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Outline )

MELCOR is an integrated,
engineering-level code to model
and simulate severe reactor
accidents

= Why Injectable
sacrificial material
(SM) system?

= Novel SM concept

important Severe Accident Phenomena

Accidentinitation I

Reactor coolant thermal hydraulics [
Loss of core coolant NN

Core meltdown and fission product relcase T B
Reactor vessel fadure
Transport of fission products in RCS and Containment I
Fission product aerosol dynamics I 2
Molten core/basemat interactions [ "
Containment thermal hydraulics =
Fission product removal processes [ s
Release of fission products to environment I B
Engineered safety systems - sprays, fan coolers, etc R
lodine chemistry, and more I )

= Experimental works

= Modeling works

= |njectable SM delivery system
= Testing of the system using MELCOR
= Summary and Path forward




Why Injectable SM system? LR

= Core catcher device and SM solid
systems (i.e., ceramic and concrete slabs)
In new reactor designs

= Difficult to implement into existing
operating reactors

" |[njectable SM system easily retrofits to
existing reactors

" |t also provides flexibility to new reactor
designs
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Sandia SM Concept ) 5,
= Utilize the injectable SM system so even existing
reactors could be retrofit

" Proposes to SM to be carbonate-mineral based
granular material

Major Reactions:
CaC0; - Ca0 +CO;
FeCO; = FeO + CO,
Zr + FeO = Fe + 210,

Ablation and generation of off-gases
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Demonstration of Concept 1) .

= Experimental Front

= Benchtop exploratory experiments conduced as experiments to scope
the important parameters of the concept

= Use PbO as surrogate material for corium and use Mg and Ca based
carbonate minerals for SM materials

= Using compatible crucible to conduct experiments with one to two
furnaces

= Larger scaled tests at the SURTSEY facility are underway

= Modeling Front

= Modeling effort using Sandia’s Sierra Mechanics—Aria for PbO-SM
experiments and simulated reactor accident scenario from MELCOR

= Aria —simulate the detailed corium spreading for MELCOR accident
scenario. Use new model to update MELCOR reduced order model

= Aria — models the PbO melt and carbonate reaction

= Theoretical feasibility study was conducted on the injectable SM

delivery system for the current U.S. commercial LWRs.
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Benchtop Experiments )
= Use a surrogate system — MCO;-PbO to
avoid very high temperature and cost

g

= 10 PbO Only
w20 Dolomite < 0.15mm@ Room Temp (R)

= Corium: PbO ~ density similar to UO2, melts ** P e
500 | ---SDpolomilepowdcr @.300C
at 880 C <
. : § 00 |
= SM: MCO3 - decomposition energies— Esoo -----
endothermic reactions E If) | N\
= CaC03-179.1 klJ/mole, MgCO3 —100.7 100 |
kJ/mole . ‘
= QOver 20 benchtop experiments conducted — ’ ’ ine ) ’ N
including carbonate minerals (i.e., calcite,
dolomite and magnesite) Infrared Surface Temperature Measured in the D-
) ) . Series Experiments. R temperature ranges from
= Small crucible contains PbO heatmg at 22 to 24 °C. (Note the peak temperature as shown
950to 975 C reflects the pouring of the melt into the carbonate
bed.)

= MCO3 bed at room temperature or at
elevated temperatures (550 C for
CaCO03)

= Video and surface temperatures
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Benchtop Experiment Results (1) &

r (c) PbO reacted
in 22 °C
dolomite of
sizes between

0.3and 1 mm
(3D test)
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X-ray micro CT imaging of solidified PbO
melt (4B test with CaCOg3 at 24 °C). The
diameters of the largest bubbles are ~ 0.1

CaCO3 powder (6C test) mm 7

(b) PbO reacted in 550 °C
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Modeling using SIERRA/Aria ) .

= Motivation: Extend reactor safety
using detailed multi-physics
modeling (using SIERRA/Aria)
= Aria — multi-physics, chemistry, fluid,
free surface, heat transfer.

= Develop more accurate model to help
understand molten reactor material
transport in severe reactor accidents

= Enhance ability to model corium
flow

= Multiphase flow and heat transfer

= Follow surface topology and material
breakup with level-set based free
surface flow algorithms

= |mplement stabilized finite-element
methodologies

- . K .
C. Journeau et al., Progress in Nuclear Energy 48 (2006) 215-234




FARO L26 Corium Spreading Exp. &

FARD FURNACE

» Approximately 160 kg - 80% UO2, wwwe SARCOFAGO vessel
20% ZrO2
« Spreading plate — stainless steel :
ROLEAST VESSOL
* Pressure constant MR
Open @ T VISUALISATION w
<10 Windows)
HEE:
2m 1 ,msv{m
. e : =
Isometric View H - | :
lh $150mm .. Somm
Spreading plate [
3050mm R
Geometry for simulations of corium o (R - l
spreading in the FARO L26s experiment lsomm‘\\‘-:?l\;l: ’ P
(a) 2D geometry (b) 3D geometry
Collecting device —ud ¥

Kawahara, et al., JNST, 49:12, 1156-1164



San_diaI
Methodology ) e,
= |ncompressible Navier-Stokes equations with heat transfer
V-u=0

p(g—‘: +(u-V)u) = —Vp+V-(p(Vu+VuT))

pcp(‘;—fw-vr)-v-(kvr):q

= Corium/Air interface, I :

[u]s =0, x€lF

[—pI + u(x) (Vu - VuT)]A -l = —yki, X €Ik

= |nterface movement (level set)

¢ B
E+(U°V)¢—O .
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Conformal Decomposition Finite Element
Method (CDFEM) Used

Properties
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= Supports wide variety of interfacial conditions (identical to boundary fitted mesh)

= Avoids manual generation of boundary fitted mesh

= Supports general topological evolution (subject to mesh resolution)
= Similar to finite element adaptivity

= Uses standard finite element assembly including data structures, interpolation, quadrature
= Modeling the molten flowing corium poses challenges for numerical models due to

presence of large Peclet numbers and Reynolds numbers
=  GFEM technique is inadequate for suppressing spurious oscillations

= CVFEM discretization for advection dominated flow and heat transport
= CDFEM tracks the corium/air interface on an existing background mesh

= CVFEM-CDFEM approach

=  Spreading of molten corium in 2D and 3D

= CVFEM formulation suppress spurious oscillations associated with high Pe and Re flow regimes
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Viscosity model

= Ramacciotti (2001) Solid intormediate Liquid
temperature- o
dependent viscosity B
model used for psuedo-
solidification. g 10’

:

=¥ 100
_ TL -T 107
f - TL - Ts 1072

égbo 28.20 28:10 28(150 28180 29(110 29;0 29:10 2960

Hm = ”LeZ.S-C-f Viscosity as a function ofT t(::nperature (Ramacciotti,

2001)
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2D Corium Spread Model

N

Time =0.21

Time = 1.12

Time = 3.60

Time = 6.00

Time = 8.40

Time = 15.00

Temperature (K)
2.95e+03
2.82e+03

245e+03

)

Time =0.21

-~

Time = 1.12

Time = 3.60

Time = 6.00

Time = 8.40

Time = 15.00

Viscosity (Pa s)

Viscosity (Pa s)
47e+04
33e+03
20e+02
00e+0' i

1
00e+00
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2D Corium Spread Modeling (cont.) @Ex.

Temperature (Kelvin)

2.700e+03
2.575e+03
2.450e+03

2.951e+03 . .
2'8269*03! Analysis_ Time =0




3D Corium Spread Modeling ).

Time = 0.30 Time = 0.30

Time = 10.00 Time = 10.00

Figure 12: Contours of (a) temperature and (b) viscosity taken at a time snapshot 7 = 10 s at various (y-2) planes showing the three-dimensional Figure 11: Material phase blocks of the melt (blue), and steel (yellow) as a function of time as the melt spreads and solidifies for the 3D simulation
effects of the melt solidification process. in an isometric view (left) and top-down view (right). First evidence of solidification occurs at 1 = 2.04 5.
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3D Corium Spread Modeling (cont.) @

Time = 0.000

Temperature (K)

2.95e+03
2.84e+03
2.73e+03

2.61e+03
2.50e+03
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2D Corium Spreading ) e,

1.6 T T
w20 Current Simulation

= FARO-L26s Experiment 1.4 === 30 Current Smulation -

© FARO L26S Experiment

simulated —80% UO,, 20% .|| o—teaiton |
_ "2 T1== veonet.al 2011)
ZrO, g 1
= 2D/3D simulations Eo.e
completed .
" Heat loss through the melt o«
boundary modeled 024
= Psuedo-solidification g T s
modeled using Ramacciotti
viscosity model. Simulation results compared to experiment

_ and other computations
= Excellent agreement with

experiments
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Feasibility Study on Granular SM Delivery Systerng

Six LWR Plant Designs of U.S. have been simulated, and require granular SM

needed to contain an ex-vessel breach accident

Thermal Power

Containment Design Pressure

Sandia
National
Laboratories
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SM Granular Delivery System ) 5.
" |njection must be done before anticipated lower head failure:

= Presence of the carbonates may delay the lower head failure by
removing the heat from the lower head

= Molten corium would fall onto a carbonate bed that reacts quickly to
solidify and generate open porosity structures

= Decomposition of carbonates would also allow the atmosphere of the
containment to be cooled

= Generation of CO2 from the decomposition would displace the other
gases, such as hydrogen and oxygen. Thus, it reduces the potential for
hydrogen explosions
= Two delivery systems have been investigated, depending on
the final size of the carbonate granular used.
= Ranging from mm to cm
= Considering passive and active systems

= Testing of the system using MELCOR code

20
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MELCOR Simulation Example ).

SBO Progression — Peach Bottom (Mark |) — No Injectable SM added
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Path forward )

= This FY, we have demonstrated:

= Calcite (minerals of CaC0O3) and dolomite (minerals of MgCO3 and CaCO3), including
pure CaCO3 can be used as SM for cooling melt (PbO) effectively

= Creating open pore material structures that can be subsequently cooled by water,
ideally for the severe nuclear reactor accident management.

= SIERRA/Aria model can be used to model molten corium spreading (demonstrated in a
corium spreading experiment).

= Analysis performed to develop an injectable SM delivering system for the common six
existing light water reactor plants in the U.S.

= FY19, we will develop models:
=  PbO/carbonate experiments and corium/carbonate interactions using Aria

= Using Aria to develop a lower level model for MELCOR to demonstrate the concept for
this LDRD project

= Patent application in progress.
= Seek sponsors and collaborations to conduct large scaled tests
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