SYCL Gotchas

Accessors are created with the control group handle (cgh) as an
argument - they must be created from within a queue submission.

1 auto queueFunc = [&](cl::sycl:: handler& cgh) {
2 auto accessorA = bufferA.template get_access <cl::sycl:: access

::mode::read >(cgh);
3 ... };

The functor submitted to parallel-for can only capture by value and is
copied to the device being executed on

1 auto parallelFunc = [=] (cl::sycl::id <1> wiID){
2 accessorC[wiID] = accessorA[wiID] + accessorB[wiID]; };

Slide 8

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

SYCL Gotchas

Buffers and accessors only way to access heap data

1 struct Foo {
2 heap_container_t data;
3 ... // methods that access or operate on Foo data
4 };
5 ...
6 auto queueFunctor = [&] (cl::sycl:: handler& cgh){
7 cgh.parallel_for(cl::sycl:: range(N), [=] cl::sycl::id <1> id){
8 // how to use Foo in here?
9 });

10 };

Slide 9

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

SYCL Gotchas
Buffers and accessors only way to access heap data

1 struct FooView {
2 Buffer* bufferPtr;
3 Accessor acc;
4 FooView(Buffer& buffer): bufferPtr (& buffer){}
5 void initialize(cl::sycl:: handler& cgh){
6 acc = Accessor (*bufferPtr , cgh);
7 }
8 void bar(cl::sycl::id <1> id) {return acc[id];}
9 };

10 Foo foo;
11 Buffer bufferFooData(foo.data(), range(foo.size()));
12 FooView fooView(bufferFooData);
13 ...
14 auto queueFunctor = [&] (cl::sycl:: handler& cgh){
15 fooView.initialize(cgh);
16 cgh.parallel_for(cl::sycl:: range(N), [=] cl::sycl::id <1> id){
17 fooView.bar(id);
18 });
19 };

What about a vector of Foo?

Slide 10

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

SYCL Gotchas
Buffers and accessors only way to access heap data

1 struct FooView {
2 Buffer* bufferPtr;
3 Accessor acc;
4 FooView(Buffer& buffer): bufferPtr (& buffer){}
5 void initialize(cl::sycl:: handler& cgh){
6 acc = Accessor (*bufferPtr , cgh);
7 }
8 void bar(cl::sycl::id <1> id) {return acc[id];}
9 };

10 Foo foo;
11 Buffer bufferFooData(foo.data(), range(foo.size()));
12 FooView fooView(bufferFooData);
13 ...
14 auto queueFunctor = [&] (cl::sycl:: handler& cgh){
15 fooView.initialize(cgh);
16 cgh.parallel_for(cl::sycl:: range(N), [=] cl::sycl::id <1> id){
17 fooView.bar(id);
18 });
19 };

What about a vector of Foo?
Slide 10

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

SYCL Gotchas

Objects in kernels must be standard layout type (cppref)

1 int main() {
2 class A { public: double a = 0.0; };
3 class B { public: int b = 0.0; };
4 class C : public A, public B { };
5 ...
6 q.submit ([&](cl::sycl:: handler &cgh) {
7 auto acc = buf.template get_access <access ::mode::read_write

>(cgh);
8 cgh.parallel_for <class ForEach >(Range(N), [=](cl::sycl::id

<1> id) {
9 accC[id].a = id*0.6;

10 accC[id].b = id;
11 });
12 });
13 }

Slide 11

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

https://en.cppreference.com/w/cpp/named_req/StandardLayoutType

SyclParallelSTL
https://github.com/KhronosGroup/SyclParallelSTL

1 #include <vector >
2 #include <iostream >
3 #include <sycl/execution_policy >
4 #include <experimental/algorithm >
5 using namespace std:: experimental :: parallel;
6 int main() {
7 using T = double;
8 int N = 100;
9 std::vector <T> A(N, 1.0);

10 std::vector <T> B(N, 2.0);
11 std::vector <T> C(N);
12 auto f = [](const double& a, const double& b){return a+b;};
13 sycl:: sycl_execution_policy <class transform1 > ep;
14 transform(ep , A.begin (), A.end(), B.begin (), C.begin (), f);
15 for (auto& val : C) std::cout << val << "\n";
16 return 0;
17 }

Slide 12

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

SYCL for MC Transport

1

2 auto transportFunctor = [=] DEVICE (Particle& p) {
3 auto& xs = *xsPtr;
4 while (p.alive()) {
5 auto dist = getDistanceAndMoveParticle(p, xs, eigenvalue);
6 eigenvalueTallyPtr ->tallyTrack(dist , p, xs);
7 if (p.dead()) {
8 eigenvalueTallyPtr ->tallyLeakage(p);
9 } else {

10 processCollision(p, xs , *fissionBankPtr , eigenvalue);
11 }
12 }
13 };
14

15 for_each(sourceBank ->begin(), sourceBank ->end(),
transportFunctor , execPolicy);

Figure: Serial/OpenMP/CUDA transport kernel

Slide 13

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

SYCL for MC Transport
1 namespace sycl = cl::sycl
2 using ParticleBuffer = sycl::buffer <Particle , 1>;
3 using Range = sycl::range <1>;
4 using XSBuffer = sycl::buffer <MGXS , 1>;
5 using EigenvalueTallyBuffer = sycl::buffer <EigenvalueTally_t , 1>;
6 sycl::queue q(sycl:: gpu_selector {});
7 { // Scoping brackets
8 ParticleBuffer sourceBankBuffer(sourceBank ->data(), Range (3* nParticles));
9 ParticleBuffer fissionBankBuffer(fissionBank ->data(), Range (3* nParticles));

10 XSBuffer xsBuffer(xsPtr , Range (1));
11 EigenvalueTallyBuffer eigenvalueTallyBuffer(eigenvalueTallyPtr , Range (1));
12 q.submit ([&](sycl:: handler &cgh){
13 auto sourceBankAcc = sourceBankBuffer.template get_access <sycl:: access ::mode:: read_write >(cgh);
14 auto fissionBankAcc = fissionBankBuffer.template get_access <sycl:: access ::mode::read_write >(cgh);
15 auto xsAcc = xsBuffer.template get_access <sycl:: access ::mode::read_write >(cgh);
16 auto eigenvalueTallyAcc = eigenvalueTallyBuffer.template get_access <sycl:: access ::mode::read_write >(

cgh);
17 auto transportFunctor = [=] (sycl::item <1> history){
18 auto historyID = history.get_linear_id ();
19 Particle& p = sourceBankAcc[historyID];
20 auto& xs = xsAcc [0];
21 auto& eigenvalueTally = eigenvalueTallyAcc [0];
22 while (p.alive()) {
23 auto dist = getDistanceAndMoveParticle(p, xs , eigenvalue);
24 eigenvalueTally.tallyTrack(dist , p, xs);
25 if (p.dead()) {
26 eigenvalueTally.tallyLeakage(p);
27 } else {
28 processCollision(p, xs , fissionBankAcc , eigenvalue);
29 }
30 }
31 };
32 cgh.parallel_for <class TransportFunctor >(Range(sourceBank ->size()), transportFunctor);
33 });
34 } // scoping brackets synchronize buffer data

Figure: SYCL transport kernel

Slide 14

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

SYCL for MC Transport

How to access data (XS, geometry) within SYCL kernel?
– Listing shown above assumes data within the XS object (total, fission,

capture, etc) are containers with sizes known at compile time, i.e. they
don’t use an allocator. If they did use an allocator then every piece of data
would need its own accessor: totalXSAcc, fissionXSAcc, etc.

How to efficiently create secondary particles / add neutrons to fission
bank?

Slide 15

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Compiling

Need to set your compiler to Compute++, similar to setting your compiler
to NVCC

ComputeCPP’s Ubuntu 16.04 version works on Darwin
ComputeCpp built on top of Clang 6.0

Need to add SYCL code to your CMAKE project via
add_sycl_to_target(TARGET SOURCE)

provided by ComputeCpp SDK

Compilation does not work out-of-the-box on Darwin:
Need to modify SDK’s FindComputeCpp.cmake
Need to specify gcc-toolchain

Slide 16

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

https://github.com/codeplaysoftware/computecpp-sdk

Compiling

Need to set your compiler to Compute++, similar to setting your compiler
to NVCC

ComputeCPP’s Ubuntu 16.04 version works on Darwin
ComputeCpp built on top of Clang 6.0

Need to add SYCL code to your CMAKE project via
add_sycl_to_target(TARGET SOURCE)

provided by ComputeCpp SDK

Compilation does not work out-of-the-box on Darwin:
Need to modify SDK’s FindComputeCpp.cmake
Need to specify gcc-toolchain

Slide 16

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

https://github.com/codeplaysoftware/computecpp-sdk

Compiling

Need to set your compiler to Compute++, similar to setting your compiler
to NVCC

ComputeCPP’s Ubuntu 16.04 version works on Darwin
ComputeCpp built on top of Clang 6.0

Need to add SYCL code to your CMAKE project via
add_sycl_to_target(TARGET SOURCE)

provided by ComputeCpp SDK

Compilation does not work out-of-the-box on Darwin:
Need to modify SDK’s FindComputeCpp.cmake
Need to specify gcc-toolchain

Slide 16

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

https://github.com/codeplaysoftware/computecpp-sdk

Compiling

1 list(APPEND COMPUTECPP_DEVICE_COMPILER_FLAGS --gcc -toolchain=${
COMPUTECPP_TOOLCHAIN_DIR })

2 ...
3 add_library(ComputeCpp :: ComputeCpp UNKNOWN IMPORTED GLOBAL)
4 add_library(OpenCL :: OpenCL UNKNOWN IMPORTED GLOBAL)
5 ...
6 add_library(ComputeCpp INTERFACE)
7 target_compile_options(ComputeCpp INTERFACE "${

COMPUTECPP_DEVICE_COMPILER_FLAGS}")
8 target_link_libraries(ComputeCpp INTERFACE "${

COMPUTECPP_DEVICE_COMPILER_FLAGS}")
9 ...

10 target_link_libraries(${SDK_ADD_SYCL_TARGET} PRIVATE ComputeCpp)

Figure: Changes made to FindComputeCpp.cmake module.

Slide 17

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Compiling

1 list(APPEND CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR }/
dependencies/ComputeCpp/cmake/Modules)

2 find_package(ComputeCpp REQUIRED)
3 ...
4 add_sycl_to_target(TARGET ${SOURCE_NAME }.test SOURCES ${

SOURCE_NAME }.test.cpp)
5 ...

Figure: Changes made to FindComputeCpp.cmake module.

Slide 18

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Conclusions / Personal Reflections

SYCL is a powerful tool for heterogeneous computing.... if you’re adding
and multiplying floats.

Difficult to use
– Accessors and buffers are cumbersome
– Objects w/ heap data are near impossible to use

Full of surprises
– Buffers two ways, one syncs, one doesn’t
– Only supports standard layout types in kernels

SYCL is great when
code is completely functional (no side-effects)
– everything can be expressed as a std::algorithm

only heap data being used is passed as arguments to parallel
algorithms

Slide 19

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Conclusions / Personal Reflections

SYCL is a powerful tool for heterogeneous computing.... if you’re adding
and multiplying floats.

Difficult to use
– Accessors and buffers are cumbersome
– Objects w/ heap data are near impossible to use

Full of surprises
– Buffers two ways, one syncs, one doesn’t
– Only supports standard layout types in kernels

SYCL is great when
code is completely functional (no side-effects)
– everything can be expressed as a std::algorithm

only heap data being used is passed as arguments to parallel
algorithms

Slide 19

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Questions?

SYCL for Monte Carlo Transport

Timothy P. Burke

XCP-3 Monte Carlo Codes, Methods, and Applications
Los Alamos National Laboratory

Slide 20

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

	Overview

