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Why count donors?

Two qubit experiments require deterministic control over number of donors
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B.E. Kane, Nature 393, 133 (1998)

T. Shinada et al., Nanotechnology 19, 345202 (2008)
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== How the diode detector works
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Integration with Single Electron Transistors

Two qubit experiments also require functional SETs
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Integration with Single Electron Transistors |

Single ion detection
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) S, Offsets in 7 nm devices
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« Number of offsets always very small compared to the of number of implants

* Ruled out possibilities of being at the wrong depth, wrong location, donors not
activated etc.

» Exploring geometry considerations with semi-classical simulations
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== |nsight from simulations — 7 nm oxide

Electron density at interface

+ Threshold of ~ 0.4 V obtained using M‘m

fixed charge as a free parameter Si

* Plungers have ‘weak’ effect compared to AG
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Conduction band 30 nm below Si/SiO, interface.

« To change ionization
state of donor, AG ~
4V, - making dot
formation impossible
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= |nsight from simulations — 35 nm oxide

Electron density at interface “
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« Threshold of ~ 0.8 V obtained using fixed charge
as a free parameter

» Plungers have stronger coupling than the 7 nm
case

« To change ionization
state of donor, a small
change on CP is
sufficient
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Experimental test
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25 Sb implants 120 keV ~ 12 offsets

* In samples with 50 timed implants ~ 20 offsets are seen, with 10 implants ~ 6 offsets and
with 5 implants ~ 2 offsets are seen

+ The geometrical problem indicated by QCAD is the most likely reason for the missing offsets
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Results

Samples with functional SETs integrated with
single ion detectors are fabricated

2. Functional geometry for

observing offsets is
predicted and tested
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Thank you




Additional Information
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Calibration and counting

Counting the ion implants
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« With this detection capability, the number of ions being implanted can be counted
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Dit (g/em”2*eV) Qf (q/cm”2)

Sample Synthesis: 7 nm oxide

Interface trapped charge (D;) and fixed
charge (Qy) are concerns for dots and
donors near the SiO,/Si interface

Thinner oxides lead to higher fixed charge

Dit and Qf vs. Oxide Thickness
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Beam Current (pA)

AuSiSb Mass Spectrum
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hydrogen helium
1 2
H He
1.0079 4.0026
lithium beryllium boron carbon nitrogen oxygen fluorine neon
3 4 5 6 7 8 9 10
Li | Be B| C|N|O| F |Ne
fiad1 an132 10811 12 014 14.007 15.999 18.998 20.180
phosphorus sulfur chlorine argon
: ’ 15 16 17 18
™ & P|S |Cl|Ar
e, oo e U 20 32.065 35453 39.948
potassium calcium scandium titanium vanadium chromium | manganese iron cobalt nickel selenium bromine krypton
19 20 21 22 23 24 25 26 27 28 34 35 36
K | Ca Sc|Ti| V|Cr| Mn|Fe|Co| Ni Se | Br | Kr
39,008 40,078 44,956 A7 PRT A Q47 51 Q0F R4 Q38 AR AR FR,933 RAFOY, 78.96 79,904 83.80
rubidium strontium yitrium tellurium iodine Xenon
37 38 39 52 53 54
Rb | Sr Y Te| | | Xe
85,468 87.62 58,906 R ¥ a3 S ouu S =) TULu IR — RRRes 127.60 126.90 131.29
caesium barium lutetium hafnium tantalum tungsten rhenium osmium iricium mercury polonium astatine radon
55 56 57-70 k! 72 73 74 75 76 77 80 84 85 86
Cs|(Ba| *x |Lu|{Hf | Ta| W |[Re|Os| Ir Hg Po| At | Rn
132.91 137.33 174.97 178.49 180.95 183.84 186.21 190.23 192.22 200.59 P i) 20r.. [209] [210] [222]
francium radium lawrencium | rutherfordium| — dubnium seaborgium bohrium hassium meitnerium ununbium ununquadium
87 88 89-102 103 104 105 106 107 108 109 112 114
Fr|{Ra|xx| Lr| Rf | Db| Sg | Bh| Hs | Mt Uub Uuq
[223] [226] [262] [261] [262] [266] [264] [265] [268] [277] [2585]
lanthanum cerium prasecdymiumd neodymium | promethium | samarium europium gadolinium terbium dysprosium holmium erbium thulium yiterbium
*Lanthanide series 57 58 59 60 63 64 65 66 67 68 69 70
La|{Ce| Pr | Nd([Pm|Sm|Eu|{Gd|Tb |Dy |(Ho| Er | Tm| Yb
118 41 141012 1401 61 144 24 [145] 1R 36 151 OF 157 25 1RA 03 172 A0 1R4 a7 17 2R 1RR 03 173.04
) L . neptunium nobelium
**Actinide series 93 102
Np No
2ot P vy e L PR [237] Ead e 2] 1 2] 1 £ 1] £e] et 120 [254]

Capable of Generating lon Beams from~'/; of the Periodic Table




