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Overview

■ Bayesian Inference and Uncertainty Quantification Problems

■ Posterior Reliability

■ Model Model Selection

■ Sequential Tempered MCMC

■ Accelerating ST-MCMC using ROMMA

■ Water Distribution System Posterior Reliability Analysis

■ Identifying context for a Biological Circuit

■ Conclusion
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Motivation

■ The Bayesian Perspective:

• Probability distributions quantify uncertainty due to insufficient information

■ Bayesian methods for identification and estimation are critical to the
robust system analysis

Goal:
Provide MCMC methods for computationally intensive
Bayesian inference problems like model selection and

Iposterior rare events analysis.
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The Bayesian Inference Problem

Observa o s:

Bayes' Theorem

p (0 I , ,A4)

p(DIO,M)p(O1M) 

p(DiM)
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The Bayesian Inference Problem

Observa ons:

Bayes' Theorem

p l 7 ), M) =

p(DIO ,M)p(01.A4) 

*DIM)

1ST
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Posterior Estimation: [g (0) 17),A4 g (0) p (0 l 7 , M) dO N g (0i)

Model Evidence: p(7,1M)— I p(1)10,M)p(O .A/)dO
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Example Inference Problem: Water Distributionl

Leak Detection and Posterior Failure Probability Assessment

1 Cunha and Sousa 1999
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Example Inference Problem: System Identification

Prior distribution of the water Posterior distribution of the
system parameters water system parameters

Data

• ==
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Example Inference Problem: Reliability Analysis

Prior distribution of the
water system parameters

Sandia
National
Laboratories

Posterior distribution of the Posterior distribution of failed
water system parameters water system parameters

W

Posterior Estimate of Failure Probability



Example Inference Problem: Model Selection

Inferring biological context for a growth control synthetic bio-circuit

Plate

media, pH
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—pH 6.6 IPTG 0.0mM
—pH 6.6 IPTG 0.2mM
— pH 6.6 IPTG 1.0mM
— pH 6.6 IPTG 5.0mM
-• pH 7.4 IPTG 0.0mM
— pH 7.4 IPTG 0.2mM
—pH 7.4 IPTG 1.0mM
-•-pH 7.4 IPTG 5.0mM 

30
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Example Inference Problem: Model Selection

Prior distribution of the bio-
circuit model parameters

Posterior distribution of the
bio-circuit model parameters

Probability of a bio-circuit context  model
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Nested Sampling for Model Selection and Rare Events

Model Class Probability:
)  p

l A4)13 (A4
p (z)

Model Class Evidence:

p I p dO 1
i=1

, M) p(BI M) dO) (-4)

ith Distribution Evidence Estimate:

IP (z M)Af3i p(z l M)
13 p (0 M) 

11'

Level i Likelihood Level i prior

d
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Decompose into evidence
for intermediate
distributions

k=1

p

Monte Carlo Estimate



Motivation

■ ST-MCMC methods use parallel chains that interact with each other to
speed up convergence

■ ST-MCMC methods evolve to the posterior through a series of
intermediate distributions which enable them to solve the model
selection and failure probability estimation problems

■ Advanced MCMC kernels could be used to enhance performance for
problems with constraints and where prior information is important
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Sequential Tempered MCMC
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• ST-MCMC methods combine:

1) Annealing: Introduce intermediate distributions

2) MCMC: Explore the intermediate distributions

3) Importance Resampling: Discard unlikely chains and multiply likely chains while
maintaining the distribution

• Examples: SMC1, Subset Simulation2, TMCMC3, AlTar/Catmip4, AIMS5,
and AMSSA6

1 Del Moral et al 2006

2 S.K. Au and J.L. Beck 2001

3 J. Ching and Y. C. Chen 2007 5 S.E Minson, M. Simons, J.L. Beck 2013

4 J.L. Beck and K.M. Zuev 2013 6 E. Prudecio and S.H. Cheung 2012



Annealing

defines how much the data updates the intermediate distribution:

Level 0: [30 = 0

Prior

p 1 M) G 0 I:

Intermediate distributions at different p levels
Level 1: 131 = [30 + A[31 Level 2: [32 = 131 + A[32 Level n: Pon = 1
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Annealing: Finding Ap

Find Ap such that the coefficient of variation (. ) of the sample weights is 1

Current Level

Sample weight:

Coefficient of variation:

(O .) p (1) 1

k (21)) a (w)

Set of Possible Next Betas
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Importance Resampling

• Resampling the population rebalances the weights as the distribution
changes. This discards unlikely samples and replicates likely samples

• Multinomial Resampling from level i- 1 to level i:

Probability of selecting sample k: p (o- 02

Sample weight: w (02 (1) 0-

0-
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Metropolis Hastings MCMC with Parallel Chains

Single MH Markov Chain Parallel MH Markov Chain
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Designing the ST-MCMC Algorithm

■ Algorithm Parameters

• Numtper ot paraiiei iviarkov Chains

• Chain Length or target correlation

• Annealing/convergence rate i.e. coefficient of variation target

■ MCMC Algorithm

• Freedom to choose the proposal distribution and its properties

• Design of the Markov Chain kernel

■ Resampling scheme for importance sampling
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Relationship to Rare-Events algorithms like Subset Simulation 1

• For estimating rare event
probabilities, intermediate levels
are defined using level sets of the
failure function

P (T M) = 110 e .9-p (0 M)dO

f 1{0 E fik} p (0 M) dO 

f {0 c Tok _l} (0 M) dO1
k=

s

Ck 11. E Tok} p l Tok_,L,M) dO

Au and Beck 2001
=

Markov Chain
Seeds

E -FOk
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Intermediate Failure

Domains

Zuev et al. 2012
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Modified Metropolis Algorithm
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■ The Modified Metropolis Algorithm (MMA1) was developed to
efficiently sample high dimensional distributions where prior
information is important.

• Nested problems where intermediate distributions are close to the prior

• Unidentifiable inference problems

• Priors that enforce constraints

■ MMA builds up a candidate sample component-wise using prior
information which speeds up sampling.

■ MMA is a form of delayed acceptance algorithm where the proposal is
optimized to explore the prior which is informative about the posterior.

1 Au and Beck 2001



M MA Description

Step k:
for i = 1 to Nsteps do

Draw e -INd)
Set o
for j to Nd do

end

end
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TPerform a component-wise update
Accept or Reject component-wise
update according to prior

IAccept or Reject full update according
to the data

Ass es indpendent prior: 71 (0) — (0 )
is the proposal standard eviation of the jth component

Nd is the nu nber of components
Nsteps is the n ber of steps i the M  rkov chain



Rank-one Modified Metropolis Algorithm
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■ The Rank-one Modified Metropolis Algorithm (ROMMA) extends MMA
to handle general priors and correlated proposal distributions.

■ Instead of component-wise updates, ROMMA makes a series of rank-
one updates according to chose basis.

■ By being able to handle correlations ROMMA performs well on both
prior and posterior problems i.e. posterior rare-events and we see
significant performance gains over MMA or RWM.



ROMMA Description

Step k:
for i o Nstens do

Draw Ar (

Set 8=e2
for j= 1 to Nd do

end

E
end
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Randomly choose forward or reverse
ordering of components

j-- Compute the transformed components

IPerform rank one update
Accept or Reject rank one update
according to prior

Accept or Reject full update according
to the data

S is VE where E is the covariance Nd is the number of co o poi-lents
P+ d P_ choose the ordering of the components Nstep, is the number of steps in the Markov chain
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Water Distribution System Reliability
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Problem Formulation: Water Distribution System

• Estimate the probably of not
meeting minimum pressure
requirements

• Uncertain demands, leak
positions, and leak sizes

• Data is available giving the node
pressures under different loading
conditions

0 Reservoir source

Pipe with unknown leak

Node with uncertain demand



Water System Reliability Analysis

Prior distribution of the
water system parameters
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Posterior distribution of the Posterior distribution of failed
water system parameters water system parameters

W

Posterior Estimate of Failure Probability



Water System Reliability Results
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MMA/RWM ST-MCMC

Computational Time (min)

ROMMA ST-MCMC

Computation Time (min)

Prior Reliability (1.5 x 10-5) 2.0 1.2

Posterior Inference 605.5 20.3

Posterior Reliability (3.0 x 10-7) 206.0 36.4

x10-3
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Prior Reliability Comparison
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Posterior Sampling Comparison
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Posterior Reliability Comparison
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Investigating Context Dependence

• Context dependence in synthetic
biological circuits causes parts and
modules to behave unpredictably in
the cell under different experimental
conditions.

• We investigate context dependence
by examining the cell growth
regulation circuit'.

• We identify context models using
Bayesian model selections and
identify biological parameters in
mathematical circuit model.

1 You et al. 2004
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Synthetic Biological Growth Control Circuit
c4j

•
•• •



Problem Formulation
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Context dependence is the relationship of a biological system to conditions not explicitly described in our
mathematical model because they are unknown or too complicated. Instead these relationships can be described
using a stochastic model.

Context model with

pararneter 0

1
Biological model with

pararneter 0

t
Two experirnents with

measurements y

a ) Context Independent 9 b) Context Dependent 9



pH and Inducer concentration Dependence
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pH and Inducer concentration Dependence

Context Models and Probabilities

Model k N VA to Ao Prob.
Model 1 Shared Shared Shared p Shared Shared 10-241
Model 2 pH Shared Shared pH Shared Shared 10- 239
Model 3 pH pH Shared pH Shared Shared 10-230

Model 4 Shared Shared pH IPTG pH Shared Shared 10- 2°7
Model 5 pH Shared pH IP ,G pH Shared Shared 10-204
IVIodel 6 pH pH pH IP G Shared Shared Shared 10- 2°2
Model 7 13 pH pH IPTG pH Shared Shared 10- 195
Model 8 pH pH IP ,G pH Shared Shared 10-204
Model 9 pH pH pH IP G pH pH pH 1 0 196

Model 10 pH IPTG pH pH IPTG pH Shared Shared 0 58
Model 11 pH IP „G pli IPTG pH IP ,G pH Shared Shared R-- 1.0
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The assumed context model significantly influences the
inferred growth rate

No Context pH Context
Dependence Dependence

1.4 -

2'1.3

E

(73 1.2

a)

CC
_c4-, 1.1

o
C.D
-o

c
c
co

'1.) 0.9

0.8

pH and IPTG
Context Dependence

1 4 2 3 5 6 7 8 9 10 11

Context Model Index

Context Dependence

—None

—pH 6.6
—pH 7.4

—pH 6.6 and IPTG 0.0mM
—pH 6.6 and IPTG 0.2mM
pH 6.6 and IPTG 1.0mM
pH 6.6 and IPTG 5.0mM
pH 7.4 and IPTG 0.0mM
pH 7.4 and IPTG 0.2mM
pH 7.4 and IPTG 1.0mM

—pH 7.4 and IPTG 5.0mM
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Future Directions for ST-MCMC

■ Using the sample population to build a better estimate of the global
properties of the posterior distribution to learn a more efficient
proposals

■ Combining Sequential Tempering with Multilevel-Multifidelity
Hierarchies to reduce computational cost

■ Better metrics for assessing correlation e.g. Canonical Correlation
Analysis (CCA)
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Conclusion

■ Sequential Tempered MCMC methods are able to solving Bayesian
system Identification, model selection posterior reliability problems

■ MCMC proposals like ROMMA that incorporate knowledge about the
prior or posterior can significantly speed up ST-MCMC algorithms

■ Applications like water distribution system reliability and synthetic
biological systems context dependence were enabled using these new
techniques
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Theoretical Study of Effective Sample Size in ST-MCMC

• We can approximate the evolution

of the sample population ESS (nk)

using three MCMC parameters:

nk+i

Number of
1 V chains

(N 1) (1 + 2) p2 + nk

Coefficient of MCMC

Variation Correlation

• Parameter estimation is possible

when nk does not asymptotically

approach zero

1.0
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Asymptotic Effective Sample Size

ESS Approaches

Zero
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Posterior Failure Leak Size
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Posterior Failure Leak Position
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Posterior Failure Demand
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