
Two-Level Main Memory Co-Design:
Multi-Threaded Algorithmic Primitives,

Analysis, and Simulation

Michael A. Bender* § Jonathan Berryt Simon D. Hammondt K. Scott Hemmertt Samuel McCauley*
Branden Mooret Benjamin Moseleyt Cynthia A. Phillipst David Resnickt and Arun Rodriguest

*Stony Brook University, Stony Brook, NY 11794-4400 USA {bender, smccauley}@c s . stonybrook .edu
t Sandia National Laboratories, Albuquerque, New Mexico 87185 USA

{jberry, sdhammo, kshemme, bjmoor, caphill, drresni, afrodi}@sandia gov

t Washington University in St. Louis, St. Louis, MO USA 63130 bmoseley@wust 1 . edu
1Tokutek, Inc. www . t okut ek . com

Abstract—A fundamental challenge for supercomputer
architecture is that processors cannot be fed data from
DRAM as fast as CPUs can consume it. Therefore, many
applications are memory bandwidth bound. As the number
of cores per chip increases, and traditional DDR DRAM
speeds stagnate, the problem is only getting worse. A
variety of non-DDR 3D memory technologies (Wide I/0 2,
HBM) offer higher bandwidth and lower power by stacking
DRAM chips on the processor or nearby on a silicon
interposer. However, such a packaging scheme cannot
contain sufficient memory capacity for a node. It seems
likely that future systems will require at least two levels of
main memory: high-bandwidth, low-power memory near
the processor and low-bandwidth high-capacity memory
further away. This near memory will probably not have
significantly faster latency than the far memory. This,
combined with the large size of the near memory (multiple
GB) and power constraints, may make it difficult to treat it
as a standard cache. We are not aware of any algorithms
or applications that are designed to leverage near main
memory.

In this paper, we explore some of the design space of
a user-controlled multi-level main memory. We present
algorithms designed for the heterogeneous bandwidth,
using streaming to exploit data locality. We consider
algorithms for the fundamental application of sorting. Our
algorithms asymptotically reduce memory block transfers
under certain architectural parameter settings. We use and
extend Sandia National Laboratories' SST simulation ca-
pability to demonstrate the relationship between increased
bandwidth and improved algorithmic performance. Mem-
ory access counts from simulations corroborate predicted
performance. This co-design effort suggests implementing
two-level main memory systems may improve memory
performance in fundamental applications.

I. INTRODUCTION

Recently vendors have proposed a new approach to im-
prove memory performance by increasing the bandwidth
between cache and memory [HI [211 The approach
is to bond memory directly to the processor chip or

to place it nearby on a silicon interposer. By placing
memory close to the processor, there can be a higher
number of connections between the memory and caches,
enabling higher bandwidth than current technologies.
While the term scratchpace is overloaded within the
computer architecture field, we use it throughout this
paper to describe a high-bandwidth, local memory that
can be used as a temporary storage location.
The scratchpad cannot replace DRAM entirely. Due to

the physical constraints of adding the memory directly
to the chip, the scratchpad cannot be as large as DRAM,
although it will be much larger than cache, having
gigabytes of storage capacity. Since the scratchpad is
smaller than main memory, it does not fully replace it,
but instead augments the existing memory hierarchy.
The scratchpad has other limitations besides its size.

First, the scratchpad does not significantly improve upon
the latency of DRAM. Therefore, the scratchpad is not
designed to accelerate memory-latency-bound computa-
tions, but rather bandwidth-bound applications. Second,
adding a scratchpad does not improve the bandwidth
between DRAM and cache. Thus, the scratchpad will
not accelerate a computation that consists of a single
scan of a large chunk of data that resides in DRAIVI
(e.g., because it is too large).

This gives rise to a new multi-level memory hierarchy
where two of the components—the DRAM and the
scratchpad—work in parallel. We view the DRAM and
scratchpad to be on the same level of the hierarchy
because their access times are similar. There is a tradeoff
between the memories: the scratchpad has limited space
and the DRAM has limited bandwidth.

1Note that the name "scratchpae also refers to high speed internal
memory used for temporary calculations pi, lipil which is a different
technology than that discussed in this paper.

SAND2015-2112C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Since the scratchpad does not have its own level in
the cache hierarchy, when a record is evacuated from
the cache there is an algorithmic decision whether to
place the record in the scratchpad or directly into the
DRAM. In the currently-proposed architecture designs,
this decision is user-controlled.

Under the assumption that the memory is user-
controlled, an algorithm must coordinate memory ac-
cesses from main memory and the scratchpad. Ideally
the faster bandwidth of the scratchpad can be leveraged
to alleviate the bandwidth bottleneck in applications.
Unfortunately, known algorithmics do not directly apply
to the proposed two level main memory architecture.
The question looms, can an algorithm utilize the higher
bandwidth scratchpad memory to improve performance?
Unless this question is answered positively, the proposed
architecture will not improve performance.
Our interest in this problem comes from Trinity [3op

procurement, the latest NNSA (National Nuclear Se-
curity Administration) supercomputer architecture. This
supercomputer uses the Knight's Landing processor from
Intel with Micron memory. This processor chip uses
such a two-level memory [181. The mission for the
Center of Excellence for Application Transition [N, a
collaboration between NNSA Labs (Sandia, Los Alamos,
and Lawrence Livermore), Intel, and Cray, is to en-
sure applications can use the new architecture when it
becomes available in 2015-16. This is the first work
to examine the actual effect of the scratchpad on the
performance of a specific algorithm.

A. Results

In this paper we introduce an algorithmic model of the
scratchpad architecture, generalizing existing sequential
and parallel external-memory models [y], pi. (See Sec-
tion Nil for a brief background on the architectural design
and motivation for the scratchpad.) We introduce the-
oretically optimal scratchpad-optimized, sequential and
parallel sorting algorithms. We report on hardware sim-
ulations varying the relative-bandwidth parameter. These
experiments suggest that the scratchpad will improve the
running times for sorting on actual scratchpad-enhanced
hardware for a sufficient number of cores and sufficiently
large bandwidth improvement.

Theoretical Contributions. We give an algorithmic
model of the scratchpad, which generalizes existing
sequential and parallel external-memory models [T], [q] .
In our generalization, we allow two different block sizes,
B and pB (p > 1) to model the bandwidths of DRAM
and the larger bandwidth of the scratchpad. Specifically,
p > 1 is the relative increase in bandwidth of the
scratchpad in comparison to DRAM.
We exhibit, under reasonable architectural assump-

tions of the scratchpad, sorting algorithms that achieve

a p-factor speedup over the state-of-the-art sorting algo-
rithms when DRAM is the only accessible memory. We
begin by introducing a sequential algorithm for sorting,
and then generalize to the multiprocessor (one multicore)
setting. We complement this result by giving a matching
lower bound in our theoretical model. Our algorithms
supply theoretical evidence that the proposed architec-
ture can indeed speed up fundamental applications.

Empirical contributions. After theoretically establish-
ing the performance of our algorithms, we perform an
empirical evaluation. The scratchpad architecture is yet
to be produced, so we could not perform experiments
on a deployed system. Instead, we extended Sandia
National Laboratories SST 11251 simulator to allow for
a scratchpad memory architecture with variable band-
width, and ran simulations over a range of possible
hardware parameters.
Our empirical results corroborate the theoretical re-

sults. We consider our algorithm in the cases where the
application is memory bandwidth bound. The benchmark
we compare against our algorithm is the well-established
parallel GNU multiway merge sort [271 We showed a
linear reduction in running time for our algorithm when
increasing the bandwidth from two to eight times. We
also show that in the case where the application is not
memory bound, then, as expected, we do not achieve
improved performance.

Our empirical and theoretical results together show the
first evidence that the scratchpad architecture could be
a feasible way to improve the performance of memory
bandwidth bound applications.

Algorithms and architecture co-design. This work
is an example of co-design. The possible architectural
design motivated algorithm research to take advantage
of new architectural features. The results, especially
the experiments, help determine ranges of architectural
parameters where the advantage is practical, at least for
this initial application.

In particular, we found that the bandwidth-expansion
parameter p introduced in the theoretical model also is
an important performance parameter in our simulations.
We estimate the ratio of processing capability to memory
bandwidth necessary for sorting to become memory-
bandwidth bound. From this, we estimate the number
of cores at today's computing capability that must to be
on a node for the scratchpad to be of benefit. The core
counts and minimum values of p could guide vendors in
the design of future scratchpad-based systems.
The Structural Simulation Toolkit extension, designed

and implemented by computer architects, is a co-design
research tool. SST is an open source, modular frame-
work for designing simulations of advanced computing
systems [24], [251]. Once this extension is released,
algorithms researchers will be able to test scratchpad

Cache (size Z)

Block size pB,
Cost 1

Block size B,
Cost 1

Fig. 1. The scratchpad memory model.

algorithms before the hardware, such as Knights Landing
is generally available.

II. ALGORITHMIC SCRATCHPAD MODEL

In this section, we propose an algorithmic model of
the scratchpad, generalizing the external-memory model
of Aggarwal and Vitter [] to include high- and low-
bandwidth memory.

Scratchpad model. Both the DRAM and the scratch-
pad are independently connected to the cache; see Fig-
ure y. The scratchpad hardware has an access time that
is roughly the same as that of normal DRAM—the
difference is that the scratchpad has limited size but
higher bandwidth. We model the higher bandwidth of the
scratchpad by transferring data to and from the DRAM in
smaller blocks of size B and to and from the scratchpad
in larger blocks of size pB, p > 1.
We parameterize memory as follows: the cache has

size Z, the scratchpad has size M» Z, and the DRAM
is modeled as arbitrarily large. We assume a tall cache;
that is, M > B2. This is a common assumption in
external-memory analysis, see e.g. [§], la, WA, UM
We model the roughly similar access times of the

actual hardware by charging each block transfer cost
1, regardless of whether it is a large or small block.
Performance is measured in terms of block transfers.
Computation is modeled as free because we consider
memory-bound computations.

Note that the scratchpad block size, pB, in the al-
gorithmic performance model need not be the same as
the block-transfer size in the actual hardware. But for the
purpose of algorithm design, one should program assum-
ing a block size of pB, so that the latency contribution
for a transfer is dominated by the bandwidth component.

In the following, we say that event EN on problem
size N occurs with high probability if Pr(EN) > 1— 1+:
for some constant c.

Putting the scratchpad model in context. The external-
memory model of Aggarwal and Vitter [Y], assumes a
two-level hierarchy comprised of a small, fast memory

level and an arbitrarily large second level. Data is
transferred between the two levels in blocks of size B.

Because the scratchpad model has two different band-
widths but roughly similar latencies, we have extended
the external-memory model to have two different block
sizes, each with the same transfer cost; see Figure J.

There do exist other memory-hierarchy models, such
as the cache-oblivious model IJ17], Mt which apply to
multi-level memories. However, the different bandwidths
but similar latencies means that the cache-oblivious
model does not seem to apply. Instead, the scratchpad
model can be viewed as a three-level model, but where
two of the levels are in parallel with each other.

Background on external-memory sorting. The follow-
ing well-known theorems give bounds on the cost of
external-memory sorting.

Theorem 1 ([111). Sorting N numbers from DRAM with
a cache of size Z and block size L (but no scratchpad)
requires e ((NI L)logz L (NI L)) block transfers from
DRAM. This bound is achievable using multi-way merge
sort with a branching factor of Z L.

Theorem 2 ([]). Sorting N numbers from DRAM with
a cache of size Z and block size L (but no scratchpad)
using merge sort takes e ((NI L)1g(N Z)) block trans-
fers from DRAM.

In the analysis of sorting algorithms in the following
sections, we will sometimes apply these theorems with
L = B and sometimes apply them with L = pB.

III. SORTING WITH A SCRATCHPAD

This section gives an optimal randomized algorithm
for sorting with one processor with a scratchpad. This
algorithm generalizes multiway merge sort and distribu-
tion sort Un, which in turn generalize merge sort and
sample sort [1-6[].
We are given an array A[1, . , N] of N elements

to sort, where N » M. For simplicity of exposition
we assume that all elements in A are distinct, but this
assumption can be removed.
The algorithm works by recursively reducing the size

of the input until until each subproblem fits into the
scratchpad, at which point it can be sorted rapidly. In
each recursive step, we "bucket" elements so that for
any two consecutive buckets (or ranges) Ri and R2+1,
every element in Ri is less than every element in Ri+ 1.
We then sort each bucket recursively and concatenate the
results, thus sorting all elements.

A. Choosing Bucket Boundaries

To perform the bucketing, we randomly select a sam-
ple set X of m = e(M1B) elements from A[1, , N]

and sort them within the scratchpad. (We assume sam-
pling with replacement, but sampling without replace-
ment also works.)
The exact value of m is chosen by the algorithm de-

signer, but must be small enough to fit in the scratchpad.
Our implementation uses multiway mergesort from the

GNU C++ library to sort within the scratchpad
An earlier version used quicksort within the scratch-

pad. If p is sufficiently large, either sorting algorithm
within the scratchpad leads to an optimal algorithm (see
Theorem 6); however, the value of p based on current
hardware, probably is not large enough to make quicksort
practically competitve with mergesort.

Corollary 3. Sorting x elements that fit in the scratch-
pad uses ((x/pB) logz B xl B) block transfers using
multi-way merge sort with a branching factor of Z1.13,
or 0((x pB) lg (x/Z)) in expectation using quicksort.
Both algorithms use O(x lg x) work.

B. Bucketizing

We are given the sample set X = {xi, x2, • • • , xrn}
(x1 < x2 < . . . < xm,) of sorted elements and input
array A. Since PC- = m, X fits in the scratchpad, and
A does not.
Our objective is to place each element A[i] E A\ X

into bucket R3 if xj < A [i] < xj+1. (We may assume
that xo = —oo, and x,n+i = oo.)
We perform a linear scan through A, ingesting M —

0(m) elements into the scratchpad at a time. All of X
remains in the scratchpad for the entire scan.
Once each new group of elements is loaded into the

scratchpad, we sort them (along with X). Their position
relative to the elements of X indicate which bucket
they are stored in. The resulting bucketed elements get
written back to DRAM, while the set X remains in the
scratchpad. We call this process a bucketizing scan.

Lemma 4. Each bucketizing scan costs:

1) O(N/B) block transfers from DRAM,
2) 0(N ApB)logz/(pB)M l(pB)) block transfers

from the scratchpad, and
3) O(N lg M) operations in RAM.

Proof: We select and sort the set X of sampled
points in the scratchpad (necessary for mergesort), and
then bucketize the rest of A. Assume for simplicity that
m < M/2.
Sampling X requires O(m) block transfers and

O(m) work, given constant time to choose a ran-
dom word. Sorting X requires O(m lg m) work and

pB Z Blog /B) block transfers (via Corollary
To bucketize, we read all elements from DRAM

to the scratchpad in blocks of size M — 0(m) >
M/2. This requires O(M/B) block transfers from
DRAM. The algorithm sorts each of these blocks in

0(MI(pB)logz/(pB)MI(pB)) scratchpad block trans-
fers and O(M lg M) work to decide their buckets. There
are O(N/M) such groups, so this requires O(N/B
NI(pB)logz/(pB)MI(pB)) total block transfers. We
write each bucket to a separate piece of DRAM memory.
Were the writing done to a contiguous location, it would
require O(M/B) block transfers as the reading does. But
these 0(M) elements sent in O(m) = 0(M I B) pieces.
There is an extra block transfer to start transmitting
each bucket, and perhaps another to end it. Thus the
total number of transfers to write buckets to DRAM is
O(M/B). •

C. Bounding the Recursion Depth for Sorting

We now conclude our analysis of scratchpad sorting.
Recall that the algorithm successively scans the input,
refining it into progressively smaller buckets. Lemma 4
from the previous section gave a bound of the complexity
of each scan.

In this section, we first show that the random sam-
ples are good enough so that with high probability
each bucket is small enough to fit into cache after
O(logm(N/M)) bucketizing scans. Then we give a
bound on the sorting complexity.

This randomized analysis applies to any external-
memory sort. However, to the best of our knowledge,
this kind of analysis does not appear in the literature.
Previous external memory sorting algorithms were deter-
ministic. However, randomized algorithms are practical.

Lemma 5. Each bucket fits into cache after
O(logr,,,(N/M)) bucketizing scans with high probability.

Proof: Each newly-created bucket results from a
good or bad split depending on its size. If a split makes
a new bucket at least On factor smaller than the old
one we call this a good split; otherwise it is bad.
We show that in a sufficiently large set of

O(logm(N/M)) splits, there are 3 logm(N/M) good
splits with high probability. Thus, after 0 (log,Th(NIM))
scans, each bucket is involved in at least 3 logm(NIM)
good splits, and fits in scratchpad.
We first show that the probability of a bad split is

exponentially small in On. Let Ri be the bucket being
split. For simplicity, assume Ri lists the elements in
sorted order, though the bucket itself may not be sorted
yet. If a subbucket starting at j came from a bad split, no
element in {R,(j),Ri(j+1), • • . , ft/(j-0N VTI/m))}
is sampled to be in X. This happens with probability at
most (1 — VF7t/mr
We next show that of any (3/2)c logm(NIM) splits

on a root-to-leaf path of the recursion tree, at most
clogrn(NIM) are bad with high probability. Thus there
are at least (c/ 2) logm(N/M) good splits; choosing
c> 6 proves the lemma

By linearity of expectation, the expected number of
bad splits is at most 3/ 2)ce— log,i(NIM). Applying
Chernoff bounds [with 6 = (2/ 3)e 1, we obtain

Pr [tt bad splits > c logm Z]
2eVn/3

We want to show that this is bounded above by 1/NŒ.
Taking the log of both sides of the inequality, this
simplifies to

c((-VFn— 1) lg e lg 3/2) logni > a lg N.

Now there are two cases. First, assume M > \/"Tr.
Recall the tall cache assumption, that M > B2. Then

= vm-/B > m-1/4 > N1/8. Substituting, we
obtain c((N1/8 — 1) lg e— lg 3/2) logrn N/M > a lg N,
which is true for sufficiently large N and c = a.
On the other hand, let M < \/1T T. Note that for

m > 2, (MT 1) lg e — lg 3/2) / lg m > 1/2. Then
for sufficiently large N and c > 4a,

c((V771,— 1) lg e— 2) logrn N/M ?c12 lg N/M ?a lg

This shows that each bucket is sufficiently small with
high probability after 0(logrn N/M) bucketizing scans.
To show that all must be small enough, take the union
bound to obtain a probability no more than 1/NŒ—l.
Performing the analysis with a' = a + 1 gives us the
desired bound. •

Theorem 6. There exists a sorting algorithm that per-

forms 8 (14 log/um 4 + A lOgz/pB 4) block trans-
fers with high probability to partition the array into
buckets, all of size < M. This bound comprises
0(4 logmy B ST-) block transfers from DRAM and
O(A logz pB) high bandwidth block transfers from
the scratchpad. There is a matching lower bound, so this
algorithm is optimal.

Proof: By Lemma 5 there are 0(1ogn, N M) <
0(1 + logm N/M) = 0(logium N/B) bucketizing
scans; multiplying this by the block transfers per scan
in Lemma 4 gives us the desired bounds. Note that once
the buckets are of size < M, we can sort all of them
with 0(A logz/pB pB) additional block transfers by
Corollary 1; this is a lower-order term.
To obtain the lower bound we will combine two lower

bounds from weaker models. First consider a model
where computation can be done in the scratchpad as well
as in cache. Then the standard two-level hierarchy lower
bound applies, and sorting requires S2(14 logM/B)
block transfers from DRAM (since M + Z = O(M)).
This bound is the same as the one given in Theorem T,
and can be found in [1].

Consider a second model where the DRAM allows
high-bandwidth block transfers. Again, the standard two-
level hierarchy lower bound applies, and sorting requires
QC/4 logz,,„,B) A) high-bandwidth block transfers.
Both of these bounds must be satisfied

simultaneously. Thus, all together we require
52(4 logm/B _NB + pNB logz„B A) block transfers.
Since (NI pB)logzIpB p < N/B, this simplifies to

12 (IDE N _L N
B]3p '°gZIP.13 17) • •

The following corollary explains how the sorting
algorithm performs when quicksort is used within the
scratchpad and follows by linearity of expectation. The
corollary shows that the algorithm remains optimal as
long as the bandwidth of the scratchpad, determined by
p, is sufficiently large.

Corollary 7. An implementation of sorting using quick-
sort within the scratchpad uses O(S logm/B 114 +
N lg log)) block transfers in expectation.pB Z MI13 g

This is optimal when p = 12(1g M Z).

IV. SORTING IN PARALLEL

N. In this section, show how to sort using a scratch-
pad that is shared by multiple CPUs. Our objective is
to model one compute node of a scratchpad-enhanced
supercomputer.

A. Parallel Scratchpad Model

The parallel scratchpad model resembles the sequen-
tial model, except that there are p processors all occu-
pying the same chip. Each processor has its own cache
of size Z, and all p processors are connected to a single
size-M scratchpad and to DRAM. In DRAIVI the blocks
have size B and in the scratchpad pB.

In any given block-transfer step of the computation,
our model allows for up to p' processors to perform a
block transfer, either from DRAM or from the scratch-
pad. Thus, although there are p processors, bandwidth
limitations reduce the available parallelism to some
smaller value p'. (In the sequential case, p' = 1, and
in the fully parallel case, p' = p.)

B. Other Parallel External-Memory Models

The parallel external-memory (PEM) model [] has p
processors each with its own cache of size M. These
caches are each able to access an arbitrarily large ex-
ternal memory (DRAM in our terminology) in blocks
of size B. These block transfers are the only way that
processors communicate. This model works with CRCW,
EREW, and CREW parallelism, though most research in
this model (i.e. [2], [Sj]) uses CREW.

Another line of study has examined resource-oblivious
algorithms, which work efficiently without knowledge
of the number of processors EL 130, [14]. This work

uses a similar model to PEM, but concentrates on the
algorithmic structure. Subsequent work extended this
to the hierarchical multi-level multicore (HM) model,
featuring a multi-level hierarchy [12].
The Parallel Disk Model Fzi is another model of

a two-level hierarchy with multiple processors. How-
ever, this model has the important distinction of having
multiple disks (multiple DRAMs in our terminology).
Multiple disks—rather than a single, external memory—
lead to fundamentally different algorithmic challenges.

Other parallel external-memory models take more pa-
rameters into account, like communication time between
processors [311 and multilevel cache hierarchies

C. Parallel Sorting

To obtain a parallel scratchpad sorting algorithm, we
parallelize two subroutines from the sequential sort. In
particular, we ingest blocks into the scratchpad in par-
allel, and we sort within the scratchpad using a parallel
external-memory sort. These two enhancements reduce
the bounds in Theorem 6 by a factor of pi.
We begin by analyzing the bucketizing procedure. We

can randomly choose the elements of X and move them
into the scratchpad in parallel.
To see how to sort in parallel, observe that when we

have p processors, each with its own cache, but sharing
the same scratchpad, we have the PEM model [q] and
can apply PEM sorting algorithms.

Theorem 8 ([5]). Sorting N numbers in the PEM model
with p' processors, each with a cache of size Z and
block size L, requires e((N hiL)logz/L (NI L)) block-
transfer steps.

By applying Theorem we obtain a bound for
a parallel bucketizing scan, replacing the bound from
Lemma 4.

Lemma 9. Each parallel bucketizing scan costs
0 (INT I (p/B)) + 0(N 1 (p'pB)logz (pB) M (pB)) block-
transfer steps, of which CAN I (11B)) are from DRAM
and O(N (p'pB)logz/(pB)M (pB)) are from the
scratchpad.

Proof: Sampling to obtain X and moving X to the
scratchpad requires 0(m1p1) block-transfer steps.

During the scan, we bring each group of M — m ele-
ments into the scratchpad in parallel, using O(M I Bp')
block-transfer steps. Then we sort these elements within
the scratchpad using 0(p,A:B logz/pB) block-transfer
steps via Theorem Multiplying by the number of
groups of M — m elements, O(N/M), gives the final
bounds. •
Combining with Lemma 5, we obtain the total number

of block transfers.

Theorem 10. Sorting on a node that allows p' pro-
cessors to make simultaneous block transfers requires
0(B B j14 + p p 10g) block-transfer,NB Z (pB) B
steps with high probability.

D. Practical Sorting in Parallel

In the implementation described above, after each
"chunk" of values are sorted and bucketized in the
scratchpad, the algorithm appends the elements from
bucket i to an array of elements for bucket i in DRAM.
In practice, the number of elements to any given bucket
might be small, so these writes are quite inefficient.
As a practical improvement, we modify the algorithm

to do fewer small memory transfers to DRAM. After
sorting a chunk of M elements in the scratchpad, we
find the boundaries between buckets for the set of M ele-
ments. Instead of adding appropriate elements to buckets,
simply record the bucket boundaries. Specifically, for
each O(M)-sized chunk of values, we create an array
of size IX = O(M/B) where the ith element gives the
index for the first element that belongs in bucket i. We
then write the sorted set of values out to a continguous
piece of DRAM and write out the auxiliary array. We
also keep global counts of the number of elements in
each bucket in an array called Rtot. We add the element
counts from the last piece to Rtot before starting on the
next chunk

After sorting all O(n/M) chunks, we must create the
final array. Using the array Rtot, we determine how
many buckets can fit into the scratchpad. Specifically,
we find the largest k such that Eik—o Rtot [i] < M. We
then read in all elements from buckets 0 though k from
each of the chunks in memory. We use the auxiliary
array. Specifically, if i is the index of the first element
of bucket k + 1, then we read in all elememts with
index 0 . i. We then use multi-way search to merge the
O(n/M) sorted strings into a single sorted string. This
is the start of the final list, which we write to DRAM.
We continue with the next set of buckets that (almost)
fills the scratchpad until we are done. For the examples
we used in our experiments, we read in thousands of
buckets to fill the scratchpad, so this gives substantially
better memory performance.
We now consider the memory overhead (extra mem-

ory) of this method compared to storing bucket elements
contiguously by writing to each bucket at each iteration.
The chunks each have 0(M) elements. The auxiliary
array that gives bucket boundaries is of size 0(MIB). If
B, the cache line size is 128, then the memory overhead
is less than 1%, and larger cache lines reduce the relative
overhead.

V. EXPERIMENTS

We implemented a limited version of the algorithm
from Section IV, denoted Near-Memory sort (NMsort)

• Processor of 256-cores split into quad-core groups

— Cores run at 1.7GHz
— Each core has a private 16KB L 1 data cache
— Each core group shared a 512KB L2 cache
— Each core group has a 72GB/s connection to the on-chip

network

• Far (Capacity) Memory

— 1066MHz DDR configuration
— 4 channels
— 36GB/s connection per channel to the on-chip network
— Approx. 60GB/s of STREAM Triad Performance

• Near Memory

— 500MHz clock, 5Ons constant access latency
— 8, 16 or 32 channels of memory (2X, 4X and 8X band-

width)

Fig. 2. Simulation System Parameters

through this section. As no hardware systems with multi-
level memory subsystems of the type targeted by NMsort
are currently available, we utilized the Structural Simu-
lation Toolkit (SST) [751] as a basis for predicting perfor-
mance. The implementation of NMsort is not recursive;
it bucketizes once and then sorts the buckets. Inputs for
sorting are random 64-bit integers and we do not expect
any buckets to be large enough to require recursion. The
bucketization is calculated using a multithreaded algo-
rithm which determines bucket boundaries in a sorted
list. This algorithm is certainly less sophisticated than
that described in Section TV, but sufficient for these
simulation experiments since the bucketizing is such a
small component of the total execution time.

For a comparison to existing contemporary single-
level memory sorting algorithms we use the GNU paral-
lel C++ library's multi-way merge sort (originally from
the MCSTL [271]). The latter is the fastest CPU-based
multithreaded sort from our benchmarking exercises. We
also employ the same calls to the GNU parallel sort as a
subroutine call in NMsort for sorting integers once they
are located in the scratchpad.
On current hardware, sorting may not be a memory-

bandwidth-bound operation. However, we argue that it
will become more memory-bandwidth-bound in future
high-performance-computing architectures as memory
becomes more distant and the number of cores per
NUMA region increases. Both of these trends encourage
a higher ratio of computation to memory bandwidth.

A. Experimental Design

We simulate a multi-level memory system with the
parameters shown in Figure g. In this system, we predict
that sorting will be memory bound based on a the
following simple expressime (1) given the available
processing rate and the expected amount of work that

2We thank Marc Snir for personal communication suggesting when
applications become bandwidth bound.

Ariel PIN Tool

'Application'

(Thread)

(Thread)

(Threaci).,

Ariel CPU

(Core

(

Cere).:

(Lt-o

(LI-D)

(1_1-D).4-

Merlin
(On-chip
Network)

SST Simulator

DMA Engnes

DC "Far DRAMS.

DC 'Near DRAMS.

Fig. 3. Simulation Architectural Setup

needs to be done, compute the expected processing time,
and (2) given the available memory bandwidth onloff-
chip and the expected amount of memory transfer re-
quired, compute the expected time required for memory
access. If the expected processing time is much less than
the expected memory transfer time, the application is
memory bandwidth bound.

Let x be the processing rate in operations per second
(in our case, integer comparisons in the sort). Let y be
the memory bandwidth between off-chip memory and
on-chip cache (in array elements per second). Further,
let n be the number of elements to sort and m be the
amount of on-chip memory (i.e., Ll ,L2,L3 cache). Up
to constants, we derive the inequality:

nlogn n log n

x y log m

because there are n log n comparisons in the algo-
rithm and the minimum aggregate memory transfer is
n 1c)g n CI. Before plugging in the numbers, we canlog m
rearrange the inequality:

y log m < x.

Thus, the sorting instance size is not a factor in
this computation. In our experimental setup, we have,
n = 1010, and (roughly) m 106, x 1010, and
y 109. Ignoring constants, we see that these quantities
are comparable:

109 log 106 1019.

In our simulations, we observe that sorting is memory
bound if the number of cores is 256 and not memory
bound when that number is reduced to 128. We give
results for the plausible case of 256 cores on-chip, as in
Figure g. In the future, it is expected that the number of
cores per chip will grow past 256. When we run NMsort,
we assume a near memory that can store several copies
of an array of 10 million 64-bit integers.
To simulate this system, we use the Structural Simu-

lation Toolkit (SST) [251], a parallel discrete event sim-
ulator that couples a number of architectural simulation
components. The full processor is simulated by the Ariel
model which permits an arbitary (in this case 256) cores
to be modeled subject to a single executing application

thread per core. The Ariel processor connects to an
application running on real hardware through a shared
memory region for high performance. Each application
instruction is trapped using the Pintool dynamic instru-
mentation framework P7]. These instructions including
executing thread ID, and special operation codes includ-
ing any specialized memory allocation/free functions, are
routed through the shared memory queues. The virtual
Ariel processor cores then extract instructions from their
executing thread queue and issue memory operations into
the memory subsystem as required. Figure 5 shows the
simulation configuration including the local, private L 1
data caches, shared L2 caches and the on-chip network
(named "MerliC) which allows routing of memory re-
quests at the flit-level to the various memory regions.
Near and far memory timings utilize the DRAMSim2
simulation component for increased accuracy [Ec.

B. Results

Results of our simulated NMsort algorithm are shown
in Table T. Here far memory is treated as the main,
capacity memory and near memory is utilized for the
scratchpad. We observe increasingly positive results as
NMsort is provided high performing near memory com-
ponents. Each NMsort column shows the bandwidth
expansion factor (ratio of near memory bandwidth to far
memory bandwidth). This represents p from Section g.
A bandwidth expansion factor of 8 gives NMsort a

wall-clock time advantage of more than 25% compared
to GNU sort. Furthermore, these simulations did not
use direct memory access (DMA) transfers. We expect
that specialized DMA capabilities could significantly
improve the performance of NMsort still further.

Note also that NMsort makes half as many far memory
accesses as GNU sort. All of the sorting comparisons
done by NMsort involve near memory; far memory is
used only for transfer to near memory.

VI. ARCHITECTURE OF THE SCRATCH PAD

In this section we give a brief overview of the memory
architecture that motivated our theoretical model. We
start with motivation: why have architects introduced this
new architecture? Then we discuss specifics of the design
of the architecture.

A. Motivation for the Scratchpad

There are multiple technologies that are in devel-
opment that may be a basis for a level of memory
between a processor's caches and conventional capacity
memory. The Wide1/0-2 standard, which is developed
by JEDEC has memory parts with 4 ports that are

3JEDEC (jedec.org) is a consortium that develops standards for
the microelectronics industry. DDR3 and DDR4 memory result from
standards developed by JEDEC, which also does many other standard-
ization efforts

128-bits wide each. Such a memory thus has a band-
width this is between two and four times higher than
standard memory DIMMs. There are also several efforts
underway that enable multiple memory chips to be
"stackecr" or vertically packaged on top of each other to
reduce wire distances between components and improve
performance. When such a part comes to market, it is
expected that stacks of between four or eight dies will
be economical. The result will be considerably higher
bandwidth rates to these memory parts in relatively
smaller spaces and lower power consumption than ex-
isting memory technologies.

However, the high pin density and electrical issues
are likely to prevent stacked memory from becoming a
complete replacement for existing memory DIMMs. Due
to this limitation, the semiconductor industry is looking
at mounting multiple die components either directly on
top of CPU chips, or, more likely, as multiple dies that
are mounted on the same substrate as the CPU. The result
will be memory capacities of several gigabytes than can
be implemented with higher bandwidths ("near mem-
ory") but, in the short term at least, the greatest portion
of memory capacity will continue to be built utilizing
lower-bandwidth "far" memories such as existing DDR
DIMMS (Figure 4).
Memory in the stacks described is likely to be or-

ganized differently than existing technologies where a
single reference activates all dies on the referenced
DIMM. In order to save power and provide greater
parallelism, a reference will likely move data to/from
a single memory die. With a sufficiently wide interface
the memory will be able to provide increased bandwidth
performance and somewhat reduced latency.
Our proposed scratchpad architecture bears some simi-

larities to contemporary GPU memory architectures. The
memory architecture of the GPU—like the scratchpad—
has similar access times to main memory, but provides
a higher bandwidth. Since the release of NVIDIAs
CUDA-6 SDK, a feature called Unified Virtual Memory
(UVM) has allowed for automatic migration of memory
between the host DDR and the local GPU-based GDDR
memories. However, it is generally accepted in the com-
munity that the current UVM implementation provided
by NVIDIA can be outperformed by handwritten data
movement operations in the general case 1115]. As we
move into the future where more complex and elaborate
memory hierarchies are likely, our model will become
increasingly relevant, particularly in multi-level memory
scenarios where automatic migration of pages is unlikely
to be available for all memory levels.

B. The DRAM Scratchpad Design

Architecturally, the scratchpad memory is attached
behind a directory controller after the last level cache,

GNU Sort NMsort (2X) NMsort (4X) NMsort (8X)
Sim Time (s) 898.419 756.731 693.889 640.126

Near Memory Accesses 0 415669342 372160301 368351141
Far Memory Accesses 394774287 161440225 162584052 158521515

TABLE I
SST SIMULATION RESULTS FOR VARIOUS NEAR MEMORY BANDWIDTHS

Silicon Interposer

Near
Memory

Near
Memory

t t

Near
Memory

Fig. 4. Two Level Memory Architecture

4 Channels
DDR-1066 "Far"

DDR

Directory
Controller

LDMA Engines Network
on-Chip

"Near"
DDR

Near BW
2X, 4X, 8X Far

Directory
Controller I 16K

DC Entries

NoC
20ns

L2, 512KB
16-way, 1Ons

IME

ERE Snooping
Bus

co IIIIESEEMEN
Core

L1: 16 B
2 way 2ns

Core

Shared L2 Cache

Core Core

Fig. 5. Architectural Setup

as a "peer" to the conventional main memory. Our
experiments assume a level-2 cache with separate L 1
caches for each core in the CPU (See Figure 5).
The scratchpad memory appears as a separate portion

of the physical address space. L2 cache can contain both
conventional memory and scratchpad references. Refer-
ences to scratchpad data from the cache are functionally
the same as references to main memory from the cache
on the basis of a fixed address range.

In this work, the conventional and scratchpad mem-
ories are accessed through standard load/store instruc-
tions. In future work, we will examine the use of DMA
engines which can transfer data between the near and
far memory in the background, allowing overlap of
computation and communication.
1) Why Not Simply a Large Cache?. A multi-gigabyte

cache would have to devote a substantial area to mem-

ory tags. This brings size and performance issues that
would raise cost and complexity. Additionally, DRAM
has fairly high access latencies which could make tag
comparisons costly. SRAM memories with very small
latencies could be added to hold the tags, but this would
have a signifigant impact on area and power.

For example, a 4GB DRAM cache, consisting of 223
64-byte cache lines might require 17 bits of SRAM tag
and flag information per data block, or about 272 MB.
If SRAM is about 1/24th the density of DRAM (an
updated estimate from what is given in DM), this would
be almost 80% of the area of the DRAM data arrays
and would consume much more power. Of course, larger
page sizes could reduce this overhead, but that invites its
own complexities.
By enabling an application to directly use an interme-

diate level of memory the application can have a level of
control such as directly prefetching data that is known
to be needed and saving data that does not need further
references. Another direct benefit is that the intermediate
memory can be used to hold temporary values in calcu-
lations. This directly reduces the bandwidth needed to
main memory, which will remain bandwidth limited.
2) Programmatic Interface. For this set of experi-

ments it is assumed that the scratchpad is given a portion
of memory address space, and that memory accesses (i.e.
load/stores) treat each space identically.
We assume a modified ma lloc() call to allocate

a portion of the scratchpad space and that the OS
or runtime handles the virtual-to-physical mapping and
contention between applications.

VII. CONCLUSIONS AND FUTURE WORK

This paper gives a preliminary description of co-
design work that gives evidence to support the potential
usefulness of a scratchpad near memory for a single
multicore node of a future extreme-scale machine. There
are a number of ways to improve this work. For example,
future systems could take advantage of DMA (direct
memory access) to move large blocks between DRAM
and scratchpad.
The sorting algorithms take advantage of algorith-

mically predictable prefetching. Besides the work in
this paper, we have preliminary algorithms for k-means
clustering which take advantage prefetching giving evi-
dence that such algorithms can be found for a variety of

applications. All our k-means algorithms run a factor of
p faster using scratchpad for many sizes of data and k.
It remains to determine if other kinds of algorithms can
also take advantage of this kind of architecture.

VIII. ACKNOWLEDGMENTS

Sandia is a multiprogram laboratory operated by San-
dia Corporation, a Lockheed Martin Company, for the
United States Department of Energy's National Nu-
clear Security Administration under contract DE-AC04-
94AL85000.

This research is also supported in part by NSF
grants CNS 1408695, CCF 1439084, IIS 1247726,
IIS 1251137, CCF 1217708, and CCF 1114809.

[1]

REFERENCES

AGGARWAL, A., AND VITTER, J. S. The input/output complex-
ity of sorting and related problems. Communications of the ACM
31, 9 (Sept. 1988), 1116-1127.

[2] AJWANI, D., SITCHINAVA, N., AND ZEH, N. Geometric algo-
rithms for private-cache chip multiprocessors. In Proceedings
of the Eighteenth Annual European Symposium on Algorithms
(ESA). 2010, pp. 75-86.
ARGE, L., GOODRICH, M. T., NELSON, M., AND SITCHINAVA,
N. Fundamental parallel algorithms for private-cache chip mul-
tiprocessors. In Proceedings of the Twentieth Annual Symposium
on Parallelism in Algorithms and Architectures (SPAA) (2008),
pp. 197-206.

[4] ARGE, L., GOODRICH, M. T., AND SITCHINAVA, N. Parallel
external memory graph algorithms. In Proceedings of the IEEE
International Symposium on Parallel & Distributed Processing
(IPDPS) (2010), pp. 1-11.
BANAKAR, R., STEINKE, S., LEE, B.-S., BALAKRISHNAN, M.,
AND MARWEDEL, P. Scratchpad Memory: A Design Alternative
for Cache On-chip Memory in Embedded Systems. In Proceed-
ings of the Tenth International Symposium on Hardware/Software
Codesign (CODES 2002) (2002), pp. 73-78.

[6] BENDER, M. A., EBRAHIMI, R., FINEMAN, J. T., GHASEMIES-
FEH, G., JOHNSON, R., AND MCCAULEY, S. Cache-adaptive
algorithms. In Proceedings of the Twenty-Fifth Symposium on
Discrete Algorithms (SODA) (2014), pp. 116-128.
BILARDI, G., PIETRACAPRINA, A., Pucct, G., AND SIL-
VESTRI, F. Network-oblivious algorithms. In Proceedings of
the Twenty-First International Parallel & Distributed Processing
Symposium (IPDPS) (2007), IEEE, pp. 1-10.

[8] BLELLOCH, G. E., FINEMAN, J. T., GIBBONS, P. B., AND
SIMHADRI, H. V. Scheduling irregular parallel computations on
hierarchical caches. In Proceedings of the 23rd Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA)
(2011), ACM, pp. 355-366.
BRODAL, G. S., DEMAINE, E. D., FINEMAN, J. T., IACONO, J.,
LANGERMAN, S., AND MUNRO, J. I. Cache-oblivious dynamic
dictionaries with update/query tradeoffs. In Proceedings of
the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA) (2010), pp. 1448-1456.

[10] BRODAL, G. S., AND FAGERBERG, R. On the limits of cache-
obliviousness. In Proceedings of the Thirty-Fifth annual ACM
Symposium on Theory of Computing (STOC) (2003), ACM,
pp. 307-315.

[11] CARLINI, P., EDWARDS, P., GREGOR, D., KOSNIK, B.,
MATANI, D., MERRILL, J., MITCHELL, M., MYERS, N., NAT-
TER, F., OLSSON, S., RUS, S., SINGLER, J., TAVORY, A., AND
WAKELY, J. The GNU C++ Library Manual. 2012.

[12] CHOWDHURY, R. A., RAMACHANDRAN, V., SILVESTRI, F.,
AND BLAKELEY, B. Oblivious algorithms for multicores and
networks of processors. Journal of Parallel and Distributed
Computing 73, 7 (2013), 911-925.

[3]

[5]

[7]

[9]

[13] COLE, R., AND RAMACHANDRAN, V. Resource oblivious sort-
ing on multicores. In Automata, Languages and Programming.
2010, pp. 226-237.

[14] COLE, R., AND RAMACHANDRAN, V. Efficient resource oblivi-
ous algorithms for multicores with false sharing. In Proceedings
of the Twenty-Sixth International Parallel & Distributed Process-
ing Symposium (IPDPS) (2012), pp. 201-214.

[15] EDWARDS, H. C., TROT, C., AND SUNDERLAND, D. Kokkos,
a manicure device performance portability library for C++ HPC
applications. Presented at GPU Technology Conference, 2014.

[16] FRAZER, W. D., AND MCKELLAR, A. C. Samplesort: A
sampling approach to minimal storage tree sorting. Journal of
the ACM 17, 3 (1970), 496-507.

[17] FRIGO, M., LEISERSON, C. E., PROKOP, H., AND RAMACHAN-
DRAN, S. Cache-oblivious algorithms. ACM Transactions on
Algorithms 8, 1 (2012), 4.

[18] http://www.hpcwire.com/2014/06/24/micron-intel-reveal-
rnemory-slice-knights-landing/

[19] KOGGE, P. Exascale computing: embedded style, 2009. Slides
from a talk given at the Fault-Tolerant Spaceborne Computing
Employing New Technologies Workshop, Sandia National Lab-
oratories.

[20] MOTWANI, R., AND RAGHAVAN, P. Randomized algorithms.
Chapman & Hall/CRC, 2010.

[21]
[22] PATIL, H., COHN, R., CHARNEY, M., KAPOOR, R., SUN, A.,

AND KARUNANIDHI, A. Pinpointing representative portions
of large Intel Itanium programs with dynamic instrumentation.
In Proceedings of the 37th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO) (2004), pp. 81-92.

[23] PROKOP, H. Cache-oblivious algorithms. Master's thesis,
Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, June 1999.

[24] RODRIGUES, A., MURPHY, R., KOGGE, P., AND UNDERWOOD,
K. The Structural Simulation Toolkit: A Tool for Exploring
Parallel Architectures and Applications. Tech. Rep. SAND2007-
0044C, Sandia National Laboratories, 2007.

[25] RODRIGUES, A. F., HEMMERT, K. S., BARRETT, B. W.,
KERSEY, C., OLDFIELD, R., WESTON, M., RISEN, R., COOK,
J., ROSENFELD, P., COOPERBALLS, E., AND JACOB, B. The
Structural Simulation Toolkit. SIGMETRICS Perform. Eval. Rev.
38, 4 (Mar. 2011), 37-42.

[26] ROSENFELD, P., COOPER-BALIS, E., AND JACOB, B. DRAM-
Sim2: A cycle accurate memory system simulator. IEEE Comput.
Archit. Lett. 10, 1 (Jan. 2011), 16-19.

[27] SINGLER, J., SANDERS, P., AND PUTZE, F. Mcstl: The multi-
core standard template library. In EURO-Par 2007 Parallel
Processing. 2007, pp. 682-694.

[28] SITCHINAVA, N., AND ZEH, N. A parallel buffer tree. In Pro-
ceedings of the Twenty-Fourth ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA) (2012), pp. 214-223.

[29] STEINKE, S., WEHMEYER, L., LEE, B., AND MARWEDEL, P.
Assigning program and data objects to scratchpad for energy
reduction. In 2002 Design, Automation and Test in Europe
Conference and Exposition (DATE 2002), 4-8 March 2002, Paris,
France (2002), pp. 409-415.

bttp://nnsa.energy.gov/mediaroom/pressreleases/trinitY

[30] bttp://insidehpc.com/2014/07/cray- wins- 174- million- contract-
trinity- supercomputer-based- knights-landing.

[31] VALIANT, L. G. A bridging model for multi-core computing.
In Proceedings of the 16th Annual European Symposium on
Algorithms (ESA). Springer, 2008, pp. 13-28.

[32] VITTER, J. S., AND SHRIVER, E. A. Algorithms for parallel
memory, I: Two-level memories. Algorithmica 12, 2-3 (1994),
110-147.

