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Magnetized Liner Inertial Fusion relies on )
three stages to produce fusion relevant conditions

Amplified
B-field

Current

Current-
generated
B-field

Compress the heated

Apply axial magnetic field Laser-heat the magnetized fuel and magnetized fuel
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The axial magnetic field is applied to limit radialg g
charged particle transport during the implosion

Applied
B-field

= Metal cylinder contains of order 1 mg/cm? of
deuterium gas

= 10 mm tall, 5 mm diameter, 0.5 mm thick

= Helmholtz-like coils apply 10s of T

= few ms risetime to allow field to diffuse through
conductors

Apply axial magnetic field
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A laser is used to heat the fuel at the start )
of the implosion

Laboratories

= 527 nm, few ns, few kJ laser used to heat the
fuel

= Laser must pass through 1-3 um thick plastic
window

= Can lose many hundreds of joules to absorption in
and scattering off of the plastic

= Fuel is heated to hundreds of eV

= Recall the axial magnetic field limits thermal
conduction in the radial direction

Laser-heat the magnetized fuel
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The current from the Z machine is used to )

implode the target o

= Axial current is 15-20 MA, risetime is 100 ns
= Generates ~3 kT azimuthal B-field
= Metal cylinder implodes at ~70 km/s

Amplified
B-field

Current
= Fuel is nearly adiabatically compressed, which

bkt further heats the fuel to keV temperatures

generated
B-field

= Axial magnetic field is increased to 1-10 kT
through flux compression

Compress the heated
and magnetized fuel ]




Our goal on Z is to create fusion conditions )
that would produce a yield of 100 kJ with DT

Preheat Energy = 6 kJ into 1.87 mg/cc DT

= Simulations indicate a
viable region of 100.0
parameter space exists

= 22+ MAand 25+ T
with 6 kJ of preheat

= We are improving our 1.0¢
capabilities to allow us ;
to access this region of 0.1

parameter Space 0 10 20 30 40 50
Bz Tesla

10.0 £

Yield (kJ)
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With our initial experiments, we targeted )
2k),10T, and 18 MA

= 10 T had been previously demonstrated on Z
and allowed full diagnostic access




With our initial experiments, we targeted )
2k),10T, and 18 MA

= 10T had been previously demonstrated on Z
and allowed full diagnostic access

= Only expected about 18 MA due to the high
inductance inner-MITL extension required by

the coils
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With our initial experiments, we targeted )
2k),10T, and 18 MA

= 10T had been previously demonstrated on Z
and allowed full diagnostic access

= Only expected about 18 MA due to the high
inductance inner-MITL extension required by
the coils

= We believed our laser "o | k)
e e pre-pulse would

> ‘ disassemble the
window, enabling
the majority of the
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This configuration was predicted to produce nearly 1013 DD neutrons (~2kJ DT) "




The first round of experiments demonstrated e
the fundamental requirements for MIF

Radial{ Thermonuclear neutron

—_
T

generation with
fusion-relevant ion
1 temperatures (2-3 keV)

O
[y

Maormalized di/AE

=

spectrum

22 23 24 25 2B 27
Energy [Me']
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The first round of experiments demonstrated e
the fundamental requirements for MIF

1} radial | Thermonuclear neutron
generation with
fusion-relevant ion
temperatures (2-3 keV)

Maormalized di/AE

DD
spectrum
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Energy [Me']

Secondary DT Neutron Spectra
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Highly magnetized fuel at stagnation (>0.3 MG-cm)
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The first round of experiments demonstrated e
the fundamental requirements for MIF
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The first round of experiments demonstrated e
the fundamental requirements for MIF

1} radial | Thermonuclear neutron
generation with
fusion-relevant ion 1
temperatures (2-3 keV)
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The neutron yields in the initial experiments g
were lower than expected

: . L. 10
= Pre-shot yield predictions were ~1el13
= Performance is highly dependent on g 0.7 mglce
preheat energy K
= Higher fuel densities require more laser = 1.8 mgl/cc
energy E 6 i
>
C
o
5 4
o
c
)
&)
2_
O 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3

Preheat Energy [kJ]
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The neutron yields in the initial experiments g
were lower than expected

: . 10
= Pre-shot yield predictions were ~1el13
= Performance is highly dependent on 0.7 mglcc
preheat energy o 8
= Higher fuel densities require more laser = 1.8 mg/cc
energy % 6 I
= Experimental yields were much lower g
S 4y
o
c
o
&) . 0.7 mgl/cc
1.4 mg/cc
O i 1 1 I 1
0 0.5 1 1.5 2 2.5 3

Preheat Energy [kJ]
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The neutron yields in the initial experiments g
were lower than expected

. . .. 10
= Pre-shot yield predictions were ~1el13
= Performance is highly dependent on 0.7 mglcc
preheat energy o 81
= Higher fuel densities require more laser g 1.8 mglcc
energy S 6 |
= Experimental yields were much lower g
= Consistent with low preheat energy, § 4r
but we don’t diagnose preheat in situ 5
&) [ ; 0.7 mgl/cc
= We developed a methodology to 2 .
estimate the laser energy coupled to the
fuel via offline experiments . e 14mglcc |
0 0.5 1 1.5 2 2.5 3

Preheat Energy [kJ]




We estimate the laser energy coupled to the e
fuel by accounting for the known loss mechanisms

- B

= Laser energy and pulse shape are measured at the output of the laser

19




We estimate the laser energy coupled to the e
fuel by accounting for the known loss mechanisms

= Laser energy and pulse shape are measured at the output of the laser

= Approximately 15% of the laser energy is lost in the optical chain
relaying the pulse to the target
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We estimate the laser energy coupled to the e

Laboratories

fuel by accounting for the known loss mechanisms

Laser energy and pulse shape are measured at the output of the laser

= Approximately 15% of the laser energy is lost in the optical chain
relaying the pulse to the target

= Laser plasma instabilities cause intensity-dependent losses when the
laser interacts with the window and fuel

= Stimulated Brillouin Scattering, Stimulated Raman Scattering, etc.
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fuel by accounting for the known loss mechanisms

= Laser energy and pulse shape are measured at the output of the laser

= Approximately 15% of the laser energy is lost in the optical chain
relaying the pulse to the target \ /

= Laser plasma instabilities cause intensity-dependent losses when the
laser interacts with the window and fuel

= The window absorbs energy, heats, and becomes transmissive




Laboratories

fuel by accounting for the known loss mechanisms

We estimate the laser energy coupled to the e

= Laser energy and pulse shape are measured at the output of the laser

= Approximately 15% of the laser energy is lost in the optical chain
relaying the pulse to the target \ /

= Laser plasma instabilities cause intensity-dependent losses when the
laser interacts with the window and fuel / \

= The window absorbs energy, heats, and becomes transmissive
= Laser energy is forward scattered out of the laser cone
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We estimate the laser energy coupled to the e

Laboratories

fuel by accounting for the known loss mechanisms

= Laser energy and pulse shape are measured at the output of the laser
= Approximately 15% of the laser energy is lost in the optical chain

relaying the pulse to the target \ /

Laser plasma instabilities cause intensity-dependent losses when the
laser interacts with the window and fuel / \

= The window absorbs energy, heats, and becomes transmissive
= Laser energy is forward scattered out of the laser cone

= Laser energy is absorbed in the fuel, which heats and becomes
transmissive
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We estimate the laser energy coupled to the e
fuel by accounting for the known loss mechanisms

Laser energy and pulse shape are measured at the output of the laser

= Approximately 15% of the laser energy is lost in the optical chain
relaying the pulse to the target \

= Laser plasma instabilities cause intensity-dependent losses when the
laser interacts with the window and fuel

= The window absorbs energy, heats, and becomes transmissive
= Laser energy is forward scattered out of the laser cone

= Laser energy is absorbed in the fuel

Some energy may exit the bottom of the target



Loss mechanisms were assessed with offline gz
experiments to determine the coupled energy
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= Based on this analysis, the energy coupled in the initial experiments was 300-400 J

= Simulations indicate that the lower fuel density (0.7 mg/cc) should work well in this
regime, but the higher fuel density (1.4 mg/cc) should not
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We improved energy coupling in subsequent e
experiments in order to improve performance

= Window thickness is proportional to both the
window radius and the initial fuel pressure
= Fuel pressure was reduced from 120 PSI to 60 PSI

= Window thickness was reduced from 3.5 um to
1.75 um




We improved energy coupling in subsequent e
experiments in order to improve performance

= Window thickness is proportional to both the
window radius and the initial fuel pressure

13

10",

= Fuel pressure was reduced from 120 PSI to 60 PSI - ? /
= Window thickness was reduced from 3.5 um to 2
1.75 pm s
g 10+ Prediction
= Greater energy coupled to the fuel §
= Still only about 600-700 J >
©
= Predicted to increase yield 2.5x =
o
1011
0 0.5 : 1.5

Preheat energy coupled to fuel [kJ]




We improved energy coupling in subsequent e
experiments in order to improve performance

= Window thickness is proportional to both the

: . . 10"
window radius and the initial fuel pressure -
= Fuel pressure was reduced from 120 PSI to 60 PSI -
= Window thickness was reduced from 3.5 um to 2
1.75 um S
= Great led to the fuel E’: 10} " Prediction
reater energy coupled to the fue S Experimsnt. |
= Still only about 600-700 J > - :
©
= Predicted to increase yield 2.5x £ . -
o
= QObserved significantly lower neutron yield 10"}
= X-ray signals still bright | . . '
: , . 0 0.5 1 1.5
= Hypothesized that mix from aluminum Preheat energy coupled to fuel [kJ]

components increased with laser energy

= Developed a methodology to assess stagnation
pressure and mix given experimental observables 29




We collect a wide range of data to assess )
stagnation
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We estimate the stagnation pressure and mix s
fraction based on measured stagnation conditions

= The neutron yield comes from indium
activation samples

= Nine activation samples are located at
various polar and azimuthal angles

Typical
neutron
yields are
~1012

31




We estimate the stagnation pressure and mix s
fraction based on measured stagnation conditions

1F Hadial -

= The neutron yield comes from indium
activation samples

= The burn-averaged ion temperature
comes from a fit to the primary neutron
peak in the time of flight spectrum

Mormalized dMNAdE

= Five NTOF detectors are located at various Typical ion
azimuthal and polar angles temperatures
P & are 1.5-3 keV
=
2
£
=
Energy [Me*/] | 32




We estimate the stagnation pressure and mix s
fraction based on measured stagnation conditions

5

= The neutron yield comes from indium A

activation samples ,| Experiment
= The burn-averaged ion temperature =

. . T Fuel emission fit
comes from a fit to the primary neutron =3 -
peak in the time of flight spectrum 3
& 2

= The burn duration and x-ray yield come z

from PCD and SiD detectors 11 \r ~

= Six filtered diodes provide different spectral =
sensitivities i i e =\ has V=V
3090 3095 3100 3105 3110 3115
Time [ns]

Typical burn widths are 1-2 ns

Typical x-ray yields are 1-10 J

33




We estimate the stagnation pressure and mix gg=
fraction based on measured stagnation conditions

= The neutron yield comes from indium
activation samples

= The burn-averaged ion temperature
comes from a fit to the primary neutron
peak in the time of flight spectrum

= The burn duration and x-ray yield come
from PCD and SiD detectors

= The plasma volume comes from a
spherical crystal image of the x-ray
continuum at stagnation

Axial Position [mm]

0 0

Typical

average
radius is
° 1 50-80 um

2. 1+ Typical
' volume is
~0.1 mm3

1
05 0 05 05 0 05 0 100 200
Transverse Position [mm] Transverse Position [mm] Radius [um] 34



We estimate the stagnation pressure and mix s
fraction based on measured stagnation conditions

= The neutron yield comes from indium
activation samples

T(r) = Theak * (1—(0.9) *r*)

"= The burn-averaged ion temperature o
comes from a fit to the primary neutron 2500
peak in the time of flight spectrum 2000

= The burn duration and x-ray yield come
from PCD and SiD detectors

= The plasma volume comes from a
spherical crystal image of the x-ray
continuum at stagnation K 02 04 05 o8 1

Normalized radius

Temperature [eV]
@
o
o

1000 -

500

= This is all tied together with a relatively Assumes the temperature at the edge of the
simple isobaric stagnation model plasma is ~10% of the peak temperature

35



We replaced plasma-facing Al components with gz
Be and observed record performance

= There is a significant difference 5 ——
; - 1 | | | S 1012 . —
between Al and Be endcaps with g 107y
~700 J of preheat energy > ] rves el
= Neutron yield increased by an 10" 3
order of magnitude 3 _
E |4
= Ratio of x-ray to neutron yield £ 50 1
decreased by a factor of several g 5 ++
= Similar mix levels, but lower Z with Be °© ) +
>~ 201 ﬁ;
>_><
10 - ‘
I <+ Al #
- 4 Be
Distance [mm] 5 .

lon Temperature [keV]
36




We replaced plasma-facing Al components with g =
Be and observed record performance

~

= There is a significant difference 10"
between Al and Be endcaps with |

~700 J of preheat energy o
= Neutron yield increased by an g o
order of magnitude £ 42| Prediction |
. . o) : Exp. Low Mix
= Ratio of x-ray to neutron yield a
decreased by a factor of several a
= Similar mix levels, but lower Z with Be E
= We also looked at ~300 J vs ~700 J i
. . . 10
deposited with beryllium endcaps
= Neutron yield increased by a factor of 0 05 1 15
2-3, similar to in clean 2D simulations Preheat energy coupled to fuel [kJ]

= Experimental points are consistently about 50% of simulations

= Mix and 3D effects could account for this difference 37
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Axial B-field was increased with modest change g
in coil configuration resulting in record performance

e Bottom coils increased from 60 turns to 80 turns
* Top coils lowered by 15 mm, eliminating 12 degree
X-ray diagnostic access

Applied B-field was increased
from10to 15T

Simulations predicted an
increase in primary neutron
vield between 1.5-2x

Experimental yield nearly
doubled from 3.1e12 to 5.5e12

DD/DT yield ratio decreased to
~50, which is an indication of
increased magnetization at
stagnation

39



New coil designs could allow 25 T operation )
without giving up diagnostic access

= Exceeding 15 T requires developing new coil
configurations or giving up diagnostic access

= A larger top coil, which enables 20 T with
diagnostic access, was developed during 2017
and tested earlier this year jg

= A new bottom coil could further increase B-field,
but this MITL configuration is not compatible
with >20 MA, so we have not pursued this

For an alternative path to achieving even
higher fields, see Gabe Shipley’s talk on
Auto-Mag later in this session

80-turn Coil + Low-L Coil
20 — 22T avg. field in Standard Feed
(~17 MA drive current)




A reduction of the load inductance led to a new )
record load current

= 20 MA has been 25
demonstrated

= 22 MA seems
plausible with small
modifications

z3208
z3209

20

0 | 1 | | 1 1
2960 2980 3000 3020 3040 3060 3080
Time [ns]




A reduction of the load inductance led to a new )
record load current

80
= 20 MA has been B ' ' ' ' ol
demonstrated =
20+ - 60
= 22 MA seems
s ; 50+
plausible with small _ | 1 _
N ] E 40l
modifications = E
= [
i , " . 3 ke _
= This configurationis © % 30
also compatible with = 20
>20 T operation i S 4o}
= Requires new : . . . . . . Of
. 2960 2980 3000 3020 3040 3060 3080
bottom coil Time [ns| 10}
development 20
0 20 40 60

radial position [mm]




Laser coupling was improved using a new pulse gz
shape and a phase plate to smooth the beam

no DPP DPP1100

600 = Decreased laser power and larger spot size

significantly decreased the laser intensity
and laser plasma instability losses

300
5 0 .
= Goal was to couple a similar amount of

energy in a more efficient, reliable way
-600

= Marginal increase in total energy coupled from
-600 -300 u?n 300 600 -600 -300 u?n 300 600 600-700 J to 700-800 J

-300

S—r = Efficiency improved from 30% to 50%
go; —*™e = QObserved an increase in yield from 3e12 to
S 06 4e12 but also observed an increase in mix
3 04 1.6k - = Suspected that window mix was important
“ oz T so we developed a technique to measure
0 ~— i

7 window mix spectroscopically

Time [ns]
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A cobalt tracer on the LEH window was used to )
track the depth of window mix

I
N

o 4

Distance (mm)

.9
N
°
N
S

Distance (mm)

= Looking for Co K-shell emission at
stagnation




A cobalt tracer on the LEH window was used to )
track the depth of window mix
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= Looking for Co K-shell emission at
stagnation

= Window mix was observed in the
top 3 mm of the target with the old
laser configuration
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A cobalt tracer on the LEH window was used to )
track the depth of window mix

Unconditioned 1.1 mm phase plate

4 2 0 2 4

Time [ns]

-
-
T

o
&)l

Laser Power [TW]
o
&)

Laser Power [TW]

;

Distance (mm)

|

-2 0 2 4
Distance (mm)

]
N

= Looking for Co K-shell emission at
stagnation

= Window mix was observed in the
top 3 mm of the target with the old
laser configuration

Distance from LEH (mm)
o © 00 N o o s w N = O

Distance from LEH (mm)
o O (0] ~N O (@) A W N - O

—

= The new laser configuration with the
1.1 mm DPP injected window mix T L I
into the top 6 mm of the target! 46
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Simulations predicted a small change in laser e
pulse shape would greatly reduce window mix

Unconditioned 1.1 mm phase plate Early pre-pulse
s 4 | | | ] Ea | | | | 2R | | | ]
5 /\ 5 5 204 = Early pre-pulse
& 05f 1 £05 S 0.5 e 1 . . ope
J\ | TN ARR R m configuration utilizes a
B 2 Timg[ns] 2 ¢ * N TiméJ [ns] ? ) Time [ns] 20 J pre-pU|Se

g 0 ° approximately 20 ns early

1 1 1 . .
., _, =2 and a low intensity foot
£ £
£ E 3 £ = 1.1 mm phase plate used

I

w 4 L w 4
= = - = Couples ~1 kI to the fuel
S S £
@ 6 g 6 g 6 out of 1.8 kJ
= = g 7 . . .
g7 g7 @ = Slight increase in laser
0 8 O 8 0O 8

9 g 9 energy coupled to fuel

o : : :
170000 7200 7400 7600 170000 7200 7400 7600 7000 7200 7400 7600 with SUbStantla”y less mix
Photon energy (eV) Photon energy (eV) Photon energy (eV)
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A higher energy version of this new laser )
configuration produced record performance

= Used the same low energy, very early 0.8 S
pre-pulse to convert the window to 0.7} New config
plasma 06l

= Shorter, higher intensity foot allowed
more energy in the main pulse
= 2500 ] total energy
= 1200-1400 J coupled

o
o

| 20J @ -20 ns

Laser Power [TW]
o o
w I

o
N

0.1r

-4 -3 -2 -1 0 1 2 3 4 5
Time [ns]




A higher energy version of this new laser )
configuration produced record performance

= Used the same low energy, very early
pre-pulse to convert the window to

1N

w
o

Q‘C-’
plasma ke
. . . S 3r
= Shorter, higher intensity foot allowed =
more energy in the main pulse 2 25
= 2500 ] total energy ,_-S 2
= 1200-1400 J coupled 2 15
= New record DD neutron yield of 1.1e13 ? |
= About 3x increase from 3.3e12 § 05
= Minimal increase in mix % '
- 0
Laser lon Primary
ercigy temp. DD yield
coupled
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We have made significant progress towards our g =
goal of 100 kJ DT yield with MagLIF

= We believe that we must

deliver 25-30T, 4-6 kJ, Preheat Energy = 6 kJ into 1.87 mg/cc DT
and 22-24 MAtoreach v+
100 kJ DT 100.0 & E
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= 100¢F E
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2
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We have made significant progress towards our g =
goal of 100 kJ DT yield with MagLIF

= We believe that we must deliver 25-30 T,
4-6 kJ, and 22-24 MA to reach 100 kJ DT

w
o

N
(&)

= Qur initial experiments were at 10 T,
0.3 kJ, and 16-18 MA and produced

<
=,
c
0
5
O
- = 20}
0.2-0.4 k) DT 2
= Qur best experiment to date produced § 151
~2.4 kJ DT =
@ 10t
Q]
—
E sl
ke
2
m 0

B-field Laser Current
energy

coupled
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We have made significant progress towards our g =
goal of 100 kJ DT yield with MagLIF

= We believe that we must deliver 25-30 T,

= 30
4-6 kJ, and 22-24 MA to reach 100 k) DT £
= Qur initial experiments were at 10 T, T 25
0.3 kJ, and 16-18 MA and produced 3]
~0.2-0.4 k) DT |
= Qur best experiment to date produced 2 151
()
~2.4 k) DT &
= We think we can get to 15T, 2 ki, and o 10f
20 MA this year I.:_'
= Expected to further increase the yield by 2-3x % °
E 0 ||
B-field Laser Current
energy

coupled
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We have made significant progress towards our g =
goal of 100 kJ DT yield with MagLIF

= We believe that we must deliver 25-30 T,

4-6 k), and 22-24 MA to reach 100 k) DT~ S
= Qur initial experiments were at 10 T, E’ 251
0.3 kJ, and 16-18 MA and produced O
~0.2-0.4 kJ DT 2 20|
= Qur best experiment to date produced ? 151
~2.4 kJ DT S
= We think we cangetto 15T, 2 kJ, and % 10t
20 MA this year é |
= Expected to further increase the yield by 2-3x E ]
= We have path toreach 25+ T, 4+kJ,and & o =
22+ MA in the next few years B-field eLnaeSrZ; Cument

= 10sto 100 kJ DT! coupled
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