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Overview (i)

= Bayesian Inference and Uncertainty Quantification Problems
= Posterior Reliability
= Model Model Selection

= Sequential Tempered MCMC

= Accelerating ST-MCMC using ROMMA

= Water Distribution System Posterior Reliability Analysis
= |dentifying context for a Biological Circuit

= Conclusion
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Motivation () e,

= The Bayesian Perspective:
* Probability distributions quantify uncertainty due to insufficient information

= Bayesian methods for identification and estimation are critical to the
robust system analysis

Goal:
Provide MCMC methods for computationally intensive
Bayesian inference problems like model selection and

posterior rare events analysis.




The Bayesian Inference Problem () i,

Observations: D

Bayes’ Theorem

p(D|6,M)p(0| M)
p(D|M)




The Bayesian Inference Problem () =,

Observations: D

Bayes’ Theorem

p(D|6,M)p(0| M)
p(D|M)

| N
Posterior Estimation: E[g(8) | D,M] = /9(0)19(0 | D, M) db =~ -fl-zg(ﬂi)

Model Evidence: p(D|M)= /p(D |60, M) p (0| M)do
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Example Inference Problem: Water Distribution? =

Leak Detection and Posterior Failure Probability Assessment

OO0,
C)

OO0 @ V(5 @ 2(29)45(28)55 (@) (205 (295 (18)

31

1 Cunha and Sousa 1999




Example Inference Problem: System Identification () e

Prior distribution of the water Posterior distribution of the
system parameters water system parameters




Example Inference Problem: Reliability Analysis (T S,

Prior distribution of the Posterior distribution of the Posterior distribution of failed
water system parameters water system parameters water system parameters

Posterior Estimate of Failure Probability




Example Inference Problem: Model Selection () i

Inferring biological context for a growth control synthetic bio-circuit
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Example Inference Problem: Model Selection ()

Prior distribution of the bio- Posterior distribution of the
circuit model parameters bio-circuit model parameters

Probability of a bio-circuit context model
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Nested Sampling for Model Selection and Rare Events () e

Model Class Probability:

p(M | z) = I MpM)

p(2)

. (/pcz 10, M)p(0] M)do)p<M)

Model Class Evidence:

l . .
/ p(z] 0, M)p (0| M)dl = ch, Dec;ompose_lnto evidence
i—1 for intermediate

ith Distribution Evidence Estimate: distriputions

Bi—1 , N
¢ = /p(z E O,M)Aﬂi P(Z | G,Mz_l p(ﬁ % ‘M)dﬂ i %ZP(Z E ei—l,k,M)Aﬁi
\ J\ Hi=1cs I |
! r v
Level i Likelihood Level i prior Monte Carlo Estimate




Motivation () e,

= ST-MCMC methods use parallel chains that interact with each other to
speed up convergence

= ST-MCMC methods evolve to the posterior through a series of
intermediate distributions which enable them to solve the model
selection and failure probability estimation problems

= Advanced MCMC kernels could be used to enhance performance for
problems with constraints and where prior information is important




Sequential Tempered MCMC L=

= ST-MCMC methods combine:

1) Annealing: Introduce intermediate distributions
2) MCMC: Explore the intermediate distributions

3) Importance Resampling: Discard unlikely chains and multiply likely chains while
maintaining the distribution

= Examples: SMC?, Subset Simulation?, TMCMC3, AlTar/Catmip*, AIMS>,

and AMSSA®
1 Del Moral et al 2006 3 J. Ching and Y. C. Chen 2007 > S.E Minson, M. Simons, J.L. Beck 2013
2S.K. Au and J.L. Beck 2001 4J.L. Beck and K.M. Zuev 2013 6 E. Prudecio and S.H. Cheung 2012




Annealing () s,

B defines how much the data updates the intermediate distribution:

m (0) < p(D | O, M) p(6 | M) B; €[0,1]

Intermediate distributions at different B levels
Level 0: B, =0 Level 1: B, = B, + AB; Level 2: B, =B, +AB, Leveln: B, =1

Posterior




Annealing: Finding AB (i)

Find AP such that the coefficient of variation (k) of the sample weights is 1

Sample weight: w (0;) < p (D | 6, M)Aﬂi

Weighted Sample
_ Populations

Coefficient of variation: x (w) — #

Current Level Set of Possible Next Betas




Importance Resampling e

= Resampling the population rebalances the weights as the distribution
changes. This discards unlikely samples and replicates likely samples

" Multinomial Resampling from level i-1 to level i:

Probability of selecting samplek: P (0; ; = 6;_1 1) = w (0i—1k)

Sample weight: w (6;-1 ) < p(D | 97:_17]_,M>A,3i




Metropolis Hastings MCMC with Parallel Chains

Single MH Markov Chain Parallel MH Markov Chain

Proposal
Distribution

Markov Chain

Multiple
Markov Chains

20



Designing the ST-MCMC Algorithm =

= Algorithm Parameters
* Number of parallel Markov Chains
* Chain Length or target correlation
* Annealing/convergence rate i.e. coefficient of variation target

= MCMC Algorithm

* Freedom to choose the proposal distribution and its properties
* Design of the Markov Chain kernel

= Resampling scheme for importance sampling




Relationship to Rare-Events algorithms like Subset Simulation* @ =

= For estimating rare event
probabilities, intermediate levels . '[;‘;‘:nrgi‘sg'ate Failure
are defined using level sets of the

failure function
P(FIM) = [1{0€ F}p(0] M)do

_ﬁ J1{0 € Fs }p (6| M)db
AL [1{0eFs_ }p(O| M)db

k=1

S8
=]
k=1 Markov Chain
Seeds

1 N y Zuev et al. 2012
| | N
Ck:/]l{eéfﬂk}p(a|fﬁk_1,M)d0mNZ]1{9§ ) G‘Fﬁk}
1 Au and Beck 2001 1=1




Sandia

Rank-One Modified Metropolis
Algorithm




Modified Metropolis Algorithm L=

* The Modified Metropolis Algorithm (MMA?) was developed to
efficiently sample high dimensional distributions where prior
information is important.

* Nested problems where intermediate distributions are close to the prior
* Unidentifiable inference problems
* Priors that enforce constraints

= MMA builds up a candidate sample component-wise using prior
information which speeds up sampling.

= MMA is a form of delayed acceptance algorithm where the proposal is
optimized to explore the prior which is informative about the posterior.

1 Au and Beck 2001




MMA Description (1)

Step k:

for © = 1 to Ngieps do

Draw & ~ N (0,1y,)

Set § = ¢

for j =1 to Ny do

Perform a component-wise update
__Accept or Reject component wise
— update according to prior

end
| Accept or Reject full update according
[ to the data
end
Assumes indpendent prior: 7 (0) = ﬂﬁ;‘l 7; (05) Ny is the number of components

o; is the proposal standard deviation of the 5% component Nisteps 18 the number of steps in the Markov chain




Rank-one Modified Metropolis Algorithm () s,

* The Rank-one Modified Metropolis Algorithm (ROMMA) extends MMA
to handle general priors and correlated proposal distributions.

" |nstead of component-wise updates, ROMMA makes a series of rank-
one updates according to chose basis.

= By being able to handle correlations ROMMA performs well on both
prior and posterior problems i.e. posterior rare-events and we see
significant performance gains over MMA or RWM.




ROMMA Description (i) B

Step k:
for ¢ = 2o Neege do } Randomly choose forward or reverse
ordering of components

} Compute the transformed components

Set 0 = 6°
for j =1 to Ny do
Perform rank one update
| Accept or Reject rank one update
according to prior

end
| Accept or Reject full update according
_| tothedata
end
S is VX where ¥ is the covariance Ny is the number of components

P, and P_ choose the ordering of the components Nseps is the number of steps in the Markov chain
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Water Distribution System Reliability

Problem Formulation:

e Estimate the probably of not
meeting minimum pressure
requirements

 Uncertain demands, leak
positions, and leak sizes

* Data is available giving the node
pressures under different loading
conditions

Water Distribution System
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Water System Reliability Analysis ="

Prior distribution of the Posterior distribution of the Posterior distribution of failed
water system parameters water system parameters water system parameters

Posterior Estimate of Failure Probability
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Water System Reliability Results .

MMA/RWM ST-MCMC ROMMA ST-MCMC
Computational Time (min) Computation Time (min)

Prior Reliability (1.5 x 10) 2.0 1.2
Posterior Inference 605.5 20.3
Posterior Reliability (3.0 x 1077) 206.0 36.4
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Prior Reliability Comparison () i,
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(i)

RWM ROMMA
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Posterior Reliability Comparison () i,
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Investigating Context Dependence

= Context dependence in synthetic
biological circuits causes parts and
modules to behave unpredictably in

the cell under different experimental

conditions.

= We investigate context dependence
by examining the cell growth
regulation circuit?.

= We identify context models using
Bayesian model selections and
identify biological parametersin
mathematical circuit model.

"You et al. 2004

D
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Problem Formulation (i)

Context dependence is the relationship of a biological system to conditions not explicitly described in our
mathematical model because they are unknown or too complicated. Instead these relationships can be described
using a stochastic model.

¢

Context model with
parameter d)

v
Biological model with

parameter 6

|

Two experiments with
measurements U Y1 Y2

a) Context Independent () b)Context Dependent )




pH and Inducer concentration Dependence ="
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pH and Inducer concentration Dependence

Context Models and Probabilities

Model k N, VA da to Ap Prob.
Model 1 Shared Shared Shared pH Shared | Shared | 10—2*
Model 2 pH Shared Shared pH Shared | Shared | 10~2%°
Model 3 pH pH Shared pH Shared | Shared | 10=2Y
Model 4 Shared Shared | pH IPTG pH Shared | Shared | 10~2%7
Model 5 pH Shared | pH IPTG pH Shared | Shared | 102+
Model 6 pH pH pH IPTG | Shared | Shared | Shared | 10—2Y2
Model 7 pH pH pH IPTG pH Shared | Shared | 1079
Model 8 pH pH IPTG pH Shared | Shared | 1024
Model 9 pH pH pH IPTG pH pH pH 10~ 196
Model 10 | pH IPTG pH pHIPTG | pH | Shared | Shared | 107°8
Model 11 | pH IPTG | pH IPTG | pH IPTG pH Shared | Shared | =~ 1.0




The assumed context model significantly influences the e
inferred growth rate

No Context pH Context pH and IPTG
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Future Directions for ST-MCMC () e,

= Using the sample population to build a better estimate of the global
properties of the posterior distribution to learn a more efficient
proposals

= Combining Sequential Tempering with Multilevel-Multifidelity
Hierarchies to reduce computational cost

= Better metrics for assessing correlation e.g. Canonical Correlation
Analysis (CCA)




: Sandia
Conclusion () i

= Sequential Tempered MCMC methods are able to solving Bayesian
system ldentification, model selection posterior reliability problems

= MCMC proposals like ROMMA that incorporate knowledge about the
prior or posterior can significantly speed up ST-MCMC algorithms

= Applications like water distribution system reliability and synthetic
biological systems context dependence were enabled using these new
techniques
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Theoretical Study of Effective Sample Size in ST-MCMC () s,
Asymptotic Effective Sample Slze

1.0F
= We can approximate the evolution | ESS Approaches |
of the sample population ESS (n,) = Zero
using three MCMC parameters: = Not Accurate
Number of '4(.%
. . N “— chains O
k+1 — Tk -
(N —1) (14 K%) p> + g S
/ \ O
Coefficient of MCMC LE)
Variation Correlation O
=
, o _ | Slow
= Parameter estimation is possible ! Non-zero ESS

when n, does not asymptotically
approach zero

0 1 2 3 4
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Posterior Failure Leak Size o
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Posterior Failure Leak Position
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Posterior Failure Demand
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