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MELCOR is an integrated,
engineering-level code to model
and simulate severe reactor
accidents
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Why Injectable SM system?
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■ Core catcher device and SM solid
systems (i.e., ceramic and concrete slabs)
in new reactor designs

■ Difficult to implement into existing
operating reactors

■ Injectable SM system easily retrofits to
existing reactors

■ It also provides flexibility to new reactor
designs



Sandia SM Concept
• Utilize the injectable SM system

reactors could be retrofit

• Proposes to SM to be carbonate
granular material
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Demonstration of Concept
■ Experimental Front
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■ Benchtop exploratory experiments conduced as experiments to scope
the important parameters of the concept

Use Pb0 as surrogate material for corium and use Mg and Ca based
carbonate minerals for SM materials

Using compatible crucible to conduct experiments with one to two
furnaces

■ Larger scaled tests at the SURTSEY facility are underway

■ Modeling Front

■ Modeling effort using Sandia's Sierra Mechanics—Aria for Pb0-SM
experiments and simulated reactor accident scenario from MELCOR

■ Aria — simulate the detailed corium spreading for MELCOR accident
scenario. Use new model to update MELCOR reduced order model

■ Aria — models the Pb0 melt and carbonate reaction

■ Theoretical feasibility study was conducted on the injectable SM
delivery system for the current U.S. commercial LWRs.
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Benchtop Experiments
• Use a surrogate system — MC03-Pb0 to

avoid very high temperature and cost

• Corium: Pb0 — density similar to UO2, melts

at 880 C

• SM: MC03 — decomposition energies—

endothermic reactions

• CaCO3 — 179.1 kJ/mole, MgCO3 —100.7

kJ/mole

• Over 20 benchtop experiments conducted —

including carbonate minerals (i.e., calcite,

dolomite and magnesite)

Small crucible contains Pb0 heating at

950 to 975 C

MCO3 bed at room temperature or at

elevated temperatures (550 C for

CaCO3)
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Series Experiments. R temperature ranges from
22 to 24 °C. (Note the peak temperature as shown
reflects the pouring of the melt into the carbonate
bed.)
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Benchtop Experiment Results (1)

(a) Unreacted Pb0
i

(b) Pb0 reacted in 550 °C
CaCO3 powder (6C test)

(c) Pb0 reacted
in 22 °C
dolomite of
sizes between
0.3 and 1 mm
(3D test)

X-ray micro CT imaging of solidified Pb0
melt (46 test with CaCO3 at 24 °C). The
diameters of the largest bubbles are - 0.1
mm
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Benchtop Experiment Results (2)
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Modeling using SIERRA/Aria
• Motivation: Extend reactor safety

using detailed multi-physics
modeling (using SIERRA/Aria)

• Aria — multi-physics, chemistry, fluid,
free surface, heat transfer.

• Develop more accurate model to help
understand molten reactor material
transport in severe reactor accidents

• Enhance ability to model corium
flow

• Multiphase flow and heat transfer

• Follow surface topology and material
breakup with level-set based free
surface flow algorithms

• Implement stabilized finite-element
methodologies
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FARO L26 Corium Spreading Exp.
• Approximately 160 kg - 80% UO2,
20% Zr02

• Spreading plate — stainless steel
• Pressure constant

(a)

1
( b )

isometric Vie,

Geometry for simulations of corium
spreading in the FARO L26s experiment
(a) 2D geometry (b) 3D geometry

2P"

rahn FLRI4ZE

inlet

Sandia
National
Laboratories

SARCOFAGO vessel

• 
Spreading plate
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Methodology
• Incompressible Navier-Stokes equations with heat transfer

V u = 0

P(au7,7 + (ut • V)u)= -V + V • (ii(Vu. + !qui))

aT +u • vT)- v • (kVT) =
at

• Corium/Air interface, riF :
iuk = o, X E FF

[-pI + p u + (x) (V VuT)]6, • = x E FF

• Interface movement (level set)
ao
+ (u • v)0 = 0

ot
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Conformal Decomposition Finite Element

Method (CDFEM) Used
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■ Properties

■ Supports wide variety of interfacial conditions (identical to boundary fitted mesh)

■ Avoids manual generation of boundary fitted mesh

■ Supports general topological evolution (subject to mesh resolution)

■ Similar to finite element adaptivity

■ Uses standard finite element assembly including data structures, interpolation, quadrature

■ Modeling the molten flowing corium poses challenges for numerical models due to

presence of large Peclet numbers and Reynolds numbers
■ GFEM technique is inadequate for suppressing spurious oscillations

■ CVFEM discretization for advection dominated flow and heat transport

■ CDFEM tracks the corium/air interface on an existing background mesh

■ CVFEM-CDFEM approach
■ Spreading of molten corium in 2D and 3D

■ CVFEM formulation suppress spurious oscillations associated with high Pe and Re flow regimes



Viscosity model

• Ramacciotti (2001)
temperature-
dependent viscosity
model used for psuedo-
solidification.
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Viscosity as a function of temperature (Ramacciotti,
2001)
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2D Corium Spread Modeling
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2D Corium Spread Modeling (cont.) riE

Temperature (Kelvin)
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3D Corium Spread Modeling
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Figure Material phase blocks of the mclt (blue). and steel (yellow) as a ftmction of time as the melt spreads and solidffies for the 3D simulation

in an isometric viCNV ( left) and top-down view (right). First evidence of solidification occurs at r , 2.04 s.
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3D Corium Spread Modeling (cont.
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2D Corium Spreading

1 6

• FARO-L26s Experiment 1 4

simulated — 80% UO2, 20%
Zr02

• 2D/3D simulations
completed

• Heat loss through the melt 0 4

boundary modeled

• Psuedo-solidification
modeled using Ramacciotti
viscosity model.

• Excellent agreement with
experiments
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Feasibility Study on Granular SM Delivery SystertE
• Six LWR Plant Designs of U.S. have been simulated, and require granular SM

needed to contain an ex-vessel breach accident
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SM Granular Delivery System
• Injection must be done before anticipated lower head failure:

• Presence of the carbonates may delay the lower head failure by
removing the heat from the lower head

• Molten corium would fall onto a carbonate bed that reacts quickly to
solidify and generate open porosity structures

• Decomposition of carbonates would also allow the atmosphere of the
containment to be cooled

• Generation of CO2 from the decomposition would displace the other
gases, such as hydrogen and oxygen. Thus, it reduces the potential for
hydrogen explosions

• Two delivery systems have been investigated, depending on
the final size of the carbonate granular used.

• Ranging from mm to cm

• Considering passive and active systems

• Testing of the system using MELCOR code
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MELCOR Simulation Example
SBO Progression — Peach Bottom (Mark l) — No Injectable SM added
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Path forward
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■ This FY, we have demonstrated:

■ Calcite (minerals of CaCO3) and dolomite (minerals of MgCO3 and CaCO3), including
pure CaCO3 can be used as SM for cooling melt (PbO) effectively

■ Creating open pore material structures that can be subsequently cooled by water,
ideally for the severe nuclear reactor accident management.

■ SIERRA/Aria model can be used to model molten corium spreading (demonstrated in a
corium spreading experiment).

■ Analysis performed to develop an injectable SM delivering system for the common six
existing light water reactor plants in the U.S.

■ FY19, we will develop models:

■ PbO/carbonate experiments and corium/carbonate interactions using Aria

■ Using Aria to develop a lower level model for MELCOR to demonstrate the concept for
this LDRD project

■ Patent application in progress.

■ Seek sponsors and collaborations to conduct large scaled tests
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