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31 Microenergetics

Microscale processing and testing of energetic
materials has enabled investigation into the field of
"microenergetics."

MEMS-based fabrication techniques on energetic films
has enabled study of detonation phenomena (initiation
threshold, critical detonation thickness, detonation
velocity, etc.) at micron-length scales.
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4 I Film Growth of High Explosives

Physical vapor deposition (PVD) of organic high explosives has enabled
unprecedented level of control over explosive material morphology.

We've demonstrated that interfacial energy, between substrate and
energetic, strongly influences crystal orientation of explosive, and in
turn, density, porosity, and other parameters relevant to detonation.

Increased surface energy leads to cracking and other defects in film.

We investigate effect of microscale defects on detonation propagation and failure.
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Optical microscopy
(top) and SEM images
(bottom) of PETN films
grown via PVD.
Changes in morphology
are due to interfacial
energy.
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6 Microdetonation Sample Preparation

Polycarbonate substrates used to
match thermal expansion of PETN and
limit uncontrolled cracking.

PETN films deposited via physical vapor
deposition (PVD) under high vacuum.
Target film thickness of 2001.1m, measured
value across all films was 211 p.m ± 8

Engineered gaps constructed to
simulate defects in explosive films.
Gap size ranged from 25 p.m to over 100 p.m.
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71 Ultra-high Speed Shadowgraph Imaging 1.-1

Focused shadowgraph visualizes second spatial derivative of the
refractive index.
Shock wave appears as thin dark line due to sharp discontinuity.

Allows for determination of air shock velocity and estimation of detonation
wave velocity at shock/detonation wave interface.

SIMX-15 ultra-high speed framing camera (Specialised Imaging) used to
capture detonation phenomena.
Frame rates up to 67 MHz (1/15 ns), 10 ns exposure.
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8 Microdetonation Experiment Layout

PETN samples built up in fixtures.
Continuous film (1 cm x 3 cm substrate).

Infinite' gap (image at end of sample).

Controlled gap size (25 p.m to >100 Lim).

Ultra-high speed shadowgraph
imaging optics set up in
configuration shown.
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Schematic showing (a) side-on and
(b) top-down view of sample layout.
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101 Continuous PETN Film

Continuous film (4 mm wide PETN on 1 cm x 3 cm substrate) served
as control case with uninterrupted detonation propagation.

White line on shadowgraph denotes shock front identified and
tracked by MATLAB image processing algorithm.

Air shock velocity remains relatively steady across field of view
and with time, although small discontinuities exist.

v0=7.0 to 8.0 km/s.

Note for PETN, Do0=8.27 km/s.
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`Infinite' Gap
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into free space (air).

Curvature of shock wave increases
after passing edge of sample.

0500

6000

7500

.s7i7000

46500

> 6000

5500

5000

1 . f
•Straight
*Angled

1 4 1.6 1.6 2 2.2 2A 2.6 2.6 3 3.2

Distance (mm)

(a) Shadowgraph of shock wave, (b) shock wave
profile with distance from initiation, (c) horizontal
and perpendicular shock velocity components.
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141 25 pm Gap (Detonation Propagation)

Propagation of shock wave across gap results in reignition of PETN.

Shock velocity initially decelerates when crossing gap, then
reaccelerates upon reignition of PETN.
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Shock wave (a) before and (b-e) after crossing 25 pm gap. (f) Backward difference velocity along height
of shock wave.
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1,1 93 pm Gap (Detonation Failure)

Detonation failure occurs after crossing gap.

Continual deceleration of shock wave observed.
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Shock wave (a) before and (b-e) after crossing 93 pm gap. (f) Backward difference velocity along height
of shock wave.
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191 Conclusion

Results indicate a critical gap size for reliable reignition of PETN
films to be approximately 75 p.m or less.

In one instance, reignition occurred across a gap larger than 80 p.m, but this
was likely due to non-uniform gap distance with bridging in at least one
location.

Decay in air shock velocity and increased curvature due to
presence of gap in the PETN films mimics effect of air shock
traveling into free space (Infinite' gap).

Significant instabilities in air shock above explosive result from
microscale defects, but steady-state condition re-establishes after
reignition.

Microcracking observed in densified samples likely won't cause
detonation failure, but may affect detonation wave velocity and
stability.



.1 Future VVork

Developing improvements to ultra-high speed
shadowgraph imaging setup.

Investigating effects of confinement on detonation
failure threshold across microscale defects.

Interest in determining influence of PETN film thickness
on detonation failure threshold with presence of
defects.

Pursuing density modification of PETN films through
interfacial energy enhancement.

Modeling and validation in CTH Shock Physics software.
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