This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

:
Thread Parallel Message Packing for 018 e

Matrix MPI Communication

Sandia National Laboratories
T.J. Fuller and M. Hoemmen
Sandia National Laboratories, New Mexico 87123

P bl ¥ As observed in Figure 2, threaded message packing is observed to

ropiem be slower than the sequential version, despite the extra throughput
afforded by the GPU. The slow down is attributed to extra work

In the Petra object model, maps describe the distribution of data in done in computing offsets in to the message buffer. A new algorithm

linear algebra objects, such as vectors and matrices. Operations that avoids this extra step is being developed.

requiring data across MPI ranks, such as finite element assembly, Fack Crstatn

communicate data from one rank to another according to their

distribution in the source and target ranks. Data are packed in a

contiguous message buffer in a row-major format, as depicted in

Figure 1. On the receiving side, the data must be unpacked from the

message buffer at the completion of the communication phase. The

amount of data scales as Nxn, where N is the number of rows on the

MPI rank and n is the number of nonzeros per row.

aiq Ain
[aij] - az1 Aon

9.

bt
—— GPU threading, 100 n

Mean Time Over Procs

anl Figure 2: Message buffer packing time vs number of rows on the
{ } processor for 50 and 100 nonzeros per row.
a= a --.a a .--a -.-a -.-a
11 in 21 2n nl it Figure 3 demonstrates an up to 7x decrease in time to unpack for the
Figure 1: Row-major contiguous message buffer packing. The threaded message buffer unpacking relative to the sequential. Note
sparse matrix [a;;] is packed sequentially along rows in the that message unpacking is a order of magnitude slower than

message buffer a for MPI communication. packing, so that the improvement in message unpacking is more
impactful on model problems.

Approach

Thread parallel message packing/unpacking is achieved using st
Kokkos parallel data structures and algorithms. The use of Kokkos
allows the implementation to run with any of the threading models
supported by Kokkos, including OpenMP and Cuda. In the message
packing phase, the two pass Kokkos::parallel scan is used to
determine offsets for each matrix row in to the message buffer.
Matrix data is packed in to the message buffer at the appropriate
offset in a Kokkos::parallel for pattern. The process for
packing rows of the matrix is depicted in Figure 1.

Mean Time Over Procs

The thread parallel Kokkos::parallel for is an abstraction
similar to #pragma omp parallel for. Pseudo-code for the
message packing phase is shown in Listing 1. 20600 o0 soboo w0500 108000

Number of rows per processor

Listing 1: Pseudo code for message packing phase. Figure 3: Message buffer unpacking time vs number of rows on
the processor for 50 and 100 nonzeros per row.

Kokkos::parallel for(“Pack Matrix Rows”, number of rows,
KOKKOS_LAMBDA(const int row_num) {

int offset = offsets(row_num); Significanc
A
pack row(message buffer, values, column_ids, offset);} |
)i MPI data communication

. . . . plays an import role in finite
In the unpacking phase, the Kokkos::parallel for policy is element assembly. In an

ss?d t;) ur:packcdstsa fro;T? the message buffer directly in to the target 8M element conduction
ata structure (matrix). problem, thread parallel

, MPI communication aided
Results in obtaining a 1.5x
' decrease in assembly time
on Intel Haswell archi-
tecture with and without
hyperthreads in Sandia’s
Aria flow simulator, as Figure 4 Speed up in it slement assermbly
shown in Figure 4. time for 8M element finite element assembly

Haswell Assemble Time

Distributed matrices were created with N=100 to N=100000 rows per
MPI rank and n=50 and n = 100 nonzeros per row. Data from all
rows were packed and unpacked using each approach and the
results timed. The threaded version used 1 Nvidia P100 GPU per
MPI rank.

U.S. DEPARTMENT OF .

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Sandla

Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. N t I
Department of Energy’s National Nuclear Security Administration under Contract DE-NAO003525. a |0na

SAND 2018-xxxP

