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ZAPP represents a large collaboration between
the NNSA labs and the academic community
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Summary: ZAPP experiments measure fundamental up Eaaa ries
properties of atoms in plasmas to solve important
astrophysical puzzles.

• Why can't we predict the location of the
convection zone boundary in the Sun?

➢ Opacity of Fe at -200 eV

• How does ionization and line formation occur
in accreting objects and warm absorbers?

➢ Ionization distribution and spectral
properties of photoionized Ne and Si

• Why doesn't spectral fitting provide the correct
properties for White Dwarfs?

➢ Stark-broadened H-Balmer line profiles

Fe Opacity

ry

Si Photoionization

H-Balmer Line shapes



The Z facility at Sandia National Laboratories is the
most powerful pulsed power machine in the world.
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Breakthroughs in Z-pinch technology enabled the
study of high-temp HED plasmas using Pulsed Power.
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C. Deeney et al, Phys. Rev. Lett. 81, 4883 (1998) ; R.B. Spielman et al, Phys. Plasmas 5, 2105 (1998)



Breakthroughs in Z-pinch technology enabled the
study of high-temp HED plasmas using Pulsed Power.
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Experiments on Z access a broad range of the
energy-density phase space

101°

102

High Energy Density (HED) Regime, E > 1 Mbar

Petawatt
Laser
Plasmas

Tokamaks
ICF

Hot Neutron
Star Interior

Accretion 
Disks Neutron

Star
Atmospheres

1Thite
Dwail

A tni()spheres

• -
Room Air

1015

tone"

1020 1025

Density (cm-3)

103°

Sandiairmi National
  Laboratories

7



Experiments on Z access a broad range of the
energy-density phase space
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The z-pinch dynamic hohlraum (ZPDH) produces &saes
record currents of 25.8 MA with 1.5% reproducibility

Load Currents (20 shot average)
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Standard ZPDH Characteristics 
360 W wires — 11.4 µm diameter

m = 8.5 mg W total

Vmarx = 85 kV (20.3 MJ)

lp = 25.8 ± 0.4 MA [20 shots]

Sanford et al., POP 9 (2002)
Lemke et al., POP 12 (2004)
Bailey et al., POP 13 (2006)
Slutz et al., POP 13 (2006)
Rochau et al., PRL 100 (2008)
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The ZPDH x-ray emission is reproducible to ± 10%
in peak power and ± 7% in energy

Radial X-ray Power and Energy
(20 shot average)
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Z-pinch Dynamic Hohlraum

PIN

Marx 20.3 MJ 11.4 MJ
Energy

lpeak 25.8 MA 21.7 MA*
(1.5%) (2.1%)

Mass 8.5 mg 3.8 mg

Peak 220 TW 120 TW
Power (10%) (14%)

Radiated 1.6 MJ 0.82 MJ
Energy (7%) (17%)

*Wagoner, PRSTAB 11 (2008)
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The ZPDH can also radiatively heat samples placed
above the z-pinch to Te~200 eV.

Framing Pinhole Camera images
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X-ray
Imaging

The ZPDH simultaneously drives four
independent experiments on a single ZAPP shot

1 Axial Experiment
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Placing samples at multiple distances from the
z pinch provides a broad range of drive flux.
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ZAPP campaigns simultaneously study multiple Sandia
National
Laboratories

issues spanning 200x in temperature and 106x in density

Solar Opacity

Question:
Why can't we predict the
location of the convection
zone boundary in the Sun?

Achieved Conditions:
Te - 200 eV, ne - 1 023 cm-3
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Photoionized Plasmas

Question:
How does ionization and
line formation occur in
accreting objects?

Achieved Conditions:
Te - 2 0 eV, ne - 1 018 cm-3

White Dwarf Line-Shapes

Question:
Why doesn't spectral fitting
provide the correct properties
for White Dwarfs?

Acheived Conditions:
Te - 1 eV, ne - 1 017 cm-3

TEXAS



ZAPP campaigns simultaneously study multiple Sandia
National
Laboratories

issues spanning 200x in temperature and 106x in density

Solar Opacity

Question:
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location of the convection
zone boundary in the Sun?
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Question:
How does ionization and
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Models for solar interior structure disagree with
helioseismology observations.
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Convection-Zone (CZ) Boundary
Models are off by 10-30 6

Models depend on: 

• Composition (revised in 2005*)

• EOS as a function of radius

• The solar matter opacity

• Nuclear cross sections

Question: Is opacity uncertainty the cause of the disagreement?

Ob ective: Measure Fe opacity at CZ base conditions.
17

*M. Asplund et al, Annu. Rev. Astro. Astrophys. 43, 481 (2005).



The ZPDH radiating shock is used to both heat and
backlight samples to stellar interior conditions.

Foil is heated during
the ZPDH implosion

Foil is backlit
at shock stagnation
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The achieved temperature and density depend on
the target design.
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Modern computations of Fe opacity show large
disagreements with data at CZ base conditions
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Present Status*

• Agreement between data and
computation becomes worse at
increasing temp. and dens.

• Disagreements at CZ base
conditions can partially explain
the CZ boundary problem.

• The differences are probably
not unique to Fe

• Presently investigating Cr & Ni

20

*Baile et al., Nature 2015



ZAPP campaigns simultaneously study multiple Sandia
National
Laboratories

issues spanning 200x in temperature and 106x in density

Solar Opacity

Question:
Why can't we predict the
location of the convection
zone boundary in the Sun?

Achieved Conditions:
Te — 200 eV, ne — 1023 cm-3

Los Alamos
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Photoionized Plasmas

Question:
How does ionization and
line formation occur in
accreting objects?

Achieved Conditions:
Te 20 eV, ne — 1018 cm-3

White Dwarf Line-Shapes

Question:
Why doesn't spectral fitting
provide the correct properties
for White Dwarfs?

Acheived Conditions:
Te — 1 eV, ne — 1017 Cm -3

TEXAS



We learn about black holes from the matter falling
into them these are photoionized plasmas

Conceptual Picture of a Black-Hole Accretion Disk
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Laboratory Plasmas 

ne — 1019 CM-3

F > 1 TW/cm2 for > 10

• Can we model the ionization?

• Can we model the line emission?



We learn about black holes from the matter falling
into them these are photoionized plasmas

Conceptual Picture of a Black-Hole Accretion Disk

10 — 10,000 erg.cm.s-1

Compton scatter
to observer

• • •
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F > 1 TW/cm2 for > 10

• Can we model the ionization?

• Can we model the line emission?
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A Specific Problem: Emission from L-shell ions is we!.
not seen in some prominent black-hole accretion disks.

0.9
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Measured Fe Emission
from MCG 6-30-15

-k* Suzaku
— XMM-Newton
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7 8

No observed emission from
Fe ionized to the L-shell

Resonant Auger Destruction (RAD)
was accepted as the reason*

• 2 competing processes for the
de-excitation of L-shell ions:

Radiative Auger
Decay Decay

2p
2s
ls

-"\/•/W-110.

2p
2s
ls

• Thin Plasma: high probability of
observing the photon

• Thick Plasma: high probability of the
photon being resonantly absorbed

4 Higher probability of Auger Decay
for the ensemble

24

*Ross, Fabian and Brandt, MNRAS, 1996



New models* suggest that RAD may not be as
efficient as previously thought.
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Question: Is Resonant Auger Destruction the reason we don't see emission
from L-shell ions in some black-hole accretion disks?

Ob'ective: Measure spectra in a highly photo-ionized lab plasma.

*Liedahl, X-ray Diag. of Astrophysical Plasmas (2005)



ZAPP experiments achieve 20 at the correct
column depths to study the RAD question.
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Recent emission measurements demonstrate that
L-shell emission is not 100% quenched by RAD.
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• Z Data demonstrates that L-
shell emission does escape at
column depths >1E17 at/cm2.

• Present data can discriminate
between models of the
ionization distribution AND
relative line strengths.

• Absolute intensity is needed to
determine efficiency of RAD
process.
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ZAPP campaigns simultaneously study multiple Sandia
National
Laboratories

issues spanning 200x in temperature and 106x in density

Solar Opacity

Question:
Why can't we predict the
location of the convection
zone boundary in the Sun?

Achieved Conditions:
Te - 200 eV, ne - 1023 cm-3

Los Alamos
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Achieved Conditions.
Te — 20 eV, ne — 1018 C
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White Dwarf Line-Shapes

Question:
Why doesn't spectral fitting
provide the correct properties
for White Dwarfs?
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Te - 1 eV, ne - 1017 cm-3
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The properties of White Dwarfs are determined by
spectral fitting, but disagrees with other methods

• White Dwarfs are fundamentally
important
>. Evolutionary endpoint for -98% of stars

>. Simple in structure and evolution

>. Cosmic laboratories (cosmochronology)

• WD surface temperature and total
mass are usually determined by fitting
the observed spectra

• The spectroscopic method and
gravitational redshift disagree by
>10% in the stellar mass
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Spectral fit of WD J1916+3938*
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*Hermes et al. 2011



New Stark broadened line-shape calculations*
partially fix the problem are they right?
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Question: Are inaccurate H-Balmer line shapes responsible for the inaccurate
determination of WD mass?

Objective: Measure H-Balmer line shapes at relevant temperature and density.



ZAPP experiments utilize radiatively heated gas
cells to provide benchmark data for the WD problem

• Gas cells provide a precisely
known atom density

• Large cell size provides optical
depths needed for high-n lines

• Large cell minimizes the effect of
boundary layers

Z Pinch 

• Long fielding distance provides
uniform heating flux

Gas Cell Model 

Gas Cell 
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*Falcon et al., HEDP 9 2013



Simultaneous streaked absorption and emission
in absolute units provide a unique capability
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The measured evolution of H-Balmer line shapes
provides tight constraints on models
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• Measurement of relative line-
shapes up to n=7 provides a
strong constraint on models

• Additional measurements at
higher density may be required to
fully address the WD problem

• Continued scrutiny on the data is
prudent:

➢ Reproducibility of the result
➢ Plasma uniformity

33



Summary: ZAPP experiments measure fundamental up Eaaa ries
properties of atoms in plasmas to solve important
astrophysical puzzles.

• Why can't we predict the location of the
convection zone boundary in the Sun?

➢ Opacity of Fe at -200 eV

• How does ionization and line formation occur
in accreting objects and warm absorbers?

➢ Ionization distribution and spectral
properties of photoionized Ne and Si

• Why doesn't spectral fitting provide the correct
properties for White Dwarfs?

➢ Stark-broadened H-Balmer line profiles
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ZAPP experiments inform and challenge the
interpretation of spectral data from the world's
multi-billion dollar x-ray observatories.
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Nailing fingerprints in the stars
Labomtoty-based experiments are soreh, needed to complement the rapidly proWeruting spectml
data originating from observations by the latest space telescopes.

W
hat are stars made of? After astronomers detected a bright-
yellow, unknown spectral line in sunlight in 1868, they
named the new element hclium after the Greek Sun god

Helios. But it was some 30 years before physicists on Earth managed
to detect — and so confirm the discovery of — helium in a laboratory.

It is a pattern that has been repeated many times since the indirect
detection of elements and molecules throuah soectral signatures in

quantum mechanics. But heavier elements have many electrons that
can participate in transitions — iron has 26, making the probabilities
of possible transitions between levels too complex to calculate accu-
rately. Measuring emissions in the lab is the only alternative. Physicists
can use tunable lasers to excite electrons into more levels and measure
further transitions. This information can then feed back to the astro-
nomical observations. Extra funds would significantly imorove this
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Chandra

XMM-Newton

Suzaku

"Laboratory-based experiments are sorely needed to complement the rapidly
proliferating spectral data originating from the latest space telescopes"

*Nature editor, Nature 03 2013


