
Thread Parallel Message Packing for Sparse

Matrix MPI Communication
Sandia National Laboratories

T.J. Fuller and M. Hoemmen

Sandia National Laboratories, New Mexico 87123

Problem

In the Petra object model, maps describe the distribution of data in
linear algebra objects, such as vectors and matrices. Operations
requiring data across MPI ranks, such as finite element assembly,
communicate data from one rank to another according to their
distribution in the source and target ranks. Data are packed in a
contiguous message buffer in a row-major format, as depicted in
Figure 1. On the receiving side, the data must be unpacked from the
message buffer at the completion of the communication phase. The
amount of data scales as Nxn, where N is the number of rows on the
MPI rank and n is the number of nonzeros per row.

• ••

a21 • •• a2n
[ad =

[all

•

an1
• •• ann

a = tan ain a21 a2n • • • anl • • • arm}

Figure 1: Row-major contiguous message buffer packing. The
sparse matrix [ad is packed sequentially along rows in the

message buffer a for MPI communication.

Approach

Thread parallel message packing/unpacking is achieved using
Kokkos parallel data structures and algorithms. The use of Kokkos
allows the implementation to run with any of the threading models
supported by Kokkos, including OpenMP and Cuda. In the message
packing phase, the two pass Kokkos : :parallel_scan is used to
determine offsets for each matrix row in to the message buffer.
Matrix data is packed in to the message buffer at the appropriate
offset in a Kokkos: :parallel_for pattern. The process for
packing rows of the matrix is depicted in Figure 1.

The thread parallel Kokkos: :parallel_for is an abstraction
similar to #pragma omp parallel for. Pseudo-code for the
message packing phase is shown in Listing 1.

Listing 1: Pseudo code for message packing phase.

Kokkos::parallel_for("Pack Matrix Rows", number_of_rows,

KOKKOS_LAMBDA(const int row_num) f

int offset = offsets(row_num);

pack_row(message_buffer, values, column_ids, offset);}

) ;

In the unpacking phase, the Kokkos: :parallel_for policy is
used to unpack data from the message buffer directly in to the target
data structure (CRS matrix).

Results

Distributed matrices were created with N=100 to N=100000 rows per
MPI rank and n=50 and n = 100 nonzeros per row. Data from all
rows were packed and unpacked using each approach and the
results timed. The threaded version used 1 Nvidia P100 GPU per
MPI rank.

As observed in Figure 2, threaded message packing is observed to
be slower than the sequential version, despite the extra throughput
afforded by the GPU. The slow down is attributed to extra work
done in computing offsets in to the message buffer. A new algorithm
that avoids this extra step is being developed.

Pack Crshlatrix

— No CPU threading. 50 nonce,. Par row
— CPU threading, 50 nonzeros per row
— No GNU Ihreaaav.100 000Zer01P.r row

a0000 60000

Figure 2: Message buffer packing time vs number of rows on the
processor for 50 and 100 nonzeros per row.

Figure 3 demonstrates an up to 7x decrease in time to unpack for the
threaded message buffer unpacking relative to the sequential. Note
that message unpacking is a order of magnitude slower than
packing, so that the improvement in message unpacking is more
impactful on model problems.

— • tio GPIlthreatling. 100 000.,1/111.,..
—•—• G1,11 Otreatlin0.100 mnzer.1

20000 4000D 60000 80000 100000

Figure 3: Message buffer unpacking time vs number of rows on
the processor for 50 and 100 nonzeros per row.

Significance
MPI data communication
plays an import role in finite -
element assembly. In an -
8M element conduction -0
problem, thread parallel -

decrease in assembly time
on Intel Haswell archi- -

in obtaining a 1.5x -

11111 111111

MPI communication aidedi--

tecture with and without
hyperthreads in Sandia's
Aria flow simulator, as Figjew4MSpee—dZprnfiniie-elem'renTESSeZr
shown in Figure 4. time for 8M element finite element assembly

///A .V Cipj
/11 4.7los-4

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.

Department of Energy's National Nuclear Security Administration under Contract DE-NA0003525.

SAND 2018-xxxP

Sandia
National
Laboratories

SAND2018-7221C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.


