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Shale gas production via hydrofracturing has protoundly changed the In this study, we employed the gravimetric method using a Netzsch STA 409 thermal -; =
energy portfolio in the USA and other parts of the world. Under shale gas gravimetric analyzer (I'GA) with differential scanning calorimeter (DSC) and Ditferential 5 -0
reservior conditions, CO, and H,O, either in residence or injected during temperature analyzer (DTA) that is adapted for measurement of adsorption capacities and (f_,)’:
hydrotfracturing or both, co-exist with CH,. One important feature kinetics of the three types of materials at reservoir relevant temperatures up to 125°C and S 15 -
characteristic of shale 1s the presence ot nanometer-scale (1-100 nm) pores 1n constant pressures up to 1 bar. We studied the adsorption kinetics by monitoring the evolution z
shale or mudstone. The interactions among CH,, CO, and H,O in those nano- of the weight change as a function of time from the instant a dose of CO, and CH, gas mixture S 10 -
sized pores directly impact shale gas storage and gas release from the shale is adsorbed onto the sample, until the moment saturation equilibrium is reached. = ey f_fti,lvgéoe%gjgogsgéog ;SnOpg:.ZtsSr)eWith
matrix. Therefore, a fundamental understanding of interactions among CH,, s °
CO, and H,O in nanopore confinement would provide guidance in addressing a 5 | | |
number of issues encountered during the recovery process, such as rapid decline Results 0 10 20 30 40 50
in production after a few years and low recovery rates. We are systematically Time, minute
investigating the P-V-T-X properties and adsorption kinetics in the CH,-CO,- In Figure 1, a typical sorption curve 1s presented. The linear portion of the curve Figure 2. Sorption kinetics with CH, + CO, for activated carbon at 25°C and 1 bar.
H,O system under reservior conditions. is used for determination of sorption kinetics. The portion that indicates the sorption

saturation has been attained is used for determination of sorption capacities. As an 2.5

We have designed and constructed a unique high temperature and pressure example, the sorption rates for activated carbon and montmorillonite are determined
experimental system that can measure both P-V-I-X propetties and adsorption from the linear portion of the sorption curve as shown in Figures 2 through 4. We = /.- 0,093 _—
kinetics sequentially. We are measuring the P-V-T-X properties of CH,-CO, have used this methodoloov to m e the sorbtion ities and kinetics for " B -

, , , - , , gy to measure the sorption capacities a etics for a series

mixtures with CH, up to 95 vol. %, and adsorption kinetics of various materials, 1.5 -

ot model substances including activated carbon, crushed shale, illite and
montmorillonite, up to 125°C.
In Table 1, the sorption capacities and sorption kinetics ot activated carbon and

under conditions relevant to shale gas reservoirs. We used three types of
materials: (I) model materials, (II) single solid phases separated from shale
samples, and (III) crushed shale samples from known shale gas producing

f*

" DARCO Activated Carbon (60-100 mesh) with

Amount of CH, + CO, sorbed, mg/g

formations and from shale gas barren formations. The model materials are well montmorillonite (< 75 pm) for the mixture of 85% CH, and 15% CO, trom 25°C to 0.5 85% CH, + 15% CO, at 125°C temperature
characterized in terms of pore sizes. Theretfore, the results associated with the 125°C and the total pressute of 1 bar are summarized.
model material serve as benchmarks for our model development. = - 5 s -5 o
Time, minute
The P-V-T-X properties obtained in this study will be used ro establish a Table 1. Experimental measurements of sorption capacities and sorption rates for the model
high precision equation of state (EOS) applicable to shale gas recovery in substances at 1 bar totol pressure Figure 3. Sorption kinetics with CH, + CO, for activated carbon at 125°C and 1 bar.
confined nano-pore environments. An equation of state (EOS) that can 0.14
. . . . . Oy ! : T T ; ] = — -D3%
accurately describe interactions in the CH,~CO,—H,O system for a wide range Model Temp, "C | Gas Mixture, volume | Pressure, S‘:’fpt“_:’“ Sorption “go_m | B ot Ao o
of 1onic strengths 1n a confined environment i1s an important and essential tool Substances perocut bar Capacity, Rat?: D k4
| ' mg/ mg/g min 2 0.1 -
that enables efficient resource recovery from fewer, and less environmentally - , _ '8 S8 3
. ol wells. T b an BOS d ¢ exict at ¢ Tor the bulk DARCO 25 85% CH4 +15% CO; | 1 28 0.63 S'o.08 A
impactful wells. However, such an E oes not exist at present. For the bu - f - O
P D 1 19’92 1 an HOS for th CEI O PO activated carbon | 50 85% CH,4 +15% CO, | 1 11 0.59 +
— e _ . ) X 0.06 -
propejit‘les, uan et al. ( ) proposed an EOS for the CH, r—HpC system. 75 85% CH. + 15% CO, | 1 90 031 S
Their EOS was based almost Solely on expenmental data for the fOHOWng 100 8504 CH4 + 15% CO: | 21 014 -g 0.04 - rénﬁi?tgarilfqu(ZTS JL;T;: 35122::
binary systems, 1.e., CH,—H,O, CO,—H,0, and CH,—CO,. As they pointed out, 125 85% CH,4 + 15% CO» | 1 1 8 010 ..% o oo o -
“ternary data are almost nonexistent.” In their parameterization, there were two 25 85% CH4 +15% CO, | 1 2.8 1.7 X 107 .
experimental investigations addressing the ternary system as described in the 50 85% CH4 + 15% CO; | 1 0.30 9.6 X 107 a 18 20 =8 40 i
following. Price (1981) measured solubility of CH, and CO, in brine containing Montmorillonite, | 75 85% CH4 +15% CO; | 1 0.19 6.7 X 10~ SRR, Rt
5 wt% NaCl at 150°C and 345 bars. Ramboz et al. (198 5> investigated the CH4_ <735 pum 100 85% CH; +15% CO, | 1 0.18 51 %10 Figure 4. Sorption kinetics with CH, + CO, for montmorillonite at 125°C and 1 bar.
. . . ry ‘ i | . . —3
CO,—H,O system at temperatures above 370°C, which is not applicable to the 125 85% CH4 +15% CO, | 1 0.12 3.3 X 10 Acknowledgements
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reservolr relevant conditions. These results will be used for molecular dynamics Time, minute
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