This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.
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Problem Schematic )=,
m = 306 1b m
d=0.5 in -
t =0.51n u,
D =6.75 in 2 f .

Al 7075-T651

e Determine threshold velocity
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Experimental Results

Plate Test Data
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Johnson-Cook Material Choice

« Initial results overestimated threshold puncture velocity by 60%

« Searched for a model that:
« Accounts for temperature and strain rate effects on material response/failure
« Triaxiality dependence of failure strain can be adjusted
» Has been implemented in a finite element code

« Johnson-Cook model met all the criteria.

» It has also been used by others in puncture applications (Borvik, Weirzbicki) and
reported good results.




Johnson-Cook Material Characterization

J, Isotropic hardening, “Strength” Model:
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Johnson-Cook Material Characterization

Failure Model:
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Johnson-Cook Failure in Principal Stress
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Uniaxial Tension Test Data
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Uniaxial Tension Edge Detection Data

WG-12 Width After Failure (Perpendicular Direction)
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Uniaxial Tension Test Data Summary ) i,
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Fitting Procedure ) =

Make finite element model of tension test specimen

Guess values for A, B, n

Simulate the tension test

Compare the predicted engineering stress-strain curve to measured one

Iterate as necessary
Note the true plastic strain at failure
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Notched Specimen Tension Test Data ()&
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Notched Specimen Tension Test Simulation

» Test performance of plasticity model under non-uniaxial conditions
« Obtain data to assess triaxiality dependence of the plastic strain to failure
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Notched Specimen Tension Test Calibration
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High Temperature Tension Test Data )

Determine values of temperature dependence parameters
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High Temperature Tension Test Calibration

A, B,n,C/m
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High Strain Rate Tension Test Data ) =,

Determine values of strain rate dependence parameters
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High Strain Rate Tension Test Data ) B
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Plate Puncture Finite Element Mode| @&

« Explicit Dynamics
« Adiabatic

Symmetry plane,
disp_ x=0
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Plate Puncture Results
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Evolution of Johnson-Cook Damage ™=
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Just Prior to Plug Ejection (3.15 ms
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Microstructure of Plug Formation @




High Shear Test )

Test predictions against test in high shear regime
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High Shear Test Results and Predictions
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Conclusions

Positive Outcomes:

» Accomplished full calibration of Johnson-Cook strength and failure model

» Puncture predictions have high resemblance to experimental observations
« Accurate prediction of threshold puncture velocity
« Failure sequence leading to plugging reasonably reproduced




Deficiencies:

Model neglects observed material anisotropy
Model captures response at high temperature to a first order only

High shear failure information is scarce

Material properties in the thickness direction have not been measured

The element size used in the puncture calculations is way too big
compared to the observed shear bands. (Clearly, however, the model
predicts the onset of a shear instability)

We are still uncertain whether the very reasonable predictions by the
model are due to good modeling or good luck.




Observations and Recommendations:

« The Johnson-Cook model provided a reasonable first-order
representation of the observed material behavior, both for response and
failure

« The puncture predictions were reasonable

« Itis reasonable to use a properly calibrated Johnson-Cook model as an
initial step in the simulation of similar problems.

« Use of the methods considered here in other problems will provide further
experience and evidence of the soundness of the approach.




“Essentially, all models are
wrong, but some are useful.”
“Remember that all models
are wrong; the practical
qguestion is how wrong do
they have to be to not be
useful.”

George E. P. Box (1919-2013)

British mathematician
Statistics professor at Univ. of W/




