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Old Chinese wisdom on a sake bottle 

Study old materials to gain new understanding

Saida

lahotatties

Sandia National Laboratories is a multimission laboratory managed and

operated by National Technology & Engineering Solutions of Sandia, LLC,

a wholly owned subsidiary of Honeywell International Inc., for the U.S.

Department of Energy's National Nuclear Security Administration under

contract DE-NA0003525.

SAND2018-7080C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.



Outline

• A brief review of Hayes' idea of flyer optimization.
• Application to newer initiation threshold functions.

- H. James.
- E. Welle.

• Optimum flyer and performance gain.

• Self-consistent non-dimensional groups.
• Concept of "distance" in the loading space.

- A new measure of shock sensitivity.
- Performance and safety margins

• Conclusions.
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Flyer

Thin Flyer Initiation and its Optimization

Thin Flyer Initiation 
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Extended Walker-Wasley Initiation boundary

P

PnT = constant
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Square pulse loading

Hayes Idea of Flyer Design (SAND77-0268) 

• The larger the value of PnT , the better the design
• Adjust shock property (impedance) of the flyer

n 1• G = PnT = 2Zr1mVn (P
(1-F(On

✓ 01) = Zf/Ze (shock impedance of the flyer/explosive shock impedance)
✓ m = mass of the flyer per unit area

• Optimum that maximizes G
• (Pmax — n —



Newer Initiation Functions and James Number

• Initiation Functions (James type) 
Er. Er'

‘( 1 = (James)
E
Ec 

MTEC
1( 1 = 

E 
eliejTr 

where E = PUT, E = 2 u2, and Tr = Pu

• Optimization in terms of James number* 
E= c + Ec

J E

✓ 
1 E= c + c

Jw E

*Originally introduced by Greshoff and Hrousis of LLNL

to describe initiation boundary in a probabilistic

fashion. J=1 signifies 50% ignition probability.

E

Pu
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loading

Ec Thc1= — +
E TT
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Optimizing J in terms of 4)

Consider J and Jw as G in Hayes' analysis

J

Jw =

= (v2  
2Ec) (1-F(1))2(1+1201:0'

(v2ze\ (1)2

Trc (1+013)2(1+13013)1

Optimum ts* 

(I)max

where

1 [1 + (1 + 8)1121
2 a

a =
Ec

4mEc

=
ZeEc

2 m Tr c

E c
a = (= a) for the James type

4mEc
Ze Ec , 

,) for 
tn„ ,

= T7c )e Welle type

*Other parameters are assumed fixed

;
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For a thin flyer (m0), iT•ma, —> 1 (max K. E.)
For a sustained load (moo), iT•ma, —> 00 (rigid flyer)



(I),nax and J, based on experimental data
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Polyimide and parylene flyers impact Class 3 and Class 5 HMX powders pressed to about 95 %TMD 
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[E. WeIIe et al, J. Phys., Conference ser., 500, 052049 (2014)]
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• At high velocities the best tactic is to maximize the kinetic energy transmission (cI)=1).

• At low velocities, increase the shock impedance to the optimum value using e.g. a metallic flyer

or add a metallic powders to the polymeric flyer as discussed by Hayes.

• Significance of J, requires information on cummulative ignition probability.
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Payoff of adjusting flyer impedance

[S. Kim et al., J. App. Phys. 120, 115902 (2016)]
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James number, J

1.5

• By properly choosing cj), cumulative ignition probability can be increased to 100%.
• Adjusting flyer impedance is an attractive alternative to increasing flyer velocity in

order to raise the cumulative ignition probability.
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E
(joule lm2)

Distance in the Loading Space

Welle Space 

11111
0,0) n (watt Im2)

Ambient state

Square pulse

loading point

(E,

Ec Thc1= +

Non-dimensionalization

Initial Inspiration: 

Y

(=E/Ec)

;
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Non-dimensional Welle Space 

(X, Y)
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(I) 2 n 

P = 
ZeEc

hv =
Trc (1-W2(1+14)1 2mTrc

X (=E Ec)
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Usefulness of non-dimensional loading space

Ignition boundary
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Geometric Interpretation of Performance Measures 

• Performance margin: A-B.
• Factor of performance: A/B.
• Margin of safety: D-E (for no-go).
• Factor of safety: D/E (for no-go).
• C is the minimum distance to the ignition

boundary and may be used as a measure of
shock sensitivity of energetic materials
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Symbols (A,B,C,D,E) represent Cartesian distances from the ambient state to respective loading points
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Minimum distance to the ignition boundary
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Minimum speed required to reach the ignition boundary
=1.707 km/s (Class 3/polyimide)

=1.885 km/s (Class 3/parylene)
Vmin =1.935 km/s (Class 5/polyimide)

=2.127 km/s (Class 5/parylene)

According to this measure, Class 3 (ay. particle size = 358 p.m) is more

sensitive than Class 5 (ay. particle size = 6.7 p.m).

Vmin can be obtained by solving

TC = eu • u = pe (Ce + se0u2 = 277-c (minimum condition)

pe(Ce + seu)u = p f (Cf + f(V — u)) (V — u) (pressure equality)
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Since u is determined by the minimum condition only, the effect of the

flyer can be understood by rearranging the 2nd equation.

V2 + Cf — 2u) V + (1 — P5e) u2 — Cf+PeCe),/,t =
sf pfsf sf pfsf

An example is shown for an aluminum flyer (Al 1100).

= 1,113 m/s (Class 3)

1. = 1,270 m/s (Class 5)
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1. Hayes' idea of optimizing detonation initiation by thin flyer pate is extended to
more recent threshold functions (James and Welle functions).

2. Results show an attractive way of
increasing the cummulative ignition probability to 100%.

3. One of the by-products is the idea of non-dimensionalizing the loading space and
the threshold functions.

4. Non-dimensional space allows intuitive geometric interpretation of various performance measures
such as margin of safety, and performance margin, etc.

5. A new measure of shock sensitivity.


