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A Quick Background on Agent Fate ®=.

= Primary Biological Aerosols = Potential benefits include:
(PBA) = Determining mechanisms and
= May undergo chemical or physical rates of change to feed into
changes in the atmosphere via future models
differing processes = Potential forensics for unique
= Open Air Factor (OAF) that reactions with trace,
includes ozone, humidity, VOCs, geographically unique
and temperature fluctuations. atmospheric compounds
= Study effects in controlled " Better understanding of

variables that affect
infectivity and detectability of
bio-aerosols

environment and in outdoor
natural aging environment.
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Are bioaerosols affected by atmospheric e
chemistry?

= The data suggests a relationship between the growth of particles
smaller than 0.1 microns and increases in biologically fluorescent
aerosol

= Not well quantified

= May indicate related growth processes
= Agrees with diurnal variations observed by others (Tong & Lighthart, 1999)

v Bialogical Asrasol =17 pm E‘
10 : : lih -« Biological Aesrosol<1.T pm " 2 -1
= . z
g 5 3
B g -1
4
. o
o v % 0 %
z w e "N ‘ i
a = — 01
o L ) 2 =
k = :
g 2 I 1 g
|| il " ‘ I 4 _.::z — 0.0
0
L g i ER
: % | sl :
L B e e T T B [ F T 7T L T T N I R S e s B e B S e s e i
12:00 A3 1200 Ahg 12:00 AM 12:00 AR 12:00 A 12:00 AN 12:00 Ak 1200 AN 1200 A 12:00 AkE 12:00 AM 1200 Akt 12:00 AR 1200 AR
11172005 118208004 11¢20DE 11EA00E 112008 1ia12008 11772008 1/aEa 1105/2008 11110F2008 11114:2008 11122008 11132008 111142008

Dats

Background particle concentration and geometric diameter over two weeks in MD.




Objectives UL

1. Gain a mechanistic understanding of the atmospheric
processes that affect biological aerosol (bacteria, virus,
proteins) transport and fate

1. Hazard assessment
2. Detection signature stability

2. Develop parameters to feed into predictive models for short
and long-term transport of biological aerosols in the
environment

1. Sourceterms
2. Rates of change

3. Better understanding of the biological threat, and better
capabilities in fielded biological detection equipment
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Technologies
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Single Particle

Fluorescence Spectrometer (SPFS)

= Army Research Laboratory

= Current system developed from

over a decade of research

= Has been used for determination
of fluorescence cross section of

agents and simulants, and

ambient aerosol characterization
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Goldberg Rotating Drum(s)
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Particle Retention Time in a Drum ([@Es.
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Twin CAGE Chambers W) e

« Captive Aerosol Growth and Evolution (CAGE) Chambers

« Evaluate sensitivity of response to perturbations in single variables such as ozone
concentration and relative humidity

« Employ parallel chambers, control chamber and atmospheric chamber
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Diagram for Field System Q="
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Technical Work/Experiments
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Initial Laboratory Drum Experiments @&s.

= Goldberg rotating drum

= Design based on DSTL, Porton
Down, UK

= Maintain aerosol population
for >8hrs for controlled “aging’
= Fill chambers with relevant
concentration of ozone,
water vapor and bioaerosols

)

= Measure
= Bjoaerosol size distributions
= UV-Spectral fluorescence

= Viability

% To Computer
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Fluorophore Oxidation .
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New Drum Performance

2500

Conecentration {particles/L)

=

New drum has better RH and
ozone control w/ feedback loops
for automated experiments

Experiments focused on exploring
the relationships between RH and
oxidation of biological aerosols
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Drum MS2 Experiments UL

* Individually, both RH and O, cause a decrease in observed fluorescence
Decrease at 150 ppb O; and 85% RH is the most profound
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UV-APS 355nm =
Fluorescence Change-MS2

* Number weighted fluorescence
intensity calculated at the peak of the
initial size distribution

« Average change [(Fl,-Fl,)/Fl;]
calculated for the three replicates of
each experiment

« Change measured UVAPS

Average Fractional Change in Fluorescence During 4 Hour Trials

fluorescence may indicate Kynurenine & o [ 1 |
formation o J
« Significant only at elevated RH o | |
and high O, R A
® R R & &
& ¢ ® & &

Experimental Conditions




MS2 Viability Due to Ozone ) .

3.5
* Logloss inviable fraction calculated |
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Q-PCR 2 20
* Significant losses in viability g
observed during elevated RHand 5 ™
high 03 JGE:) 1.0
<
0.5 -
0.0 ﬁ

Exposure Type




Drum BtK Experiments

* Individually, both RH and O; cause a decrease in observed fluorescence
* Decrease at 150 ppb O; and 85% RH is the most profound
* Much less decrease than observed for MS2
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UV-APS 355nm ) ==
Fluorescence Change-Btk

* Number weighted fluorescence
intensity calculated at the peak of
the initial size distribution

 Average change [(Fl,-Fl,)/Fl,]

Average Fractional Change in Fluorescence During 4 Hour Trials

calculated for the three replicates of ° T
each experiment 02 . I
* No consistent, repeatable change in

0.1

UVAPS fluorescence observed
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Btk Viability Due to Ozone ) e,

* Logchange in the viable fraction calculated o
from the ratio of CFU divided by the number of $ 2
genetic equivalents from Q-PCR é 1 |
e Small loss in viability observed during g . = [
experiments with no O;“Apparent” increase in § " — |
viable fraction observed when ozone was s
present e
* May indicate that O; destroys some of the . | |
DNA being detected by the assay s & & & &
* Likely extracellular DNA & & & & 0F
* Changes GE/spore therefore appears Py A
as an increase in viable fraction I f::)-" LI
* Nucleic acids should be susceptible to O, H :.() . N ‘
but would normally be protected by the T
cell SIS S
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Drum Peptide Experiments

« Clear observations of increase
in 351 excited fluorescence
when 263 fluorescence is
decreasing

« Elevated RH, 150 ppb O3

« Clearly indicates the formation
of Kynurenine through
hydrolysis of the product of
tryptophan ozonolysis
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Criegee —HCNCO= —HCNCOo—
Primary ozonides are intermediate CH CHy
i H0
relatively stable B No
jomg-g " e
Criegee intermediates - Bs H..0 N on
are very unstable I 2 v
Secondary ozonides are
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H,0 is not the only
molecule that can
react with the
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but is the main one in
aqueous solution
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N-formyl knyurenine
and kynurenine are
not very reactive with
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Field Results at ARL (Adelphi, MD) =

During Field Trial Test in Adelphi, MD - 2013
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Preliminary MS2 Results ) S,

263 nm ex. 351 nm ex. Oct 16
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MS2 Decay

UV263 vs. Solar Exposure
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Hygroscopicity Studies D

OH NO, After O L oo -
» -~ Interaction {n DDA

Changes in RH
~» 838 = |Lead to size
iy distribution shifts
= Viability

= Susceptibility

= Detectability
= Bjoaerosols can
serve as CCN or IC

= Effects of media,
buffers, additives

= |mpacts post agent
attack assessments
and response




Aerodynamic Hygroscopic Growth Analyzer (AHGA)
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Aerodynamic Hygroscopic ) =

Growth Analyzer

Hardware

Data Analysis
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Validation of System Performance @&

= Using three aerosols with WS e
known hygroscopic )
properties, compared
literature reported values :
with those observed using B
the AHGA §

Relative Humdity

Polystyrene Latex-DRH, CRH-None
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Processing of Data ) .

Multiple Modes Exist in a Peak to Peak Shifts Used to

Distribution of Biological Aerosols Calculate Growth for Each Mode
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Phosphate Buffer Solution

Growth of pure PBS particles behave almost identically to NaCl (the dominant salt)
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Bt Al Hakam Spore Bacteria =,

Bt Al Hakam Crude Clean Bt Al Hakam

»  Suspended in spent growth media * Centrifuged and pellet resuspended in

. . SFDIH20
* Small growth at hlgh-RH likely due to . Negligible water uptake
the presence of media * Some growth observed during

single efflorescence measurement
may indicate incomplete drying
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Hygroscopicity of Pseudomonas fluorescens ()i
Crude Prep-Dirty w/ Media

Deliquescence Mode 1
Deliquescence Mode 2
Effluorescence Mode 1
Effluorescence Mode 2

® X O *

Growth Factor
0

Relative Humidity
Clean Resuspended in SFDIH,0O

* Pfvegetative bacteria )

* Pfisaknown ice nucleating R E
bacteria L

* However no significant growth T
shown for both types of SR I ;7
preparations
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MS2 Phage ) .

Deliquescence Leg

e “Dirty” prep contains E. coli lysate, while 144
“Filtered” has been filtered through a 0.22 o Dity M2 bode 2
um filter 134 * Filteyred MS2 Mode 1
. o 5 ®  Filtered MS2 Mode 2
* Deliquescence-Shows significant growth s
L
between 70 and 85% g "]
e Efflorescence-Shows hysteresis and 5
return to original size between 40 and ' %
50% 1.0 3 ;
e Behaves very similar to NaCl
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Conductivity as Salt Indicator

Aerosol Average
Conductivity
(uS/cm)
Bacillus thuringiensis Al Hakam 163.55
Crude
Bacillus thuringiensis Al Hakam 9
Clean
Pseudomonas fluorescens Crude 21.94
Pseudomonas fluorescens Clean 5.5
MS2 in E.coli Lysate 297.35
MS2 Filtered 301.95
NaCl
Phosphate Buffer Solution
Polystyrene Latex Spheres

Sandia
National
Laboratories




Conclusions and Future Work
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Conclusions ) 2=

= There is a need for understanding the chemical processes by which
biological aerosols are altered in the environment

= (Ozone

= (Ozone directly affects specific amino acids even inside complex
proteins

= Tryptophan likely undergoes ozonolysis and is hydrolyzed by water to form N-
Formyl Kynurenine and Kynurenine

— Not reactive with Oj; fluorescent at 355 nm, and not at 263 nm
= Ozonolysis may destroy microorganism proteins through this process, or affect
detectability
= (Ozone appears to destroy free DNA under a similar chemical process
= Applies largely to extracellular DNA

= (Ozone interactions are most prominent at high RH, and strongly affect
resulting viability of virus particles

= Ozone also degrades NADH/NAD+ under a similar mechanism
= Apparent in laboratory experiments

= Not the dominant affect observed in field data
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Conclusions (cont..) ),

= Solar UV Radiation (300-400 nm)

= The decay of biological fluorophores under exposure to solar radiation
may have several important impacts
= Fluorescence at 355 nm is degraded through photochemical processes
— NADH is likely the dominant fluorophore involved

* Field data indicate that degradation of fluorescence at 355 nm is
more closely tied to photochemistry, rather than O; directly

- Hygroscopmty

The growth of biological aerosol when exposed to high humidity may affect numerous
biological aerosol properties

= Respiratory Deposition, Transport, Mie Scattering Signatures
= Water uptake by biological aerosols may also change the chemistry that can affect them
= E.g. Ozone deactivation

= Spores do not appear to have an affinity for water, however this may
be preparation specific

= MS2 Phage shows growth both in the presence of E.coli lysate and
without, again likely preparation specific

= Media for Pseudomonas and Bt Al Hakam (crude preparations) did not
appear to be very hygroscopic




Moving Forward — Increased Number of =

Simulants

= Protein and Genetic Macromolecule Aerosols

= Determine specific mechanistic changes due to aging
= Typical bioaerosols complex mixture of metabolites, proteins, and |
other macromolecules Tryptophan
= |solate the effects of aging on particular amino acids and biological
signatures
= Tryptophan, Tyrosine, Nucleic Acids cqntaining particles

Components of Nucleic Acids

= Gram-negative bacteria

DNA only DNA & RNA RNA only

= Yersinia N P R ;
. £ ﬁi <f) <lﬁ (L X
[ | Eschench'a Tyrosine e | s s ok .
. ez g o] HO—EI—OH O=H
= Enveloped Virus 1 el I N
= |n addition to previous non-enveloped simulants
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Increased Assay Support UL

= Infectivity/Effectivity
= Cultures and plaques previously used

= |ncreased use of immunoassays
= Representative of viral infectivity
= Useful for
= |nvestigate detectability for particles which remain viable
= Additional data for mechanistic approach to particle aging

= |mproved normalization for particle loss

= |nert substance co-aerosolized with bioaerosol
= Quantum dots
" Encapsulated fluorophores

= Mass mode normalization from aerodynamic particle counter
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Field Tests, Increased Variables, Webs @i

= |ncreased Variable Control
Solar Spectrum

= Temperature e Al :
. Energy Curve for Blackbod)" at 6000 K
= VOC generation and control (toluene, By P e
. . E
isoprene, pinene) T
Z 0k
= UV Solar spectrum e
0.5
= Fjeld Tests — CAGES [, HERRCEI e

= Methodology established Wavelength, im

= Houston —FY15 g

= High Polution, RH -

= Albuquerque — FY16 g § |

= Web-based particle entrapment § "

. . §SIYSREIRREETRERER
= DSTL spider webs to trap particles and age Spectral range in nanometers

as simulated aerosol. Ultraviolet Irradiance Across the Rotating Drum
= Compare with drum T 2

§ \ 16— /
= 1.4
E AW 1_1 o
H - i
3 06
EZ‘S —Z‘O -15 —iO —‘5 h 0 ; 10 1‘5 2‘0 25
B Distance from center of drum (inches) )
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