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Shale gas production via hydrofracturing has protoundly changed the In this study, we employed the gravimetric method using a Netzsch STA 409 thermal P
energy portfolio in the USA and other parts of the world. Under shale gas gravimetric analyzer (I'GA) with differential scanning calorimeter (DSC) and Differential 50 -
reservior conditions, CO, and H,O, either in residence or injected during temperature analyzer (DTA) that is adapted for measurement of adsorption capacities and
hydrotfracturing or both, co-exist with CH,. One important feature kinetics of the three types of materials at reservoir relevant temperatures up to 125°C and 15 -
characteristic of shale 1s the presence ot nanometer-scale (1-100 nm) pores 1n constant pressures up to 1 bar. We studied the adsorption kinetics by monitoring the evolution %
shale or mudstone. The interactions among CH,, CO, and H,O in those nano- of the weight change as a function of time from the instant a dose of CO, and CH, gas mixture 10°-
sized pores directly impact shale gas storage and gas release from the shale is adsorbed onto the sample, until the moment saturation equilibrium is reached. ]
matrix. Therefore, a fundamental understanding ot interactions among CH,, @Sgg? SNL-CBD-5 with Kr at room temperature
CO, and H,O in nanopore confinement would provide guidance in addressing a At high pressures and high temperatures, sorption isotherms and desorption kinetics will be 0 & | | | | |
number of issues encountered during the recovery process, such as rapid decline determined via a volumetric method (Krooss et al., 2002). In each experiment, two reaction 0 20 40 60 80 100 120
in production after a few years and low recovery rates. We are systematically vessels will be used, one serving as a reference cell, and the other as a sample cell. The volumes Time, minute
investigating the P-V-T-X properties and adsorption kinetics in the CH,-CO,- of the reference and sample cells will first be calibrated by helium expansion by introducing Figure 1. Adsorption Capacities with Kr for the model material at room temperature and 1 bar.
H,O system under reservior conditions. known amounts of helium at certain pressures. The volumes can be calculated based on ideal gas
law. Alternatively, the volume of reference and sample cells can be directly measured by adding a 30
We have designed and constructed a unique high temperature and pressure known volume of a liquid to the reaction vessel. — y = 6.6227E-01x
experimental system that can measure both P-V-T-X properties and adsorption P R® = 9.7762E-01 eesss
kinetics sequentially. We are measuring the P-V-T-X properties of CH,-CO, In the experimental set-up, there is a valve between the reference cell and sample cell. After S g i -
. . . L . . . . . . ) o%g
mixtures with CH, up to 95 vol. %, and adsorption kinetics of various materials, the sample is loaded into the sample cell, the valve 1s closed. Then, a known amount of gas is “0‘
under conditions relevant to shale gas reservoirs. We used three types of introduced into the reference cell. After that, the valve is opened. The amount of gas absorbed 15 - “0‘
materials: (I) model materials, (II) single solid phases separated from shale can be calculated based on the void volume. The amount of absorbed gas (7, .4 1s defined as % ey
samples, and (I1I) crushed shale samples from known shale gas producing the difference between the total amount of gas (7, ) present in the system and the amount g 10 - ‘9
formations and from shale gas barren formations. The model materials are well occupying the void volume (17__.,), 1.e., the volume not occupied by the solid sample. The void E e
. . . . . . . . . . . - 6‘
characterized in terms of pore sizes. Theretfore, the results associated with the volume 1s calculated from the molar concentrations (¢, ) in the gas phase, which is obtained from > -
2 gas. b/ ‘ .
: : - : ) SNL-CBD-5 with Kr at room temperature
model material serve as benchmarks for our model development. an equation of state (EOS) of the gas for the corresponding pressure and temperature: e
0O 9= Y Y Y Y Y ¥ Y Y
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The P-V-T-X properties obtained in this study will be used ro establish a Mabsotbed  — Mrotal — Coas | Time, minute
hlgh precision equation Of state <BQS> apphcable toO Shale gas recovery 1n — ﬂtotal — Cgas (-Vvsample cell — sample> Flgure 2. Adsorptlon kinetics with Kr for the model material at room temperature and 1 bar.

confined nano-pore environments. An equation of state (EOS) that can

accurately describe interactions in the CH,—CO,—H,O system for a wide range where V sample 18 measured by helium expansion before experiments. The total amounts of gas = Y = 4.6671E-02x
. . . . . . . . . . o ) i 2 = O. -
of 1onic strengths 1n a confined environment i1s an important and essential tool introduced into the system are computed from the amounts of gas transferred successively _i . R* = 9.9201E-01
that enables efficient resource recovery from fewer, and less environmentally through the reference volume 17, into the sample cell. £ 14 -
impacttul wells. However, such an EOS does not exist at present. For the bulk g 12
properties, Duan et al. (1992) proposed an EOS for the CH,—~CO,—H,O system. M
g s ; : ¢ 0.8 -
Their EOS was based almost solely on experimental data for the following ‘s
: : : 2 0.6 1 Montmorillonite (<75 pm) with
bmary SYStﬁmS, 1.€.; CH4—HZO, COZ_HZOD and CH4—COZ. As thCY pomted out, é 0.4 85% CH, + 15% CO, at room temperature
“ternary data are almost nonexistent.” In their parameterization, there were two Results < o2
experimental investigations addressing the ternary system as described in the | | o | | N | °c @ s - s - o
following. Price (1981) measured solubility of CH, and CO, in brine containing In this presentation, preliminary results regarding sorption capacities and sorption Time, minute
5 wt% NaCl at 150°C and 345 bars. Ramboz et al. (1985) investigated the CH,— kinetics for the model materials obtained using the TGA are reported. To demonstrate that | Figure 3. Sorption Capacity and kinetics with CH, + CO, for montmorillonite at room temperature and 1 bar.
CO,—H,0O system at temperatures above 370°C, which 1s not applicable to the the method is working, we first study adsorption capacities and kinetics of tested materials
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