
I/0 Containers: Management Abstractions for Large-Scale
Science Workflows

Jai Dayal
College of Computing
Georgia lnstitute of

Technology
Atlanta, GA

jdayal3@gatech.edu

Karsten Schwan
College of Computing
Georgia lnstitute of

Technology
Atlanta, GA

schwan@cc.gatech.edu

Jay Lofstead
Computer Science Research

Institute
Sandia National Laboratories

Albuquerque, NM
gflofst@sandia.gov

Matthew Wolf
College of Computing
Georgia lnstitute of

Technology
Atlanta, GA

mwolf@cc.gatech.edu

Scott Klasky
Oak Ridge National

Laboratories
Oak Ridge, TN

klasky@ornl.gov

ABSTRACT
The path towards exascale has given rise to a new model of scien-
tific inquiry where concurrently with the running simulation, on-
line analytics workflows operate on the data it produces. While
speeding up the scientific discovery process by providing rapid in-
sights into the simulated science phenomena, a challenge for online
analytics is to respond to workflow behavior dynamics caused by
changing simulation outputs and by unforeseen events on the un-
derlying hardware/software platforms.

This paper presents a set of run-time abstractions for online work-
flow management, realized by embedding workflow components
into "I/0 Containers" that monitor component behavior and enable
responses to runtime changes in their resource usage and in the plat-
form's resource availability. Management actions concern individ-
ual components and the end-to-end properties of entire workflows
through a hierarchical management infrastructure.

For high end simulations running on a leadership machine, ex-
perimental evaluations show I/0 containers can invoke efficient
management operations responding to runtime dynamics at differ-
ent analytics workflow granularities.

General Terms
High-performance Computing

Keywords
Data Staging;Data Management;Analytics

1. INTRODUCTION
On current generation petascale platforms, scientific applications

like the GTC [22] fusion and S3D [17] combustion simulations are
already generating terabytes of data every few minutes. The desire
to scale the I/0 and the analytics and visualization codes operating
on such data to exascale levels has caused researchers to devise

Greg Eisenhauer
College of Computing
Georgia lnstitute of

Technology
Atlanta, GA

eisen@cc.gatech.edu

Hasan Abbasi
Oak Ridge National

Laboratories
Oak Ridge, TN

habbasi@ornl.gov

new online methods for managing the large data volumes without
overwhelming the parallel file systems attached to these machines.
These methods include running analytics concurrently along side
simulations — "in-situ" [41, 7] — and in I/0 staging areas — "in-
transir [4, 14, 18] — on the high end machine and/or extending to
auxiliary analytics clusters.
Beyond addressing performance challenges, online analytics of-

fer science users new functionality for better understanding the sci-
entific simulations being run. This includes (i) continuously ascer-
taining simulation validity, permitting it to be terminated or cor-
rected without undue waste of machine resources [23], (ii) gaining
rapid insights into the scientific processes being simulated (online
visualization), or even (iii) enabling methods for application steer-
ing. The result of these developments, however, is that at exascale,
projections suggest that high-end codes will no longer be struc-
tured as a single, large, synchronous application, but rather as a set
of components running concurrently with the simulation that ingest
and operate on simulation output data. This combination of analyt-
ics components deployed into the simulation's I/0 path is termed
an I/0 pipeline.

In contrast to the long-running and often well-tuned simulations,
there are considerable variations in the analytics codes present in
I/0 pipelines. They differ in their maturity, degrees of parallelism,
execution models, data characteristics, resilience capabilities, and
others. They can also exhibit substantially dynamic execution be-
havior in part due to their data-dependent functionality. For exam-
ple, an analytics code's runtime is determined by the number of
features found in the output data it analyzes. I/0 pipelines, there-
fore, can experience dynamic changes in resource consumption and
requirements making their initial resource allocations inappropriate
and/or requiring adjustments in how analytics operate. For exam-
ple, reducing a component's precision or similar measures can re-
balance resource usage. It is also possible that some analytics may
simply be too expensive to run online for certain kinds of data out-
puts due to structural issues like insufficient parallelism or because

SAND2015-0207C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

they require further tuning for coping with such outputs. In fact,
even a single slow component in an I/0 pipeline can inhibit the en-
tire pipeline's performance, as amply demonstrated in past research
for both HPC [14, 39] systems and for the multi-tier services run
by web companies [33, 21].

Failure to react to online changes in I/0 pipeline behavior can
lead to severe consequences. Unduly slow analytics pipelines can
cause data loss or worse, stall high end simulations by causing them
to block on their output actions. Offline tuning driven by continu-
ous performance profiling is one way to address the problem, but
its use requires stable I/0 pipelines. This also prevents end users
from experimenting with interesting new analytics or visualizations
for understanding simulation behavior. In response, both in the
web domain and in high performance computing, developers are
increasingly looking toward online solutions for controlling ana-
lytics behavior and resource consumption [27, 12]. The aim of
such methods is to manage the diverse sets of codes and resources
contained in an I/0 pipeline so as to ensure the efficient, high per-
formance, and correct execution of entire I/0 pipelines, both for
their individual and potentially parallel components and for their
end-to-end properties.

This paper describes the //0 container approach, depicted in
Fig. 1, to managing dynamic I/0 and analytics pipelines on high
end machines. I/0 containers permit developers to embed their
analytics functions into a componentized, dynamically managed
execution and messaging framework. Such components can be
compiled and deployed separately, each in their own container,
have well defined inputs and outputs [26], can be parallel (MPI
or threads), and may exhibit inter-component dependencies. Entire
I/0 pipelines or workflows can be constructed by chaining contain-
ers along their I/0 paths.
I/0 containers offer:

1. controlled resource usage: a container provides and manages
resources for the analytics component mapped to it;

2. per-component management: a container offers to its compo-
nent an actively managed execution environment and allows
components to perform customized implementations of man-
agement operations to ensure that their own local properties
and requirements are not violated;

3. metric-driven operation: the container runtime can also en-
force goals driven by metrics of interest to end users, such as
priorities or performance requirements; containers are thus
continually monitored to provide managers with the infor-
mation needed to make management decisions.

An additional property of containers is their fault-resilient man-
agement, through transactional techniques that guarantee that the
control and management actions taken by container software do
not place applications or analytics components into inconsistent
states [25], for example, not making use of a resource until a differ-
ent container has fully relinquished it. Such requirements become
important as online science workflows scale geographically [6] as
network partitions or data center outages can render parts of the
workflow inoperable.

Using I/0 containers permits end users to focus on analytics
functionality and algorithmic correctness rather than being overly
concerned with scaling individual analytics components and/or their
careful resource allocations. Instead, with containers, users can
specify customized SLAs and management actions to be performed
to ensure that certain desired SLA properties are met with container
managers responsible for maintaining per component and the re-
sulting globally, i.e., end-to-end, desired SLAs. A typical man-

agement division is one in which a global manager is responsible
for maintaining an entire workflow's SLA. It will achieve this by
re-organizing its containers and container-level managers perform
actions specific to individual components, e.g., by changing a com-
ponent's degree of internal parallelism. A concrete demonstration
of such functionality in this paper is one in which multiple I/0 con-
tainers segment the single, common staging area used to execute
online analytics for a scientific simulation. One such container may
run a data visualization with, for example, VTK [28], while another
may run analytics using ParaView [10]. A dynamic requirement
for additional resources to run ParaViews's analytics can be met by
`stealing' resources from the visualization container, if it does not
need them, or by using spare staging resources, if available.

Container
Manager

Application

Container

Con ainer
Manager

Analysis

Container

Global
Manager

Containe
Manager

Analysis

Container

Legend

Data Movement

Monitoring And
Control Messages

Container
Manager

rib
Storage

Analysis

Container

Figure 1: High-level view of I/0 Containers framework.

I/0 containers with their well-defined component interfaces and
a programmatic management API expose to end users management
primitives for specifying their SLAs, indicating the appropriate ac-
tions to take when certain conditions are detected. Condition de-
tection operates at runtime, for each container and delivered to the
management hierarchy via continuous online monitoring of indi-
vidual containers concerning their current behavior and resource
usage.
The implementation of I/0 containers evaluated in this paper is

based on the EVPath event messaging system and the Flexpath
staging solution [15, 11], able to run on cluster machines and on
high end supercomputers like ORNL's Titan. Using two high end
applications, the LAMIVIPS [30] molecular dynamics and the GTS [34]
fusion simulations, along with different sets of analytics pipelines
(SmartPointer [36] and an FFT code, respectively), we evaluate
I/0 containers with SLAs that include: (1) a global performance-
driven SLA that implements "elastic containers" to recover from
detected bottlenecks (throughput degredation) in the I/0 pipeline;
(2) a container-level data-centric policy that executes specific Smart-
Pointer analysis routines in response to certain features being de-
tected in the output data it is processing; and (3) a set of fault re-
covery policies to recover from an unexpected departure of a com-
ponent when executing analysis codes on an end-user device (e.g,
a laptop).

Experimental evaluations show that the use of such active container-
based management can: (1) respond to runtime dynamics at differ-
ent levels of the stack; (2) create and enforce SLAs at multiple
granularities of an I/0 pipeline; and (3) operate at large scales with
low overheads.

I/0 containers constitute new functionality in the domain of sci-

entific data management. Current current I/0 staging technologies
do not yet offer support for dynamically managing the end-to-end
properties of tightly coupled analytics running with high end codes.
In earlier work on data staging, for instance, statically profiled anal-
ysis routines are run in configurations sized to be resource-rich
for worst case data volumes and processing needs [40]. Similarly,
our recent work on ̀ in-situ' analytics for supercomputer simula-
tions [41] schedules and manages only the analytics actions taking
place on individual compute nodes not being concerned about the
I/0 pipeline end-to-end properties originating at such nodes.

Previous work on datacenter management and for 'big data' sys-
tems uses techniques like elasticity and replication, to provide scal-
ability and fault tolerance [19, 27, 38, 2]. Such work motivates
some of our work, but its software realizations are not suitable for
the HPC domain and its methods do not directly address the end-
to-end behaviors of the parallel analytics workflows managed by
I/0 containers. Specifically, with the I/0 container model and its
information infrastructure, we can realize the diverse management
semantics needed for such workflows and science end users, ex-
pressed with SLAs, and driving management actions that imple-
ment the limited types of elasticity permitted by the HPC machine,
the degree of reactivity needed for effective workflow use, and the
desired end-to-end behaviors, such as throughput or latency. Initial
results [12] demonstrate some of these properties, but the work pre-
sented in this paper (i) extends the container workflow model and
management constructs, (ii) explores a wider variety of use cases,
including an understanding of how state and metadata are managed
(i.e., quality of data and fault recovery), (iii) describes how SLAs
are defined and how management policies are constructed to en-
force them, and (iv) extends the concepts to workflows that span
multiple machines by leveraging the Flexpath [11] staging solution
operating across a variety of interconnects (our earlier solution im-
plemented with the DataTap [4] staging solution operating on the
Cray Portals API [8] operated only on the high end machine).
The remainder of this paper is organized as follows. Section 2

presents the I/0 container concept, desired features, and design and
implementation. The performance evaluation in Section 4 demon-
strates the strength of the approach. Section 5 discusses relevant
research related to the containers concept. Section 6 concludes the
paper and discusses future work.

2. I/0 CONTAINERS
Ito containers are run-time abstractions that allow in-transit data

processing actions to be embedded into a dynamically managed ex-
ecution environment. Each single container manages executables
that carry out analytics tasks on the data they ingest. More com-
plex structures, like entire I/0 pipelines, are supported by chains
of containers supervised by a global manager interacting with per-
container managers. Such distributed management is supported
with a flexible monitoring and control infrastructure gathering needed
information and then issuing appropriate control operations. In
all such cases, analytics components are run on the machine re-
sources allocated to the container infrastructure by the user and
controlled by globally and potentially container-specific manage-
ment and scheduling. This multi-level management scheme can
maintain both container-level and global (i.e., across all contain-
ers) properties.

Fig. 1 depicts a conceptual model of I/0 containers.

2.1 Assumptions and Desired Properties
The I/0 container approach rests on assumptions that hold true

for many large-scale scientific applications and their associated on-
line analytics workflows. These assumptions do not always match

those found in enterprise or 'big data' frameworks like [37, 2, 1] in
terms of their data characteristics, execution models, and degrees
of parallelism.

• Functional Dependencies. Analytics codes expect to ingest
data matching specific formats and layouts, where analytics
functions may need to transform data to meet algorithmic
correctness and/or to export an analysis function's discov-
eries into the data itself. Given these dependencies in the
data-plane, functions in an analytics workflow may not have
the ability to operate out of order; one function's inputs often
requires another function's outputs.

• Heterogeneous Codes. Analytics codes can be heteroge-
neous in terms of their parallelism, execution models, fault
tolerance, and scaling characteristics. This results in substan-
tial variations across different I/0 containers and the compo-
nents they manage.

• Stringent Resource Constraints. Resources are not free,
since the bulk of the resources are typically assigned to the
simulations being run, whereas analysis codes are given 'spare'
resources, i.e., spare CPU cycles on simulation nodes [41,
7], reserved staging nodes [4, 14], or those on smaller, aux-
iliary clusters perhaps in different physical locations. Ana-
lytics workflows, therefore, must operate with these limited
resources, without interfering with the simulations and their
output actions.

Given these assumptions and the set of challenges and applica-
tion characteristics outlined above, I/0 container-based workflow
management must meet the following design goals. First, given
the large variety of characteristics of analytics codes and the dy-
namics they experience at runtime, it is impractical for a single
manager to understand all analytics in some composed I/0 work-
flow. A better approach is to provide to analytics users or creators a
mechanism for specifying and implementing management actions
that work well for their codes' characteristics. Our first design goal,
therefore, is that (1) management routines and policies should be
customizable on a per container basis.
To make management decisions at run-time, information is needed

by management functions to determine when and what actions should
be performed. The specific information collected and its organi-
zation depends on the management policies being enforced. This
requires the continuous monitoring of workflow components, their
behavior and running times, and of the physical resources they use,
thus permitting management actions to be invoked in a timely man-
ner. Our second design goal states that: (2) management actions
are guided by user-determined metrics driving per-container and
cross-container (i.e., global) management policies.

Ideally, analytics workflow pieces should be decoupled along the
time and space dimensions so that a component's correct operation
depends only on the availability of the necessary data (i.e., from
disk or via the network). With well-defined input and output in-
terfaces, analytics actions can be allowed to run independently as
separate applications (i.e., components), and enter and leave the
pipeline as needed. This makes it possible to run entirely different,
dynamically swappable analytics codes without requiring them to
be integrated into a single executable. Our next design goal, then,
states that (3) analytics codes should operate in a componentized
fashion.
A risk with management is that operations on one component

can jeopardize the execution of other (e.g., dependent) components.
For instance, consider the case of trading resources between two

analytics components when recovering from some detected bottle-
neck. A failure can occur if there is an inconsistent view of the state
of the resources in which a component tries to use a resource that
has not yet been fully relinquished by another component. Our last
design goal, therefore, states that: (4) management operations must
be reliable and be resilient to failure.
By meeting these design goals, I/0 containers can be used to re-

alize (1) customized per-component and global management poli-
cies; (2) enabled by online monitoring of the varied metrics of rele-
vance to different policies; (3) componentized operation consisting
of swappable codes; and (4) made resilient to failure via transac-
tional control methods.

2.2 Conceptual Model

2.2.1 Containers
A container, depicted in Fig. 2 allows analytics tasks to be em-

bedded into a dynamically managed messaging and execution frame-
work. The container's input and output interfaces are similar in
concept to those used in modern Service Oriented Architectures
(SOA). The container is comprised of a set of active replicas that
perform analytics actions on incoming data and a container man-
ager that oversees its execution.

Active Replicas. Unlike the replication techniques used in fault
tolerant systems [13, 16], where replicas have identical intemal
states, active replicas in containers are key to obtaining scalable
container operation: with traditional replication, each replica per-
forms redundant computations on the same data items, whereas ac-
tive replicas perform their computations on different epochs of data
assigned to them. For the use-case discussed in Section 4.1, data is
assigned to active replicas in a round-robin fashion. Using active
replicas, a container manager can increase its degree of parallelism
by spawning a new replica.

Container Manager. It oversees the execution of its active repli-
cas, assigning resources to them and gathering and organizing the
information needed to make mntime decisions about their number.
Container managers also have custom implementations of a set of
management primitives, described next, which allows them to re-
spond to management requests from higher-level (global) managers
in a manner customized to the codes they run.
A container manager provides metadata services for the active

replicas it manages. As stated previously, users embed codes into
an execution and messaging mntime, and workflows like pipelines
are constructed by chaining together containers along their I/0 paths,
to allow direct container-container data exchanges without involv-
ing the storage system and/or intermediate consolidators. Man-
agers support this by maintaining state about inter-container con-
nectivity (i.e., endpoint contact information) and by issuing state-
change notifications to neighboring container managers. Container
managers can also store important in the case where active replicas
may implement stateful functions.

2.2.2 Management Constructs
Hierarchical container management affords several benefits. First,

such hierarchies can be scaled with ease [32]. Second, distinct
per-container managers can offer customized management routines
and separate their local, per-component management states from
global state about entire I/0 pipelines. Hierarchy also helps define
management authority: a global manager is responsible for oper-
ations that re-organize entire workflows, whereas individual con-
tainer managers (i) are responsible for operations affecting only
their components and resources, and (ii) respond to management
invocations from higher-level (global) managers.

The following core management primitives make it possible to
construct higher-level management policies and operations:

• Increase Container: allocate more resources to a container
with the goal of increasing a container's scalability.

• Decrease Container: deallocate resources to a container;
useful when resources are scarce and some containers may
be over-provisioned.

• Offline Container: remove all resources from a container
and direct dataflow from upstream containers to disk; useful
when it is no longer feasible to run a container online, i.e.,
there are insufficient resources to scale the container or there
may be a network partition in a geographically distributed
workflow.

While the per-container management actions listed above are in-
voked by a global manager, the concrete steps needed to execute
these actions within a container can be customized on a per con-
tainer basis. For example, when told to "increase its degree of
parallelism, a code that cannot operate on data epochs out of or-
der could implement its "increase operation by killing its existing
active replica and spawning a new one with a greater MPI size,
whereas another container could implement this by just spawning
a new replica and adding it to the existing cohort.

Data Flow

Container -.1.4,.. -- '''
Manager

A 1 A
and<_....

Monitoring

Control
Messages

Codes

Compute Nodes

Figure 2: Container abstraction.

3. IMPLEMENTATION

3.1 Container

Mgmt
Policy

3.1.1 Active Replicas
The implementation of containers leverages the widely used ADIOS

read and write interfaces [26]. Using these interfaces, analytics
codes can specify their data requirements and establish communi-
cation via a virtual file name serving as a named communication
channel. To accommodate active management, the Flexpath [11]
ADIOS transport, which allows for online analytics routines to ex-
change output data, has been extended to accept and process man-
agement messages and state-change notifications from the replicas'
designated container manager. We also modify the ADIOS inter-
face to expose to analytics applications a communicator they can
use to interact directly with the container manager, if needed.

There is additional queue management for Flexpath publishers
(ADIOS writers): they maintain a queue for each neighboring Flex-
path reader replica (in a downstream container) to hold epochs
of data. Writers then assign data to these queues in a fashion

determined by the reader container. The current implementation
supports round-robin assignment, including the case in which one
replica consumes all of the work for an existing replica, explained
in more detail in Section 4. Management actions can also lead to
queue management operations, as when upon the arrival of a new
replica in a downstream container, load balancing actions reduce
the lengths of overly filled queues. Conversely, with a 'decrease'
operation, we can re-assign existing work to other remaining repli-
cas.

3.1.2 Managers
Managers are written to be run as stand-alone executables. Users

can create custom managers and specify SLAs using a program-
matic API, described in Section 3.2. When global managers detect
conditions of interest, they invoke management commands on con-
tainer managers, and then distribute any important state changes to
subsequent container managers that need to be aware of such state
changes. Container managers are responsible for carrying out cus-
tom implementations of management commands invoked on them
by global managers, and for performing internal actions on the re-
sources and replicas they manage.

3.2 Management Interface
The basic primitives listed in Section 2.2.2 are exposed as a C

interface, and developers use this interface to create custom man-
agers. To meet a SLA at a global manager, management codes can
read monitoring information, and then carry out chained primitives
to perform actions like resource trading. When invoked, a manage-
ment primitive triggers a set of transactional protocols that indicate
a participant's progress and distribute any state changes.
The sample policy shown below triggers resource re-assignment

across containers when the output queue for containerl reaches a
queue length of 10.

i f (container 1 —>max_queue_length == 10) {
decrease_container (container2 , 1);
while (container2 —>state != STEADY_STATE)

sleep (1);
increase_container (containerl , 1);

An 'increase' command received by a container manager, to add
to its working size, may launch additional replicas. In our current
implementation on the Titan machine at Oak Ridge National Labs,
launching of replicas is conducted as follows: the container man-
ager constructs an aprun command as a text string and then writes
this command to a file. A PBS script (a feature of the PBS job
scheduler), scans each container manager's file for commands, and
when one is present, it reads and executes it. This implementation
is due to the constraint that only the root node of the job, which exe-
cutes the PBS script, can launch applications on the compute nodes.
While this illustration and the use case presented in Sec. 4.1 focus
on output queue build up, management could also be triggered by
other factors, such as memory consumption or CPU utilization.

3.3 Container Information Bus
Monitoring, control, and state change messages are delivered via

the Container Information Bus, or CIB, implemented using the EV-
Path [15] messaging library.

Managers and replicas are connected via the CIB's overlay graph,
where container-level managers serve two roles: (1) aggregator
nodes used to gather and organize monitoring information, execu-
tion metadata, and runtime state information before delivery to the
global manager; and (2) as entry points into a container in terms of
management operations and the delivery of state change notifica-

Application/Analysis

ADIOS

Container
Info. Bus

Flexpath

EVPath

TCP/IP IB Gemini
Shared
Mem

Figure 3: I/0 Container software architecture.

tions (i.e., state that determines from who replicas read data) from
neighboring containers.

Global managers serve as the root of the CIB and accept and
organize messages from all container managers. In order to en-
sure the strong consistency of runtime state information, the cur-
rent implementation passes all messages relating to state changes
through the global manager. In the case of parallel replicas (i.e.,
MPI based analytics codes), we designate rank 0 as the recipient
of messages from the container manager. Rank 0 then uses MPI to
disperse the messages to the remaining ranks. We have done this
to take advantage of MPI's optimizations and to also reduce the
number of connections a container manager has to maintain.

3.4 Fault Detection and Recovery
The current implementation detects faults in two ways. The

first uses application-level progress indicators delivered via peri-
odic heartbeat messages from an application replica to its container-
level manager. The second allows the manager to recieve a notifi-
cation from the kernel when the socket between a manager and a
replica has been disconnected. Method 1 does not rely on a spe-
cific messaging technology (sockets) and can work for a variety of
underlying network interconnects, with the disadvantage that the
manager must propagate this failure notification through the CIB
to interested parties. Method 2 allows for any component interact-
ing with it (managers, other replicas in the workflow) to receive
the notification without having to wait for failure alerts to pro-
pogate through the CIB. Both methods are chosen for our current
investigation, because they are familiar to end-users and have well-
understood characteristics. Future work will explore more robust
fault detection [29, 9] and diagnostic [32] mechanisms.
The specifics of how to recover from a component fault is left

up to the users via API calls in the associated managers, e.g., issu-
ing an "offline_containee operation, or spawning a new replica on
spare resources (an increase_container operation). The container
framework does provide some fixed options that can be configured
at registration time that specify whether components can deal with
data loss. For a visualization component operating in a "stream-
ine fashion, it might be able to tolerate a few missed frames. For
these, we can redirect the data to other replicas that have not failed,
or discard the data if none are available. For codes where missing
output epochs could render scientific results invalid, such as state-
ful codes, we allow for upstream data publishers to buffer the data,
either in memory or by leveraging on-node storage (SSDs) via EV-
Path "storage stone facilities, until the failed replica has recovered.

4. EXPERIMENTAL EVALUATION
Experimental evaluations are conducted using two machines. (i)

the Titan supercomputer hosted at Oak Ridge National Labs, and
(ii) the Maquis cluster hosted at Geogia Tech. Titan consists 18,688
compute nodes each containing 16 cores and 32Gb memory, for a
total of 299,008 cores and a peek performance of over 20 petaflops.
The Maquis cluster is a 16 node Infiniband cluster, with each node
having a two Intel Xeon quad core processors with 8GB of RAM
each.
The LAMMPS molecular dynamics simulation and the Smart-

Pointer analysis toolkit serve as our application drivers for Titan,
and we construct two policies to demonstrate the benefit of the I/0
Container approach and to assess the overheads of its active man-
agement capabilities. We run the GTS machine on Maquis and
execute the FFT code on a machine at a remote location, thereby
allowing us to test the system's behavior when the workflow is
geographically distributed. We note that we cannot conduct such
experiments on Titan, as its security policies and firewall settings
prevent us from doing so.

4.1 Using 1/0 Containers

4.1 .1 LAMMPS and SmartPointer

LAMMPS
Manager

Global
Manager

Helper
Manager

Bonds
Manager

LAMMPS
Helper j)

LAMMPS

Bonds

CSYM
Manager

CSYM

CNA

Figure 4: 1/0 Pipeline for LAMMPS with 1/0 Containers

Figure 4 depicts the I/0 pipeline constructed for the LAMMPS
(Large Scale Atomic/Molecular Massively Parallel Simulator) [30]
science application, using the SmartPointer analysis and visualiza-
tion toolkit. LAMMPS is a molecular dynamics simulation used
across a number of science domains. It is written with MPI and
performs force and energy calculations on discrete atomic particles.
After a number of user-defined epochs, it outputs the atomistic sim-
ulation data (positions, atom types, etc.), with the size of this data
ranging fom megabytes to terabytes depending on the science being
conducted.

SmartPointer is a representative analytics pipeline interpreting
LAMMPS output data to detect and then scientifically explore plas-
tic deformation and crack genesis. In such scenarios, a force is ap-
plied to the material being simulated until it first starts to break. The
SmartPointer set of analyses are configured to detect and categorize
the geometry of the region around that initial break. SmartPointer
implements functions to determine where and when plastic defor-
mation occurs and to generate relevant information as the material
is cracked. We summarize the SmartPointer codes in the list below,
with additional detail found in [11, 12, 36]:

• Lammps Helper: parallel MPI code that serves as an aggre-
gator and filter of the raw LAMMPS data.

• Bonds: parallel MPI code that performs an all-nearest neigh-
bor calculation (O(n2)) to label which atoms are bonded for

each output epoch.

• Csym: a serial central symmetry analysis code that detects
plastic deformation.

• CNA: a serial common neighbor analysis code that executes
whenever CSYM determines that a deformation in the ma-
terial has occurred. CNA is an extremely compute-intensive
component (O(n3)), and as such it should only execute when
a crack has been detected in the material being modeled.

4.1.2 GTS and FFT Analysis Code
As an alternative application example, to demonstrate the more

general utility of I/0 Containers, we also evaluate our framework
with GTS [34], a plasma fusion simulation with an implementation
that exploits coarse grained process level parallelism using MPI,
and more fine-grained thread-level parallelism using OpenMP. This
"particle in celr code has different output frequencies for both par-
ticles and mesh-level statistics. In order to examine the dynamics
involved, in particular dangerous transient effects that might dam-
age a real reactor vessel, it is useful to dynamically evaluate and
characterize particular trends on the inner and outer edges of the
plasma. Unlike the LAMMPS case, these transients are not as al-
gorithmically identifiable, so secondary analysis methods are used
to infer their existence, and then, much more detailed inspection
involving direct interaction with the physicists is used to further
the investigation. The GTS analytics pipeline is an WI code that
ingests the phi and Z-ion output arrays from the simulation.

4.2 Management Policies
For LAMMPS and its SmartPointer workflow, we have constructed

two policies:
Quality of Service (Global): the Bonds and CNA codes are slow

components compared to the LAMMPS simulation, with CNA be-
ing the most expensive. Bonds executes on every output epoch,
whereas CNA executes only when CSYM reports a crack. Depend-
ing on the output frequency of LAMMPS, or how soon a crack is
detected, these codes can become a bottlenecks in the pipeline. We
create a policy that monitors queue lengths such that if the global
manager detects a growing queue length on some output container,
and if a the queue size reaches a threshold, we perform an in-
crease operation that results in spawning additional replicas for the
slow component, which in this workflow, is either Bonds or CNA.
This represents a global policy seeking to balance pipeline compo-
nents to ensure healthy end-to-end throughput. It also allows for
the workflow to run without needing to carefully provision both
Bonds and CNA codes; the system can handle the provisioning
when needed.

Data-centric (Local): requires application introspection into the
data, based on the CSYM and CNA components. In contrast to the
first policy, the metric of interest is reported by the analysis func-
tions (when CSYM detects a crack), and the management actions
(kill CSYM and run CNA) are triggered by the container-level man-
ager. The goal of this policy is to ensure quality of data via correct
execution of workflow analysis functions.

For the GTS & 14F1 workflow, we connect the analysis, running
on an end user's machine, with the simulation codes over a wide
area network. We evaluate system behavior in terms of container
output latency and memory consumption, when faced with an un-
expected component departure, e.g., when an end user terminates
analysis. We evaluation three recovery options, all involving failure
detection on the remote machine and spawning a recovery replica
on the cluster with the simulation. The first option allows for data

loss, while the second avoids it. With these two cases, the recov-
ery replica is launched in response to a notification of a failure.
The third policy takes advantage of over-provisioning, where the
container spawns an additional FFT replica on the compute cluster,
which remains idle until its container manager detects the failure.
We evaluate these three recovery options to demonstrate the flex-

ibility of I/0 containers and their management. If components need
a guarantee on data, they can pay the costs for it, but less criti-
cal codes can avoid these extra costs by tolerating missing output
epochs.

4.3 Quality of Data Policy and Microbench-
marks

Container-managed I/0 is beneficial, but it also imposes addi-
tional overheads on I/0 pipelines. The following measurements
assess the costs of management, in terms of protocol overheads,
and they compare costs at different scales for operations invoked at
different levels of the management hierarchy. The measurements
shown elide the base constant cost of process instantiation (e.g., for
a container increase), as that cost is specific to the underlying ma-
chine's operating system rather than the management implementa-
tion and protocols designed for I/0 containers. On the Titan ma-
chine, we have seen highly variable launch times, sometimes higher
than 30 seconds.
Management costs are governed both by the inherent properties

of the management methods chosen and their underlying protocols,
and by the scales of interacting containers. The latter is due in
part to the 'direct connect' nature of the Flexpath transport used
in the implementation of I/0 containers: Flexpath obtains high
cross-container throughput by directly connecting the parallel enti-
ties of a previous container to the parallel entities of a subsequent
one. This also means, however, that the cost of distributing certain
state changes (e.g., container increase) is affected by the size of the
neighboring containers, as each of their parallel entities must be
notified about this state change.

Figure 5(a) shows the modest protocol overheads for an increase
operation on the Bonds container. The bar titled "Helper Con-
tainer" represents the time it takes for the Helper container to dis-
tribute the Bonds state change. This includes the time it takes for
the container manager to send the state change to each replica (rank
0), and the time it takes for rank 0 to broadcast this change to the
other ranks. The bar titled "Global to Local Managers" is the to-
tal time spent for all messages between the global manager and the
container managers to trigger the management action, and to dis-
tribute the state changes. As expected, use of a management hier-
archy allows for good scalability, demonstrated by the fact that for
each point on the x-axis, we are increasing the number of Lammps
Helper processes by a factor of 4, but only see a growth of 2x in
terms of protocol cost. Since these management actions do not af-
fect the number of managers, the communication between global
and container-level is not affected by scale.

Fig. 5(b) shows the cost of the protocol used to enforce the data-
centric management policy, i.e., switch off CSYM and activate
CNA. This represents a control loop triggered by the local manager
(when CSYM detects a crack in the modeled material) that results
in a change in the data flow (Helper redirects its output data to the
CNA component). We see scalability traits similar to that of the
increase command; the reason this command takes much less time
to execute is because CNA is a single replica serial component, so
the size of the state message is much smaller.

4.4 Throughput Measurements: QoS Policy
This set of measurements demonstrates the utility of a repre-

LAMMPS Helper Bonds CSYM
Fig 7(a) 8192 64 256 to 1

768
Fig 7(b) 4096 32 128 to 1

384
Fig 7(c) 2048 16 64 to 192 1

Table 1: Core Counts for Throughput Experiments

sentative performance-based management policy. We compare the
throughput of the container-managed I/0 pipeline against that of
an unmanaged pipeline, where throughput is represented as a time
series in 30 second increments along the x axis, and the y axis rep-
resents the count of output epochs emitted by the code during that
30 second interval.

Fig. 6 shows the baseline, unmanaged workflow execution, for a
LAMMPS simulation running on 8192 cores and a pipeline com-
prised of 64 Lammps Helper cores, 256 Bonds cores, and 1 CSYM
core. The graph shows that as the output queue for Lammps Helper
fills up, LAMMPS' throughput drops significantly. This is because
it has to block on its output actions that must wait on queue space
to free up. LAMMPS' throughput converges to that of Bonds, the
slow component, effectively dropping end-to-end throughput to a
third of the ideal target.

T
h
r
o
u
g
h
p
u
t
 (
N
o
.
 E
p
o
c
h
s
)

7

6

5

4

3

2

Unrnanaged Pipeline Execution

LAM11)1k (8192)
Bonds (256)

A A
0 l ir ir ir ir ir ir ir ir ir

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Interval (30 sec)

Figure 6: Throughput degradation for unmanaged pipeline.

Fig. 7 depicts the throughput improvements for a set of QoS-
managed rnns that demonstrate the container runtime's ability to
provide elasticity at scale. Experiments are run at three scales, with
the process counts displayed in Table 1. For each experiment, the
slow container is increased by a replica with the number of pro-
cesses equal to the size of the initial replica. For these runs, the
crack in the material did not materialize until the end of the run,
so that the main component needing an increase was the Bonds
code. Fig. 7(a) shows the throughput improvements for running
with 8192 Lammps cores. The vertical lines represent when Bonds
is increased. For this run, we see that after the first increase (two
Bonds replicas total), we see an improvement in Bonds throughput.
However, an additional increase is needed for Bonds to match the
throughput of the LAMMPS simulation. After this second increase
(3 Bonds replicas, 768 cores total), we see that Bonds can achieve
a higher throughput than the LAMMPS application, as it now has
sufficient resources to start to drain the data that has built up in the
queue.

Figure 7(b) shows a similar result, where after three increases,
Bonds maintains a slightly higher throughput than the LAMMPS
simulation. However, speedup is insufficient to fully drain the queue

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

Global To Lo'cal Managers
Helper Container

CSYM/CNA Container

2x16

1,m1
4x32

Helper Container Size

8x64

0.1

0.08

0.06

0.04

0.02

Global To Local Managers
Bonds Container

1x256 2x256 3x256

Bonds Container Size

(a) 'Increase' container command protocol overhead. (b) Data Centric command protocol overhead assessment.

Figure 5: Protocol overhead measurements

in Lammps Helper, so the Bonds code executes somewhat longer.
We see a similar phenomenon in Fig. 7(c), where the global man-
ager does not increase the Bonds container by an additional replica
because the stated policy is to trigger an increase only when two
conditions are met: (1) a maximum queue length of 10 in one
of the Helper output queues, and (2) a growing maximum queue
length for 3 consecutive measurements. For the latter two runs,
condition (2) did not trigger. This example illustrates the utility of
explicit policy specification. An alternative policy omitting the sec-
ond condition would have triggered the additional Bonds increase.
An energy-conscious policy might prefer a slight extension in ex-
ecution time over the additional energy consumed by using addi-
tional nodes.

Fig. 8 displays the changing queue length, the metric on which
we base throughput management, for an experiment with the same
setup as in Fig. 7(a). This represents the maximum queue length
in the Lammps Helper container's output queue for the Bonds con-
tainer. Here, the x axis represents the output epoch, and the y axis
represents the max queue count when that output epoch is inserted
into a queue. As is evident, the stated management policy is having
the desired effect on its metric of interest.

4.5 Fault Recovery Policy
The experimental results reported next have two purposes. First,

we want to understand how the Containers' fault recovery oper-
ations for an unexpected component departure affect the applica-
tions relying on them. To quantify this, we look at container la-
tency, which measures the time it takes for a container to emit an
epoch of data. Second, we want to demonstrate the flexibility the
containers constructs offer to developers for choosing which trade-
offs make sense for their executions. For all three cases, we use
a heart-beats to detect a component's departure, where heartbeats
are configured to run in 10 second intervals, and a component is
considered failed after missing three consecutive heartbeats.

Fig. 9 displays the changes in container latency for three differ-
ent fault-recovery mechanisms. The x-axis represents the epoch
number for a container, and the y-axis represents the length of time
between a step and the previous step. The first time step for each
has a high latency, since we use the application start time as the
base.
The first graph, Fig. 9(a), shows the container latency when re-

covering from a fault, but allowing for data loss, which is repre-
sented by the discontinuity for the FFT line. This has the low-
est latency across all three because the previous (in other words,

the older) time steps are simply dropped. Allowing for dropped
epochs of data becomes more even more beneficial with configu-
rations where it is infeasible, in terms of memory requirements, to
buffer multiple timesteps of data.
The second and third graphs show the changes in container la-

tency when avoiding data loss. As expected, we see a higher con-
tainer latency than when allowing for data loss as the older timesteps
stay in the queue. The third graph has a lower container latency dur-
ing the failure and recovery phases, because the over-provisioning
of the codes allowed the FF1 replicas to register with the the man-
agers and get the necessary metadata to join the stream at the start
of the workflow execution. This process accounts for the roughly 6
seconds difference between the third and fourth graphs.

In all three measurements, the dominating factors concerning la-
tency are the heartbeat intervals, the number of missed heartbeats
used to detect a failure, and the GTS application's own I/0 cycle.
For the latter, this is a result of the Flexpath publisher component
checking for notifications from the container manager when calls
are made into the ADIOS interface. As the graph shows for the
GTS latency, I/0 epochs occur about every 8 seconds. Lower la-
tency could be obtained by using shorter heartbeat intervals.

4.6 Discussion
Container-managed I/0 pipelines provide elasticity at scale, data-

centric management opportunities, and configurable fault recovery
options for the online analytics pipelines constructed for high end
simulations. Through active replication, elastic containers can au-
tomatically adjust their data processing throughput to match appli-
cation output rates and the behavior of other containers with which
they have been composed. Performance-driven policies like those
pertaining to throughput can be replaced with alternative policies
concerned with end-to-end latency, caps on energy use, or others,
without affecting the implementations of individual analysis com-
ponents. By exposing container controls to applications, managers'
actions can be based on the receipt of application-specific events,
thus enabling a variety of application-specific SLAs and manage-
ment policies. By taking advantage of a decoupled pub/sub data
movement substrate with internal buffering capabilities, we can
provide flexible recovery options to applications so they can handle
faults like unexpected replica departures.

Container-based management scales through use of a hierarchi-
cal approach, permitting for (i) per-run customization of manage-
ment policies and SLAs, (ii) specification and enforcement of such
policies at different granularities in the workflow, and (iii) scalable

T
h
r
o
u
g
h
p
u
t
 (
N
o
.
 E
p
o
c
h
s
)

8

7

6

5

QoS Policy: Throughput Improvement

3

2

1

0
0

LAMMPS (8192)
Bonds (256) -

3 6 9 12 15 18 21

Interval (30 sec)

24 27 30 33

(a) 8192 LAMMPS cores with 1 to 3 Bonds replicas of size 256

T
h
r
o
u
g
h
p
u
t
 (
N
o
.
 E
p
o
c
h
s
)

8

7

6

5

4

3

2

1

0

QoS Policy: Throughput Improvement

1 1 11111111111111
LAMMPS(4096) --E—

Bonds (128)

/1 f 111#11/1/11/

/ 1
1r _II__/

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Interval (30 sec)

(b) 4096 LAMMPS cores with 1 to 3 Bonds replicas of size 128

T
h
r
o
u
g
h
p
u
t
 (
N
o
.
 E
p
o
c
h
s
)

8

7

6

5

4

3

2

1

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Interval (30 sec)

(c) 2048 LAMMPS cores with 1 to 4 Bonds replicas of size 64

QoS Policy: Throughput Improvement

1
LAMMPS '=1-=(2048)

Bonds(64) I -

Amilk

1

Figure 7: QoS Policy: throughput improvements.

implementations of management protocols, including those offer-
ing high reliability in management.
The performance results shown above demonstrate the superi-

ority of managed vs. unmanaged I/0, guided by simple policies
realized with low cost management structures. While able to scale
to the high end machines currently available to our research, the
current management policies implemented for containers assume
each container running on its own dedicated resources, separate
from those used by the application. Management actions that in-
volve scheduling or resource sharing [41] remain part of our future
work.

5. RELATED WORK

14

12

10

6

4

2

0

Queue Length of Helper Output Queue

1

Max Queue Size for Bonds Queue

1111111611111
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Interval

Figure 8: Change in max queue length for Helper Container.

While currently realized for ADIOS-based 1/0 pipelines, con-
tainers are equally useful to other 'data staging' solutions, as long
as they describe and use well-defined component interfaces. How-
ever, without using actual virtualization solutions like Palacios [24],
additional programming and integration efforts will be required to
add the concept to tightly integrated analytics codes in which in-
dividual actions are not separately defined and/or use well-defined
component APIs, such as the analysis pipelines constructed with
compiler-based systems like IBM's System S.

Hierarchical management is commonly used in enterprise sys-
tems [32]. I/0 containers differ in that they explicitly address the
parallel and high performance nature of components in the I/0 and
analytics pipelines run for high end simulations. Similarly, while
one may view a containers as a limited form of hypervisor control-
ling the execution of its components, containers are not concerned
with running multiple such entities and isolating them in terms of
performance or for security purposes. Therefore, their functional-
ity is perhaps, more akin to that of 'resource islands' explored for
high end multicore processors [31], but they differ from such prior
work in the explicit specification of container management poli-
cies and actions, exposed to end users and in enabling custom and
application-specific methods for managing the analytics and visu-
alization components present in 1/0 pipelines.
I/0 containers predate but are similar in notion to the ̀ contain-

ers' now offered in Linux-based systems, developed for datacenter
application [19]. They differ in their focus on managing parallel
applications, at scale, rather than dealing with the fine grain, per-
machine resource sharing targeted by Linux containers. Mesos'
original intent was to permit fine grain resource sharing across mul-
tiple applications running in datacenter systems with only recent
work (unpublished) exploring resource trading methods that may
also be suitable for the HPC domain.

Other HPC-centric work on managing the analytics and visual-
ization workflows on high end machines [20] provides adaptation
policies at different layers of the stack (cross-layer adaptation), tar-
geting an adaptive mesh refinement (AMR) code. It focuses on
specific policies at different layers, to ensure minimal time to solu-
tion, whereas our work investigates the mechanics and abstractions
of management that would be suitable for analytics workflows; the
policies discussed in [20] are examples of additional policies suit-
able for implementation with the Containers framework.
Our own earlier work on 'service augmentation' [35] demon-

strates the utility of attaching Quality of Service (QoS) manage-
ment actions to I/0 pipelines and shows that container principles
can be applied to other data staging or streaming infrastructures
and systems, including [14] and [18], both of which use compo-

50

40

• 30

tO 20

10

0

48
4341

0

1
6

Fault Recovery Policy: Data Loss

GTS (96 procs) -
FFT (4 procs) -

0 50

Output Epoch #

(a) Fault Policy: Data Loss

Fault Recovery Policy: No Data Loss

100

GTS (96 procs)
FFT (4 procs)

50

Output Epoch #

(b) Fault Policy: No Data Loss

Fault Recovery Policy: No Data Loss, Overprovision

100

GTS (96 procs)
FFT (4 procs)

50

Output Epoch #

(c) Fault Policy: Overprovisioning

Figure 9: QoS Policy: throughput improvements.

nentized approaches.

100

6. CONCLUSIONS AND FUTURE WORK
The 1/0 Containers framework presented in this paper permits

users to embed their scientific data analytics tasks into a dynami-
cally managed execution environment that (1) continually monitors
analytics components for metrics of interest, (2) allows users to
specify management policies and enforcement operations at differ-
ent granularities of the workflow, (3) provides elasticity at scale for
their analytics tasks, and (4) does so efficiently with low manage-
ment overheads. The utility of 1/0 containers is demonstrated with
three policies associated with 1/0 pipelines consisting of realistic
science applications and analytics pipelines: (1) a global 'quality

of service' policy permits an 1/0 pipeline to recover from a poor
initial resource allocation; (2) a 'quality of data' policy operating
at container level allows for new analytics tasks to be injected into
the pipeline to respond to the richness of features discovered in the
data; and (3) fault recovery policies handle an unexpected compo-
nent departure in a geographically distributed workflow.
Our future work will address two different dimensions of container-

based management. One is to gain broader insights into the re-
silience issues associated with online management, exploring the
robust failure mechanisms developed in previous work in a sci-
ence workflow setting. Another task for future work is to better
understand management in environments where analytics operate
`in situ' with simulations, leading to management actions that in-
volve fine grain resource sharing and scheduling [41] and giving
rise to concerns with performance isolation [24, 5].

7. ACKNOWLEDGEMENTS
This research was supported by the Department of Energy Office

of Advanced Scientific Computing Research. It also used resources
of the Oak Ridge Leadership Computing Facility at the Oak Ridge
National Laboratory, which is supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-AC05-
000R22725.

Sandia National Laboratories is a multi-program laboratory man-
aged and operated by Sandia Corporation, a wholly owned sub-
sidiary of Lockheed Martin Corporation, for the U.S. Department
of Energy's National Nuclear Security Administration under con-
tract DE-AC04-94AL85000. SAND2014-19011 C

8. REFERENCES
[1] Hadoop: http://hadoop.apache.org.

[2] Storm: Distributed and fault-tolerant realtime computation.
[3] 2005 IEEE International Conference on Cluster Computing

(CLUSTER 2005), September 26 - 30, 2005, Boston,
Massachusetts, USA. IEEE, 2005.

[4] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan,
and F. Zheng. DataStager: scalable data staging services for
petascale applications. Cluster Computing, 13:277-290,
2010. 10.1007/s10586-010-0135-6.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. L. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and the
art of virtualization. In M. L. Scott and L. L. Peterson,
editors, SOSP, pages 164-177. ACM, 2003.

[6] J. Borgdorff, M. Mamonski, B. Bosak, K. Kurowski, M. B.
Belgacem, B. Chopard, D. Groen, P. V. Coveney, and A. G.
Hoekstra. Distributed multiscale computing with MUSCLE
2, the multiscale coupling library and environment. CoRR,
abs/1311.5740, 2013.

[7] D. Boyuka, S. Lakshminarasimhan, X. Zou, Z. Gong,
J. Jenkins, E. R. Schendel, N. Podhorszki, Q. Liu, S. Klasky,
and N. F. Samatova. Transparent in situ data transformations
in ADIOS. In CCGrid '14. IEEE.

[8] R. Brightwell, T. Hudson, K. T. Pedretti, R. Riesen, and
K. D. Underwood. Implementation and performance of
portals 3.3 on the cray XT3. In 2005 IEEE International
Conference on Cluster Computing (CLUSTER 2005),
September 26 - 30, 2005, Boston, Massachusetts, USA [3],
pages 1-10.

[9] M. Castro and B. Liskov. Practical byzantine fault tolerance.
In Proceedings of the Third Symposium on Operating
Systems Design and Implementation, OSDI '99, pages
173-186, Berkeley, CA, USA, 1999. USENIX Association.

[10] A. Cedilnik, B. Geveci, K. Moreland, J. P. Ahrens, and J. M.
Favre. Remote Large Data Visualization in the ParaView
Framework. In EGPGV, pages 163-170,2006.

[11] J. Dayal, D. Bratcher, G. Eisenhauer, K. Schwan, M. Wolf,
X. Zhang, H. Abbasi, S. Klasky, and N. Podhorszki.
Flexpath: Type-based publish/subscribe system for
large-scale science analytics. In CCGrid '14, pages 246-255.

[12] J. Dayal, J. Cao, G. Eisenhauer, K. Schwan, M. Wolf,
F. Zheng, H. Abbasi, S. Klasky, N. Podhorszki, and J. F.
Lofstead. 1/0 containers: Managing the data analytics and
visualization pipelines of high end codes. In HPDIC '13,
pages 2015-2024. IEEE, 2013.

[13] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. Commun. ACM, 51(1):107-113,
2008.

[14] C. Docan, M. Parashar, and S. Klasky. DataSpaces: an
interaction and coordination framework for coupled
simulation workflows. In HPDC 2010. ACM.

[15] G. Eisenhauer, M. Wolf, H. Abbasi, and K. Schwan.
Event-based systems: opportunities and challenges at
exascale. In DEBS, 2009.

[16] K. B. Ferreira, J. Stearley, J. H. L. III, R. Oldfield, K. T.
Pedretti, R. Brightwell, R. Riesen, P. G. Bridges, and
D. Arnold. Evaluating the viability of process replication
reliability for exascale systems. In S. Lathrop, J. Costa, and
W. Kramer, editors, SC '11. ACM.

[17] E. R. Hawkes, R. Sankaran, J. C. Sutherland, and J. H. Chen.
Direct Numerical Simulation of Turbulent Combustion:
Fundamental Insights Towards Predictive Models. Journal of
Physics.• Conference Series, 16(1):65, 2005.

[18] M. Hereld, M. E. Papka, and V. Vishwanath. Toward
Simulation-Time Data Analysis and I/0 Acceleration on
Leadership-Class Systems. In IEEE Symposium on
Large-Scale Data Analysis and Visualization, 2011.

[19] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. Katz, S. Shenker, and I. Stoica. Mesos: a platform
for fine-grained resource sharing in the data center. In NSDI
'11, pages 22-22, Berkeley, CA, USA. USENIX
Association.

[20] T. Jin, F. Zhang, Q. Sun, H. Bui, M. Parashar, H. Yu,
S. Klasky, N. Podhorszki, and H. Abbasi. Using cross-layer
adaptations for dynamic data management in large scale
coupled scientific workflows. In W. Gropp and S. Matsuoka,
editors, SC '13. ACM.

[21] Y. Kanemasa, Q. Wang, J. Li, M. Matsubara, and C. Pu.
Revisiting performance interference among consolidated
n-tier applications: Sharing is better than isolation. In 2013
IEEE International Conference on Services Computing,
Santa Clara, CA, USA, June 28 - July 3, 2013, pages
136-143. IEEE, 2013.

[22] S. Klasky, S. Ethier, Z. Lin, K. Martins, D. McCune, and
R. Samtaney. Grid-Based parallel data streaming
implemented for the gyrokinetic toroidal code. In SC '03,
page 24, Washington, DC, USA. IEEE Computer Society.

[23] R-S. Koutsourelakis. Accurate Uncertainty Quantification
Using Inaccurate Computational Models. SIAM J. Scientific
Computing, 31(5):3274-3300,2009.

[24] J. R. Lange, K. T. Pedretti, T. Hudson, P. A. Dinda, Z. Cui,
L. Xia, P. G. Bridges, A. Gocke, S. Jaconette,
M. Levenhagen, and R. Brightwell. Palacios and kitten: New
high performance operating systems for scalable virtualized
and native supercomputing. In IPDPS, pages 1-12. IEEE,

2010.

[25] J. Lofstead, J. Dayal, K. Schwan, and R. Oldfield. D2T:
Doubly Distributed Transactions for High Performance and
Distributed Computing. Cluster, 2012.

[26] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan. In
Adaptable, metadata rich 10 methods for portable high
peiformance 10, pages 1 —10, may 2009.

[27] D. Moise, G. Antoniu, and L. Boug6. Improving the hadoop
map/reduce framework to support concurrent appends
through the blobseer BLOB management system. In S. Hariri
and K. Keahey, editors, HPDC '10. ACM.

[28] K. Moreland and D. Thompson. From cluster to wall with
vtk. In A. H. J. Koning, R. Machiraju, and C. T. Silva,
editors, IEEE Symposium on Parallel and Large-Data
Visualization and Graphics, pages 25-32. IEEE, 2003.

[29] D. Peng, F. Dabek, and G. Inc. Large-scale incremental
processing using distributed transactions and notifications. In
9th USENIX Symposium on Operating Systems Design and
Implementation, pages 4-6.

[30] S. Plimpton, R. Pollock, and M. Stevens. Particle-Mesh
Ewald and rRESPA for Parallel Molecular Dynamics
Simulations. In PPSC. SIAM, 1997.

[31] P. Tembey, A. Gavrilovska, and K. Schwan. intune:
Coordinating multicore islands to achieve global policy
objectives. In TRIOS. ACM, 2013.

[32] C. Wang, K. Schwan, V. Talwar, G. Eisenhauer, L. Hu, and
M. Wolf. A flexible architecture integrating monitoring and
analytics for managing large-scale data centers. In
H. Schmeck, W. Rosenstiel, T. F. Abdelzaher, and J. L.
Hellerstein, editors, ICAC '11, pages 141-150. ACM, 2011.

[33] G. Wang and T. S. E. Ng. The impact of virtualization on
network performance of amazon EC2 data center. In
INFOCOM, pages 1163-1171. IEEE, 2010.

[34] W. X. Wang, Z. Lin, W. M. Tang, W. W. Lee, S. Ethier,
J. L. V. Lewandowski, G. Rewoldt, T. S. Hahm, and
J. Manickam. Gyro-Kinetic simulation of global turbulent
transport properties in tokamak experiments. Physics of
Plasmas, 13(9):092505, 2006.

[35] M. Wolf, H. Abbasi, B. Collins, D. Spain, and K. Schwan.
Service Augmentation for High End Interactive Data
Services. In CLUSTER [3], pages 1-11.

[36] M. Wolf, Z. Cai, W. Huang, and K. Schwan. SmartPointers:
Personalized Scientific Data Portals in Your Hand. In SC,
pages 1-16,2002.

[37] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauly, M. J. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In NSDI 12, pages 15-28, San
Jose, CA. USENIX.

[38] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: Cluster computing with working sets. In
E. M. Nahum and D. Xu, editors, 2nd USENIX Workshop on
Hot Topics in Cloud Computing, HotCloud' 10, Boston, MA,
USA, June 22, 2010. USENIX Association, 2010.

[39] F. Zhang, C. Docan, H. Bui, M. Parashar, and S. Klasky.
Xpressspace: a programming framework for coupling
partitioned global address space simulation codes. CCPE,
26(3):644-661, 2014.

[40] F. Zheng, H. Abbasi, C. Docan, J. Lofstead, S. Klasky,
Q. Liu, M. Parashar, N. Podhorszki, K. Schwan, and
M. Wolf. PreDatA- Preparatory Data Analytics on Peta-Scale

Machines.

[41] F. Zheng, H. Yu, C. Hantas, M. Wolf, G. Eisenhauer,
K. Schwan, H. Abbasi, and S. Klasky. Goldrush: resource
efficient in situ scientific data analytics using fine-grained
interference aware execution. In W. Gropp and S. Matsuoka,
editors, SC '13. ACM, 2013.

