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Abstract—The path towards exascale has given rise to a
new model of scientific inquiry where concurrently with the
running simulation, online analytics workflows operate on the
data it produces. While speeding up the scientific discovery
process by providing rapid insights into the science phenomena
being simulated, a key challenge for online analytics is to
respond to dynamics in workflow behavior caused by changing
simulation outputs and by unforeseen events on the underlying
hardware/software platforms.

This paper presents a set of run-time abstractions for
online workflow management, realized by embedding workflow
components into "1/0 Containers" that monitor component
behavior and enable responses to runtime changes in their
resource usage and in the platform's resource availability. Man-
agement actions concern individual components and the end-
to-end properties of entire workflows, through a hierarchical
management infrastructure.
For high end simulations running on a leadership machine,

experimental evaluations show I/0 containers can invoke effi-
cient management operations to respond to runtime dynamics
at different granularities of the analytics workflow.

Keywords-Data Staging, Data Analytics, in-Situ, Visualiza-
tion, Scalable I/0, Runtime Management, resource sharing

I. INTRODUCTION

On current generation petascale platforms, scientific ap-
plications like the GTC [?] and S3D [?] simulations are
already generating terabytes of data every few minutes. The
desire to scale their 1/0 and the analytics and visualization
codes operating on such data to exascale levels has caused
researchers to devise new online methods for managing their
large data volumes, without overwhelming the parallel file
systems attached to these machines. These include running
analytics along side simulations — "in-situ" [?], [?] — and in
I/0 staging areas — "in-transir [?], [?], [?] — on the high
end machine and/or extending to auxiliary analytics clusters.
Beyond addressing performance challenges, online ana-

lytics offer science users new functionality for better under-
standing the scientific simulations being run. This includes
(i) continuously ascertaining simulation validity, permitting
it to be terminated or corrected without undue waste of
machine resources [?], (ii) gaining rapid insights into the
scientific processes being simulated (online visualization),
or even (iii) enabling methods for application steering. The
result of these developments, however, is that at exascale, it
is projected that high-end codes will no longer be structured
as a single large synchronous application, but rather, as

a set of componentized codes running concurrently with
the simulation that ingest and operate on its output data.
This combination of analytics components deployed into the
simulation's I/0 path is termed an 1/0 pipeline.

In contrast to the long-running and often well-tuned
simulations, there are considerable variations in the analytics
codes present in I/0 pipelines; they differ in their maturity,
degrees of parallelism, execution models, data characteris-
tics, resilience capabilities, and others. They can also exhibit
substantial dynamics in their execution behavior, in part due
to their data-dependent functionality, an example being an
analytics code whose runtime is determined by the number
of features found in the output data it analyzes. I/0 pipelines,
therefore, can experience dynamic changes in their resource
consumption and requirements, making their initial resource
allocations inappropriate and/or requiring adjustments in
how analytics operate, e.g., through reductions in their
precision or similar measures. It is also possible that some
analytics may simply be too expensive to run online for
certain kinds of data outputs, due to structural issues like
insufficient parallelism or because they require further tuning
for coping with such outputs. In fact, even a single slow
component in an I/0 pipeline can inhibit the entire pipeline's
performance, as amply demonstrated in past research for
both HPC [?], [?] systems and for the multi-tier services
run by web companies [?], [?].
The failure to react to online changes in the behavior

of I/0 pipelines can be severe, as unduly slow analytics
pipelines can cause data loss or worse, stall high end
simulations by causing them to block on their output actions.
Offline tuning driven by continuous performance profiling is
one way to address the problem, but its use requires stable
I/0 pipelines, preventing end users from experimenting with
interesting new analytics or visualizations for understanding
simulation behavior. In response, both in the web domain
and in high performance computing, developers are in-
creasingly looking toward online solutions for controlling
analytics behavior and resource consumption [?], [?]. The
aim of such methods is to manage the diverse sets of codes
and resources contained in an I/0 pipeline so as to ensure
the efficient, high performance, and correct execution of
entire I/0 pipelines, both for their individual and potentially
parallel components and for their end-to-end properties.

This paper describes the //0 container approach, depicted
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in Fig. ??, to managing dynamic I/0 and analytics pipelines
on high end machines. I/0 containers permit developers
to embed their analytics functions into a componentized,
dynamically managed execution and messaging framework.
Such components can be compiled and deployed separately,
each in their own container, have well defined inputs and
outputs [?], can be parallel (MPI or threads), and may
exhibit inter-component dependencies. Entire I/0 pipelines
or workflows can be constructed by chaining containers
along their I/0 paths.

I/0 containers offer:

1) controlled resource usage: a container provides
and manages resources for the analytics component
mapped to it;

2) per-component management: a container offers to its
component an actively managed execution environ-
ment and allows for components to perform cus-
tomized implementations of management operations to
ensure that their own local properties and requirements
are not violated;

3) metric-driven operation: the container runtime can
also enforce goals driven by metrics of interest to end
users, such as priorities or performance requirements;
containers are thus continually monitored to provide
managers with the information needed to make man-
agement decisions.

An additional property of containers explored elsewhere
is their fault-resilient management, through transactional
techniques that guarantee that the control and management
actions taken by container software do not place applications
or analytics components into inconsistent states [?]. A
simple example is a guarantee that a resource removed from
one container is successfully given to another.

Using I/0 containers permits end users to focus on
analytics functionality and algorithmic correctness, rather
than being overly concerned with scaling individual ana-
lytics components and/or their careful resource allocations.
Instead, with containers, users can specify customized SLAs
and management actions to be performed to ensure that
certain desired SLA properties are met, with container
managers responsible for maintaining per component and the
resulting globally, i.e., end-to-end, desired SLAs. A typical
division of management is one in which a global manager is
responsible for maintaining an entire workflow's SLA, e.g.,
by re-organizing its containers, and container-level managers
perform actions specific to individual components, e.g., by
changing a component's degree of internal parallelism. A
concrete demonstration of such functionality in this paper
is one in which multiple I/0 containers segment the single
common staging area used to execute online analytics for
a scientific simulation. One such container may run a data
visualization with, for example, ParaView [?], while another
may run analytics using VTK [?]. A dynamic requirement

for additional resources to run VTK's analytics can be met
by 'stealing' resources from the visualization container, if it
does not need them, or by using spare staging resources, if
available.
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Figure 1: High-level view of 1/0 Containers framework.

1/0 containers with their well-defined component inter-
faces and a programmatic management API expose to end
users a set of basic management primitives for specifying
their SLAs, by indicating the appropriate actions to take
when certain conditions are detected. Condition detection
operates at runtime, for individual containers and delivered
to the management hierarchy via continuous online monitor-
ing profiling individual containers for their current behavior
and resource usage.
The implementation of 1/0 containers evaluated in this

paper is based on the EVPath event messaging system
and the Flexpath staging solution [?], [?], able to run
on cluster machines and on high end supercomputers like
ORNL's Titan. Using the LAMMPS molecular dynamics
simulation [?], along with the SmartPointer visualization
and analysis toolkit [?], we evaluate I/0 containers with
SLAs that include: (1) a global performance-driven SLA
that implements "elastic containers" to recover from detected
bottlenecks in the I/0 pipeline; and (2) a container-level
data-centric policy that executes specific SmartPointer anal-
ysis routines only when certain features are detected in the
output data being processed. Experimental evaluations show
that the use of active container-based management can:

1) achieve elasticity at scale for representative science
analytics;

2) create and enforce SLAs at multiple levels of an I/0
pipeline; and

3) operate at large scales with low overheads.

An example demonstrating the utility of container-managed
I/0 shown in our evaluation uses a performance-driven SLA



to recover from a poor initial resource allocation and avoid
degregaded throughput, resulting in a near 300% increase in
end-to-end pipeline throughput compared to the unmanaged
case.
I/0 containers constitute new functionality in the domain

of scientific data management, where current 1/0 staging
technologies do not yet offer support for dynamically man-
aging the end-to-end properties of tightly coupled analytics
running with high end codes. In our own earlier work
on data staging, for instance, statically profiled analysis
routines are run in configurations sized to be resource-
rich for worst case data volumes and processing needs [?].
Similarly, our recent work on 'in-situ' analytics for su-
percomputer simulations [?], schedules and manages only
the analytics actions taking place on individual compute
nodes, not being concerned about the end-to-end properties
of the I/0 pipelines originating at such nodes. Our future
work, therefore, will start with useful policies for controlling
combined in-situ and distributed I/0 pipelines, but then also
consider end-to-end goals like pipeline failure resilience and
energy efficiency, supported by efficient node-level and/or
component-level control loops.

II. I/0 CONTAINERS

I/0 containers are run-time abstractions that allow in-
transit data processing actions to be embedded into a
dynamically managed execution environment. Each single
container manages an executable that carries out analytics
tasks on the data it ingests. More complex structures, like
entire I/0 pipelines, are supported by chains of containers
supervised by a higher level manager interacting with per-
container managers. This multi-level management scheme
can maintain both container-level and global (i.e., across all
containers) properties. Such distributed management is sup-
ported with a flexible monitoring and control infrastructure
gathering needed information and then issuing appropriate
control operations. In all such cases, analytics components
are run on the machine resources made available by the
container and controlled by potentially container-specific
management and scheduling. Fig. ?? depicts a conceptual
model of I/0 containers.

A. Assumptions and Desired Properties

The I/0 container approach rests on assumptions that hold
true for many large-scale scientific applications and their
associated online analytics workflows. These assumptions
do not always match those found in enterprise or 'big
data' frameworks like [?], [?], [?] in terms of their data
characteristics, execution models, and degrees of parallelism.

. Functional Dependencies. Analytics codes expect to
ingest data that matches specific formats and layouts,
and analytics functions may also need to transform the
data to meet algorithmic correctness and/or to export
an analysis function's discoveries into the data itself.

Given these dependencies in the data-plane, functions
in an analytics workflow may not have the ability
to operate out of order; one function's inputs often
requires another function's outputs.

. Heterogeneous Codes. Science codes are often hetero-
geneous in terms of their parallelism, execution models,
fault tolerance, and scaling characteristics, resulting in
substantial variations across different I/0 containers and
the components they manage.

. Stringent Resource Constraints. Resources are not
free, with the bulk of the resources typically assigned
to the simulations being run, whereas analysis codes
are given 'spare' resources, i.e., spare CPU cycles on
simulation nodes [?], [?], reserved staging nodes [?],
[?], or those on smaller auxiliary clusters perhaps
in different physical locations. Analytics workflows,
therefore, must operate with these limited resources,
without interfering with the simulations and their output
actions.

Given these assumptions, and the set of challenges and
application characteristics we have outlined in the previous
section, we formulate the following design goals for I/0
container-based workflow management. First, given the large
variety of characteristics of analytics codes and the dynamics
they experience at runtime, it is impractical for a single
manager to understand all analytics in some composed I/0
workflow. A better approach is to provide to analytics users
or creators a mechanism for specifying and implement-
ing management actions that work well for their codes'
characteristics. Our first design goal, therefore, is that (1)
management routines and policies should be customizable
on a per container basis.

In order to make management decisions at run-time,
information is needed by management functions to deter-
mine when and what actions should be performed, with the
specific information collected and its organization depending
on the management policies being enforced. This requires
the continuous monitoring of workflow components, their
behavior and running times, and of the physical resources
they use, thus permitting management actions to be invoked
in a timely manner. Our second design goal states that: (2)
management actions are guided by user-determined metrics
driving per-container and cross-container (i.e., global) man-
agement policies.

Ideally, pieces of the analytics workflow should be de-
coupled along the time and space dimensions so that a
component's correct operation depends only on the avail-
ability of the necessary data (i.e., from disk or via the
network). With well-defined input and output interfaces,
analytics actions can be allowed to run independently as
separate applications (i.e., components), and enter and leave
the pipeline as needed. This makes it possible to run entirely
different, dynamically swappable analytics codes without
requiring them to be integrated into a single executable. Our



next design goal, then, states that (3) analytics codes should
operate in a componentized fashion.
A risk with management is that operations on one compo-

nent can jeopardize the execution of other (e.g., dependent)
components. For instance, consider the case of trading re-
sources between two analytics components when recovering
from some detected bottleneck. A failure can occur if there
is an inconsistent view of the state of the resources in which
a component tries to use a resource that has not yet been
fully relinquished by another component. Our last design
goal, therefore, states that: (4) management operations must
be reliable and be resilient to failure.
By meeting these design goals, I/0 containers can be

used to realize (1) customized per-component and global
management policies; (2) enabled by online monitoring of
the varied metrics of relevance to different policies; (3)
componentized operation consisting of swappable codes;
and (4) made resilient to failure via transactional control
methods.

B. Conceptual Model

1) Containers: A container, depicted in Fig. ?? allows
analytics tasks to be embedded into a dynamically managed
messaging and execution framework. The container's input
and output interfaces are similar in concept to those used
in modern Service Oriented Architectures (SOA). The con-
tainer is comprised of a set of active replicas that perform
analytics actions on incoming data, and a container manager
that oversees its execution.

Active Replicas. Unlike the replication techniques used
in fault tolerant systems [?], [?], where replicas have iden-
tical internal states, active replicas in containers are key
to obtaining scalable container operation: with traditional
replication, each replica performs redundant computations
on the same data items, whereas active replicas perform their
computations on different epochs of data assigned to them.
For our use-case discussed in section ??, data is assigned
to active replicas in a round-robin fashion. Using active
replicas, a container manager can increase its degree of
parallelism by spawning a new replica.

Container Manager. It oversees the execution of its
active replicas, by assigning resources to them and gathering
and organizing the information needed to make mntime
decisions about their number. Container managers also have
custom implementations of a set of management primitives,
described next, which allows them to respond to manage-
ment requests from higher-level (global) managers in a
manner customized to the codes they run.
A container manager also provides metadata services for

the active replicas it manages. As stated previously, users
embed codes into an execution and messaging runtime,
and pipelines or workflows are constructed by chaining
together containers along their I/0 paths, to allow direct
container-container data exchanges without involving the

storage system. Managers support this by maintaining state
about inter-container connectivity (i.e., endpoint contact
information) and by issuing state-change notifications to
neighboring container managers. Container managers can
also store important in the case where active replicas may
implement stateful functions.
2) Management Constructs: Hierarchical container man-

agement affords several benefits. First, such hierarchies
can be scaled with ease [?]. Second, distinct per-container
managers can offer customized management routines and
separate their local, per-component management states from
global state about entire I/0 pipelines. Hierarchy also helps
define management authority: a global manager is responsi-
ble for operations that re-organize entire workflows, whereas
individual container managers (i) are responsible for oper-
ations affecting only their components and resources, and
(ii) respond to management invocations from higher-level
(global) managers.

The following core management primitives permit con-
struction of higher-level management policies and opera-
tions:

• Increase Container: allocate more resources to a
container with the goal of increasing a container's
scalability.

• Decrease Container: deallocate resources to a con-
tainer; useful when resources are scarce and some
containers may be over-provisioned.

• Offline Container: remove all resources from a con-
tainer and direct dataflow from upstream containers to
disk; useful when it is no longer feasible to run a
container online, i.e., there are insufficient resources to
scale the container or there may be a network partition
in a geographically distributed workflow.

While the per-container management actions listed above
are invoked by a global manager, the concrete steps needed
to execute these actions within a container can be customized
on a per container basis. For example, when told to "in-
crease its degree of parallelism, a code that cannot operate
on data epochs out of order could implement its "increase"
operation by killing its existing active replica and spawning a
new one with a greater MPI size, whereas another container
could implement this by just spawning a new replica and
adding it to the existing cohort.
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III. IMPLEMENTATION

A. Container

1) Active Replicas: The implementation of containers
leverages the widely used ADIOS read and write inter-
faces [?]. Using these interface, analytics codes can specify
their data requirements and establish communication via a
virtual file name serving as a named communication chan-
nel. To accommodate active management, the Flexpath [?]
ADIOS transport, which allows for online analytics routines
to exchange output data, has been extended to accept and
process management messages and state-change notifica-
tions from the replicas' designated container manager. We
also modify the ADIOS interface to expose to analytics
applications a communicator they can use to interact directly
with the container manager if needed.
We added queue management for Flexpath publishers

(ADIOS writers) maintain a queue for each neighboring
Flexpath reader replica (in a downstream container) to hold
epochs of data. Writers then assign data to these queues in
a fashion determined by the reader container. The current
implementation supports round-robin assignment, including
the case in which one replica consumes all of the work for
an existing replica, explained in more detail in Section ??.
Management actions can also lead to queue management
operations, as when upon the arrival of a new replica in
a downstream container, load balancing actions reduce the
lengths of overly filled queues. Conversely, with a 'decrease'
operation, we can re-assign existing work to other remaining
replicas.
2) Managers: Managers are written to be run as stand-

alone executables. Users can create custom managers and
specify SLAs using a programmatic API, described in
Section ??. When global managers detect conditions of
interest, they invoke management commands on container
managers, and then distribute any important state changes
to subsequent container managers that need to be aware
of such state changes. Container managers are responsible
for carrying out custom implementations of management
commands invoked on them by global managers, and for
performing internal actions on the resources and replicas
they manage.

B. Management Inteiface

We have exposed the basic primitives listed in Section ??
as a C interface, and developers use this interface to create
custom managers. To specify an SLA at a global manager,
developers can read monitoring information, and then chain
these commands together to perform actions such as resource
trading. When invoked, the management primitives trigger
a set of transactional protocols that indicate a participant's
progress and distribute any state changes.
An 'increase' command received by a container manager,

to add to its working size, may launch additional replicas. In

our current implementation, based on the Titan machine at
Oak Ridge National Labs, launching of replicas is conducted
as follows: the container manager constructs an aprun com-
mand as a text string and then writes this command to a file.
A PBS script (a feature of the PBS job scheduler), scans each
container manager's file for commands, and when one is
present, it reads it and then executes it. This implementation
is due to the constraint that only the root node of the job,
which executes the PBS script, can launch applications on
the compute nodes. While this illustration and the use case
presented in ?? focus on output queue build up, management
could also be triggered by other factors, such as memory
consumption or CPU utilization.

C. Container Information Bus

Monitoring, control, and state change messages are deliv-
ered via the Container Information Bus, implemented using
the EVPath [?] messaging library.
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Figure 3: 1/0 Container software architecture.

Managers and replicas are connected via the Container
Information Bus's overlay graph, where container-level man-
agers serve two roles: (1) aggregator nodes used to gather
and organize monitoring information, execution metadata,
and runtime state information before delivery to the global
manager; and (2) as entry points into a container in terms
of management operations and the delivery of state change
notifications (i.e., state that determines from who replicas
read data) from neighboring containers.

Global managers serve as the root of the Container
Information Bus and accept and organize messages from all
container managers. In order to ensure the strong consistency
of runtime state information, the current implementation
passes all messages relating to state changes through the
global manager. In the case of parallel replicas (i.e., MPI
based analytics codes), we designate rank 0 as the recipient
of messages from the container manager. Rank 0 then uses
MPI to disperse the messages to the remaining ranks. We
have done this to take advantage of MPI's optimizations
and to also reduce the number of connections a container
manager has to maintain.

IV. EXPERIMENTAL EVALUATION

All experimental evaluations are conducted on the Titan
supercomputer hosted at Oak Ridge National Labs. Titan



consists 18,688 compute nodes each containing 16 cores
and 32Gb memory, for a total of 299,008 cores and a peek
performance of over 20 petaflops. The LAMMPS molecular
dynamics simulation and the SmartPointer analysis toolkit
serve as our application drivers, and we construct two
policies to demonstrate the benefit of the I/0 Containers
approach and to assess the overheads of performing man-
agement.

A. Use Case
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Figure 4: I/0 Pipeline for LAMMPS with 1/0 Containers

Figure ?? depicts the I/0 pipeline constructed for the
LAMMPS (Large Scale Atomic/IVIolecular Massively Par-
allel Simulator) [?] science application, using the Smart-
Pointer analysis and visualization toolkit. LAMMPS is a
molecular dynamics simulation used across a number of
science domains. It is written with MPI and performs force
and energy calculations on discrete atomic particles. After
a number of user-defined epochs, it outputs the atomistic
simulation data (positions, atom types, etc.), with the size
of this data ranging fom megabytes to terabytes depending
on the science being conducted.

SmartPointer is a representative analytics pipeline inter-
preting LAMMPS output data to detect and then scientifi-
cally explore plastic deformation and crack genesis. In such
scenarios, a force is applied to the material being simulated
until it first starts to break. The SmartPointer set of analyses
are configured to detect and categorize the geometry of the
region around that initial break. SmartPointer implements
functions to determine where and when plastic deformation
occurs and to generate relevant information as the material
is cracked. We summarize the SmartPointer codes in the list
below, with additional detail found in [?], [?], [?]:

• Lammps Helper: parallel MPI code that serves as an
aggregator and filter of the raw LAMMPS data.

• Bonds: parallel MPI code that performs an all-nearest
neighbor calculation (O(n2)) to label which atoms are
bonded for each output epoch.

• Csym: a serial central symmetry analysis code that
detects plastic deformation.

• CNA: a serial common neighbor analysis code that ex-
ecutes whenever CSYM determines that a deformation
in the material has occurred. CNA is an extremely

compute-intensive component (O(n3)), and as such it
should only execute when a crack has been detected in
the material being modeled.

B. Management Policies

Two sample management policies serve the needs of the
LAMMPS I/0 pipeline used in our evaluation:

1) Quality of Service (Global): the Bonds code is a slow
component compared to the LAMMPS simulation, and
since it executes on every output epoch, it can become
a bottleneck in the pipeline. We create a policy that
monitors queue lengths such that if the global manager
detects a growing queue length for one of Lammps
Helper's output queues, and if a the queue size reaches
a threshold, we perform an increase operation that
results in spawning additional Bonds replicas. This
represents a global policy seeking to balance pipeline
components to ensure healthy end-to-end throughput.

2) Data-centric (Local): requires application introspec-
tion into the data, based on the CSYM and CNA
components. In contrast to the first policy, the met-
ric of interest is reported by the analysis functions
(when CSYM detects a crack), and the management
actions (kill CSYM and run CNA) are triggered by
the container-level manager. The goal of this policy is
to ensure correct execution of the workflow analysis
functions.

C. Throughput Measurements: QoS Policy

This set of measurements demonstrates the utility of a rep-
resentative performance-based management policy. We com-
pare the throughput of the container-managed I/0 pipeline
against that of an unmanaged pipeline, where throughput is
represented as a time series in 30 second increments along
the x axis, and the y axis represents the count of output
epochs emitted by the code during that 30 second interval.

Fig. ?? shows the baseline, unmanaged workflow exe-
cution, for a LAMMPS simulation running on 8192 cores
and a pipeline comprised of 64 Lammps Helper cores, 256
Bonds cores, and 1 CSYM core. The graph shows that as
the output queue for Lammps Helper fills up, LAMMPS'
throughput drops significantly, as it has to then block on its
output actions that must wait on queue space to free up.
LAMMPS' throughput converges to that of Bonds, the slow
component, effectively dropping end-to-end throughput to a
third of the ideal target.

Fig. ?? depicts the throughput improvements for a set of
QoS-managed runs that demonstrate the container runtime's
ability to provide elasticity at scale. We have run exper-
iments at three scales, with the process counts displayed
in Table ??. For each experiment, the Bonds container
is increased by a replica with the number of processes
equal to the size of the initial replica. Fig. ?? shows the
throughput improvements for running with 8192 Lammps
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Figure 5: Throughput degradation for unmanaged pipeline.

LAMMPS Helper Bonds CSYM
Fig ?? 8192 64 256 to 768 1
Fig ?? 4096 32 128 to 384 1
Fig ?? 2048 16 64 to 192 1

Table I: Core Counts for Throughput Experiments

cores. The vertical lines represent when Bonds is increased.
For this run, we see that after the first increase (two Bonds
replicas total), we see an improvement in Bonds throughput.
However, an additional increase is needed for Bonds to
match the throughput of the LAMMPS simulation. After
this second increase (3 Bonds replicas, 768 cores total), we
see that Bonds can achieve a higher throughput than the
LAMMPS application, as it now has sufficient resources to
start to drain the data that has built up in the queue.

Figure ?? shows a similar result, where after three
increases, Bonds maintains a slightly higher throughput
than the LAMMPS simulation. Here, however, speedup is
insufficient to fully drain the queue in Lammps Helper,
so the Bonds code executes somewhat longer. We see a
similar phenomenon in Figure ??, where the reason the
global manager does not increase the Bonds container by
an additional replica is because the stated policy is to
trigger an increase when two conditions are met: (1) a
maximum queue length of 10 in one of the Helper output
queues, and (2) a growing maximum queue length for 3
consecutive measurements. For the latter two runs, condition
(2) didn't trigger. This example illustrates the utility of
explicit policy specification. An alternative policy omitting
the second condition would have triggered the additional
Bonds increase. An energy-conscious policy might prefer a
slight extension in execution time over the additional energy
consumed by using additional nodes.

Fig. ?? displays the changing queue length, the metric
on which we are basing our throughput management, for
an experiment with the same setup as Fig. ??. This rep-
resents the maximum queue length in the Lammps Helper
container's output queue for the Bonds container. Here, the
x axis represents the output epoch, and the y axis represents
the max queue count when that output epoch is inserted
into a queue. As is evident, the stated management policy
is having the desired effect on its metric of interest.
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Figure 6: QoS Policy: throughput improvements.

D. Microbenchmarks

Container-managed 1/0 is beneficial, but it also imposes
additional overheads on 1/0 pipelines. The following mea-
surements assess the costs of management, in terms of
protocol overheads, and they compare costs at different
scales for two operations invoked at different levels of
the management hierarchy. The measurements shown elide
the base constant cost of process instantiation (e.g., for a
container increase), as that cost is specific to the underlying
machine's operating system rather than the management
implementation and protocols designed for 1/0 containers.
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Figure 8: Protocol overhead measurements
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Management costs are governed both by the inherent
properties of the management methods chosen and by con-
tainer protocols, and by the scales of interacting containers.
The latter is due in part to the 'direct connect' nature of
the Flexpath transport used in the implementation of I/0
containers: Flexpath obtains high cross-container throughput
by directly connecting the parallel entities of a previous
container to the parallel entities of a subsequent one. This
also means, however, that the cost of distributing certain state
changes (e.g., container increase) is affected by the size of
the neighboring containers, as each of their parallel entities
must be notified about this state change. Figure ?? shows
the modest protocol overheads for an increase_container
operation on the Bonds container. The bar titled "Helper
Container" represents the time it takes for the Helper con-
tainer to distribute the Bonds state change. This includes
the time it takes for the container manager to send the state
change to each replica (rank 0), and the time it takes for
rank 0 to broadcast this change to the other ranks. The bar
titled "Global to Local Managers" is the total time spent for
all messages between the global manager and the container
managers to trigger the management action, and distribute
the state changes. As expected, use of a management hierar-
chy allows for good scalability, demonstrated by the fact that
for each point on the x-axis, we are increasing the number
of Lammps Helper processes by a factor of 4, but only

111166111111 

80 85 90 95 100

see a growth of 2x in terms of protocol cost. Since these
management actions do not affect the number of managers,
the communication between global and container-level is not
affected by scale.

Fig. ?? shows the cost of the protocol used to enforce the
data-centric management policy. This represents a control
loop that is triggered by the local manager (when CSYM
detects a crack in the modeled material) that results in a
change in the data flow (Helper redirects its output data
to the CNA component). We see scalability traits similar
to that of the increase command; the reason this command
takes much less time to execute is because CNA is a single
replica serial component, so the size of the state message is
much smaller.

E. Discussion

Container-managed 1/0 pipelines provide elasticity at
scale for the online analytics pipelines constructed for
high end simulations. Through active replication, elastic
containers can automatically adjust their data processing
throughput to match application output rates and the behav-
ior of other containers with which they have been composed.
Performance-driven policies like those pertaining to through-
put can be replaced with alternative policies concerned with
end-to-end latency, caps on energy use, or others, without
affecting the implementations of the individual analysis
components.

Container-based management scales through use of a hi-
erarchical approach permitting for (i) per-nm customization
of management policies and SLAs; (ii) specification and
enforcement of such policies at different granularities in the
workflow; and (iii) scalable implementations of management
protocols, including those offering high reliability in man-
agement.
The performance results shown above demonstrate the

superiority of managed vs. unmanaged 1/0, guided by sim-
ple policies realized with low cost management structures.
While able to scale to run on the high end machines currently
available to our research, the current management policies



implemented for containers assume each container to run on
its own dedicated resources, separate from those used by the
application. Management actions that involve scheduling or
resource sharing [?] remain part of our future work.

V. RELATED WORK

While currently realized for ADIOS-based I/0 pipelines,
containers are equally useful to other 'data staging' solu-
tions, as long as they describe and use well-defined compo-
nent interfaces. However, additional programming and inte-
gration efforts will be required to add the concept to tightly
integrated analytics codes in which individual actions are not
separately defined and/or use well-defined component APIs,
such as the analytics pipelines constructed with compiler-
based systems like IBM's System S.

Hierarchical management is commonly used in enterprise
systems [?]. I/0 containers differ in that they explicitly
address the parallel and high performance nature of com-
ponents in the I/0 and analytics pipelines run for high end
simulations. Similarly, while one may view a containers as
a limited form of hypervisor controlling the execution of
its component, containers are not concerned with running
multiple such entities and isolate them in terms of perfor-
mance or for security purposes, but their functionality is
perhaps, more akin to that of 'resource islands' explored
for high end multicore processors [?]. Also different from
such prior work is the explicit specification of containers'
management policies and actions, exposed to end users
and enabling custom and application-specific methods for
managing the analytics and visualization components present
in I/0 pipelines.

I/0 containers predate but are similar in notion to the
'containers' now offered in Linux-based systems, developed
for datacenter application [?]. They differ in their focus on
managing parallel applications, at scale, rather than dealing
with the fine grain, per-machine resource sharing targeted
by Linux containers.

Other HPC-centric work on managing the analytics and
visualization workflows on high end machines [?] provides
adaptation policies at different layers of the stack (cross-
layer adaptation), targeting an adaptive mesh refinement
(AMR) code. Such work complements our research and may
lead to additional useful management policies embedded in
containers.
Our own earlier work on 'service augmentation' [?]

demonstrates the utility of attaching Quality of Service
(QoS) management actions to I/0 pipelines and shows that
container principles can be applied to other data staging or
streaming infrastructures and systems, including [?] and [?]
both of which use componentized approaches.

VI. CONCLUSIONS AND FUTURE WORK

The I/0 Containers framework presented in this paper
allows for users to embed their scientific data analytics tasks

into a dynamically managed execution environment that (1)
continually monitors analytics components for metrics of
interest, (2) allows users to specify management policies
and enforcement operations at different granularities of the
workflow, (3) provides elasticity at scale for their analytics
tasks, and (4) does so efficiently with low management
overheads. The utility of I/0 containers is demonstrated
with two policies associated with a realistic I/0 pipeline run
with a representative high end simulation, the LAMMPS
molecular modeling code: (1) a global 'quality of service'
policy permit an I/0 pipeline to recover from a poor initial
resource allocation, effectively improving its end-to-end
throughput by nearly 300%, and (2) a 'quality of data' policy
operating at container level allows for new analytics tasks
to be injected into the pipeline to respond to the richness of
features discovered in the data.
Our future work will address two different dimensions of

container-based management. One is to gain insights into the
resilience issues associated with online management, where
failures can happen at any stage during the execution of
a management operation. Our initial work in that space has
explored transactional constructs [?]. Another is to better un-
derstand management in environments where analytics oper-
ate 'in situ' with simulations, leading to management actions
that involve fine grain resource sharing and scheduling[?]
and giving rise to concerns with performance isolation[?],

[?]•
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