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Abstract Summary of experimental results

Next inner electrode has been fabricated, using
vacuum plasma spray deposition of tungsten
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Fe-electrode after first 5000 shots Good (B,,n,) shots have dim, symmetric image X-ray fluorescence spectroscopy used to investigate
spallation of and coating on the tungsten

One application of high velocity compact toroids (CTs) is the ability to deliver ions of
various species to the magnetic axis of tokamak plasmas. The fast formation and
acceleration of the CTs can react to rapidly changing events in a tokamak operation such
as disruptions. As proposed in theoretical models [1], high-Z ions delivered to the
magnetic axis of a reactor-grade tokamak have the benefit of cooling runaway electrons
by the bremsstrahlung process and limiting the runaway electrons final energy and the
potential damage to tokamak components. The Compact Toroid Injection Experiment
(CTIX) is currently being used to demonstrate efficient production of high-Z CT plasmas
using accretion of noble gases (He, Ne, Ar) puffed in the acceleration region. From
previous observations of electrode damage due to repetitive operation of the CITX
injector with hydrogen CTs, it was decided to coat the inner electrode surfaces with
vacuum-sprayed tungsten. This was done to minimize the damage to the surfaces and
increase the longevity of the injector under repetitive operation. The CT characteristics
are measured using optical techniques, interferometry, and internal magnetic field
probes. A detailed comparison of the CT behavior and parameters using the different
electrodes, stainless steel and tungsten-coated Inconel, will be reported. In addition,
analysis of the measured damage to the electrode surface will guide future improvements
to the injector design that will yield the best high-Z CTs for the mitigation of runaway
electrons.

Density and magnetic field using W-electrode was similar to Fe-

XRF Spectra from Inconel 600 and Tungsten R i electrode in magnetic field and density measurements
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inconel 600 Density and magnetic field using W-electrode was similar to Fe-
electrode in magnetic field and density measurements

Percentage of “good” shots moderately higher with \W-electrode vs
Fe-electrode

Axial magnetic field, kG

Inconel 600:
Ni 72% _
Cr 14-17% W-electrode was removed after initial ~5000 shots taken under

Fe 6-10% standard conditions (-9/9 kV formation/acceleration, H, fill)

Others < 1% Comparison of Fe-electrode and W-electrode after identical 5000-
shot sequences shows much less melting of W-electrode in critical
area (acceleration gap)
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ity G = After ~ 3000 shots of excellent initial performance, W-electrode made

Incident x-rays should not penetrate beyond the tungsten coating a sudden (< 50-shot) transition to lower performance
After transition, “good” W-electrode shots were the same as before
transition, but fraction of good shots was reduced from ~ 90% to
W_electrode after first 5000 ShOtS AXiaI Variation Of XRF SpeCtra ShOWS Similar peaks 30%. (“GOOd”: normal denSity Ne and axial field Bz)

in spallation and undamaged regions Axial camera (Cooke) measurements tend to show bright,
aziumuthally-nonuniform emission on low-performance shots

Line-averaged density, fcm’

[1] M. Bakhtiari, et al, Phys. Rev. Lett. 94, 215003 June 2005.

1-d thermal modeling shows improved
Overview

resistance to melting with tungsten

Experiments on the Compact Torus Injection Device (CTIX) aim to produce high-
velocity compact-toroid (CT) plasmas containing primarily ions of high atomic number
(high-2)

The method of CT production is to form relatively low-mass, low-Z CTs followed by
snowplow accretion of high-Z neutral gas puffed into the acceleration region, greatly
raising CT mass
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XRF 3Pec"*;&fgl“VTal:gstli%tﬁ?ocgjs)ed Electrode iy Operation of W-electrode at higher H, operating pressure has a

ks conditioning effect, increasing the fraction of good shots
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WL gamma performance is currently obtained with W-electrode at original lower
pallation Zone .
H, operating pressure

The experimental rationale is development of high-Z CTs with kinetic energy density
sufficient to penetrate tokamak interiors, for the purpose of disruption mitigation (see

below
: : : : : : : T . SS304 m.p.
The immediate experimental goal is demonstration of high gas-utilization efficiency

and energy efficiency on the relatively small CTIX device

Axial magnetic field, kG

25 cm upstream
75 cm downstream

Recent modifications to CTIX
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Before initial W-electrode operation, beta-backscattering
measurements showed ~ 40 micron W depth in formation region,
rising to ~ 100 micron W depth in acceleration region

After initial operation (~ 3000 shots at high-, ~ 2000 shots at low-
performance) W-electrode was removed for examination. Visually,
some tungsten loss from inner electrode and flakes on outer
electrode floor near acceleration gap

Replacement of uncoated stainless-steel (Fe) inner electrode with tungsten-coated (W)
inner electrode of otherwise identical design
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Line-averaged density, /cm

Approximately 10,500 shots taken with new W-electrode
Interferometers available at z=57 cm, z=142 cm (z=91 cm unavailable)

Added amplified, H_-filtered axial photodiode for continuous-time monitoring of all
shots

- kV f |, 2 psigH ff, Fe-el
St e fa e bl After ~ 5000 shots, X-ray fluorescence (XRF) measurements

0-20 usec Highest Fe,Cr,Ni just upstream of spallation region indicate W-electrode is overlaid with stainless steel (outer electrode
and decreases dramatically downstream material), with some azimuthal nonuniformity

W-electrode was then reinstalled, and after reconditioning at higher
H,-pressure, performance was improved to near-original condition

Added axially-viewing Oriel spectrometer for continuous-time monitoring of all shots at

selected wavelength, 350-900 nm : : : i e e ‘;;
Beta backscattering used to determine tungsten coating 0w ams

thickness (nominal value was 100 microns)

Added axially-viewing Cooke fast camera, for monochrome 1280x1024 imaging of any
selected time slice of duration >= 0.5 ms

Plasma Sprayed Tungsten Depth (CTIX Electrode) Fe-electrode vs. initial W-electrode

Experimental setup on CTIX
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Nralloy — I, - Next: perform accelerator-region puffing with W-electrode with H,, N,,
Closer to Stainless Steel and noble gases He, Ne, Ar; compare results with Fe-electrode, and
verify that tungsten coating continues to reduce inner electrode
damage.
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Inconel 600:
Ni 72% By » Repeat X-ray and other surface-characterization methods on

Cr 14-17% ) | T reconditioned inner electrode, to determine surface materials in
Fe 6-10% R | formation and acceleration region, and their uniformity /
Others < 1% i W nonuniformity.

- Runaway electron (RE) current may be produced during current quench (CQ) phase of 0.00 50.0 100 150 200 WAL, N I s s ol | ) « Consider methods to prevent outer-electrode stainless-steel
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« Collisions and bremsstrahlung both cause slowdown of RE

operating voltages to create CTs of higher number and kinetic energy
density.

7 IREllEell CEILITI TS RS Sy Sputtering simulations show more improvement

for light ion impacts

Some angular variation is also evident in
XRF measurements

« From simulation studies, central injection of high-Z noble gases can terminate and
control the CQ RE.

CT injector may be able to deliver high-Z ions to tokamak center

After conditioning, W-electrode is
restored to full performance

XRF Spectra from Tungsten Coated Electrode Cr K-t
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FIG. 1. Schematic representation of TSC plasma and halo regions.
The halo region is bounded by the poloidally continuous vacuum
vessel and by a specified increment in poloidal flux.

Heavy ion sputtering of
tungsten versus stainless steel
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* Syer, R.O. et al. Nuclear Fusion v33 #7 (1993)
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