This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
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Summary: ZAPP experiments measure fundamental () i
properties of atoms in plasmas to solve important
astrophysical puzzles.

Fe Opacity

« Why can’t we predict the location of the
convection zone boundary in the Sun?

> Opacity of Fe at ~200 eV g ;

Si Photoionization
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* How does ionization and line formation occur 3 VAWM M S
in accreting objects and warm absorbers? T TR W
. . . 5 . U | I i ‘ v | ‘r ! WJ
> lonization distribution and spectral | | w E
properties of photoionized Ne and Si !

« Why doesn’t spectral fitting provide the correct
properties for White Dwarfs?

» Stark-broadened H-Balmer line profiles




The Z facility at Sandia National Laboratories is the (==,
most powerful pulsed power machine in the world.
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Breakthroughs in Z-pinch technology enabled the @ =i
study of high-temp HED plasmas using Pulsed Power.
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C. Deeney et al, Phys. Rev. Lett. 81, 4883 (1998) ; R.B. Spielman et al, Phys. Plasmas 5, 2105 (1998)



Breakthroughs in Z-pinch technology enabled the @) &,

: : Natoral
study of high-temp HED plasmas using Pulsed Power.
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Experiments on Z access a broad range of the ) =,
energy-density phase space

$+High Energy Density (HED) Regime, € > 1 Mbar
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Experiments on Z access a broad range of the ) =,
energy-density phase space
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The z-pinch dynamic hohlraum (ZPDH) produces (i) i
record currents of 25.8 MA with 1.5% reproducibility
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The ZPDH x-ray emission is reproducible to * 10%
in peak power and * 7% in energy

Radial X-ray Power and Energy
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The ZPDH can also radiatively heat samples placed () &
above the z-pinch to T,~200 eV.

Framing Pinhole Camera Images
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The ZPDH simultaneously drives four ) e
independent experiments on a single ZAPP shot

1 Axial Experiment 3 Radial Experiments
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Placing samples at multiple distances from the ) B
z pinch provides a broad range of drive flux.
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ZAPP campaigns simultaneously study multiple ) B
issues spanning 200x in temperature and 10%x in density

Solar Opacity Photoionized Plasmas White Dwarf Line-Shapes

Question: Question: Question:

Why can’t we predict the How does ionization and Why doesn’t spectral fitting
location of the convection line formation occur in provide the correct properties
zone boundary in the Sun? accreting objects? for White Dwarfs?

Achieved Conditions: Achieved Conditions: Acheived Conditions:

T, ~ 200 eV, n, ~ 102 cm3 T.~20eV,n,~ 10" cm-3 T.~1eV,n,~ 10" cm™3
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ZAPP campaigns simultaneously study multiple N

Laboratories

issues spanning 200x in temperature and 10%x in density

Solar Opacity

Question:

Why can’t we predict the
location of the convection
zone boundary in the Sun?

Achieved Conditions:
T.~ 200 eV, n, ~ 102 cm™3

1
N ~—

Question:

How does ionization and
line formation occur in
accreting objects?

Achieved Conditions:
T.,~20eV,n,~10"® cm™

v O

Question:

Why doesn’t spectral fitting
provide the correct properties
for White Dwarfs?

Acheived Conditions:
T.~1eV,n,~ 10" cm3




Models for solar interior structure disagree with ) =,
helioseismology observations.

Convection-Zone (CZ) Boundary
Models are off by 10-30 ¢

Models depend on:
« Composition (revised in 2005%)

« EOS as a function of radius
» The solar matter opacity

* Nuclear cross sections

-

Question: Is opacity uncertainty the cause of the disagreement?

Objective: Measure Fe opacity at CZ base conditions.
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*M. Asplund et al, Annu. Rev. Astro. Astrophys. 43, 481 (2005).



The ZPDH radiating shock is used to both heat and () ja,
backlight samples to stellar interior conditions.

Foil is heated during 1.0
the ZPDH implosion 508
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The achieved temperature and density depend on () %,
the target design.

Thin Tamper | Thick Tamper
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Modern computations of Fe opacity show large 7| Netona
disagreements with data at CZ base conditions
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Present Status*

Agreement between data and
computation becomes worse at
increasing temp. and dens.

Disagreements at CZ base
conditions can partially explain
the CZ boundary problem.

The differences are probably
not unique to Fe

Presently investigating Cr & Ni

20

*Bailey et al., Nature (2015)



ZAPP campaigns simultaneously study multiple N

Laboratories

issues spanning 200x in temperature and 10%x in density

Photoionized Plasmas

Question: Question: Question:

Why can’'t we predict the How does ionization and Why doesn’t spectral fitting
location of the convection line formation occur in provide the correct properties
zone boundary in the Sun? accreting objects? for White Dwarfs?

Achieved Conditions: Achieved Conditions: Acheived Conditions:
T,~200eV, n,~ 102 cm3 T.~20eV,n,~ 10" cm-3 T.~1eV, n,~ 10" cm=
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We learn about black holes from the matter falling (] s
into them — these are photoionized plasmas

Conceptual Picture of a Black-Hole Accretion Disk Photoionization parameter
£~10-10,000 erg.cm.s™' A F
£ = erg.cm.s™!]
Te
Laboratory Plasmas

n,~ 10" cm=3
F>1TW/cm? for & > 10

« (Can we model the ionization?

« (Can we model the line emission?




We learn about black holes from the matter falling (] s
into them — these are photoionized plasmas

Conceptual Picture of a Black-Hole Accretion Disk
£~10-10,000 erg.cm.s™'
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Laboratory Plasmas

n,~ 10" cm=3
F>1TW/cm? for & > 10

Can we model the ionization?

Can we model the line emission?




A Specific Problem: Emission from L-shell ions is () i
not seen in some prominent black-hole accretion disks.

Measured Fe Emission Resonant Auger Destruction (RAD)
from MCG 6-30-15 was accepted as the reason*

e J | Tr—r—r—

-6~ Suzaku
— XMM-Newton

» 2 competing processes for the

13} de-excitation of L-shell ions:

12} Radiative Auger

Ratio

11}

1.0 YR
. . « Thin Plasma: high probability of
;) T Y E RN SN observing the photon

Observed energy (keV) « Thick Plasma: high probability of the

photon being resonantly absorbed
No observed emission from > Higher probability of Auger Decay

Fe ionized to the L-shell ; for the ensemble
T 24

*Ross, Fabian and Brandt, MNRAS, 1996




New models* suggest that RAD may not be as ) i,
efficient as previously thought.
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Question: Is Resonant Auger Destruction the reason we don’t see emission
from L-shell ions in some black-hole accretion disks?

Objective: Measure spectra in a highly photo-ionized lab plasma.

*Liedahl, X-ray Diag. of Astrophysical Plasmas (2005)




ZAPP experiments achieve ¢ ~ 20 at the correct
column depths to study the RAD question.
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Recent emission measurements demonstrate that @ s,
L-shell emission is not 100% quenched by RAD.

Present Status

« Z Data demonstrates that L-
shell emission does escape at
column depths >1E17 at/cm?.

 Present data can discriminate
between models of the
ionization distribution AND

Wavelength {(Ang.)

N = B.OET7 relative line strengths.
nphot = 9 60E13
3Ix10"F N M I -; . . .
ew Model « Absolute intensity is needed to

ée 2x10%f E determine efficiency of RAD
2 : ’ process.




ZAPP campaigns simultaneously study multiple N

Laboratories

issues spanning 200x in temperature and 10%x in density

White Dwarf Line-Shapes

Question: Question: Question:

Why can’t we predict the How does ionization and Why doesn’t spectral fitting
location of the convection line formation occur in provide the correct properties
zone boundary in the Sun? accreting objects? for White Dwarfs?

Achieved Conditions: Achieved Conditions: Acheived Conditions:
T,~200eV, n, ~ 102 cm3 T.,~20eV,n,~10"® cm3 T.~1eV,n,~ 10" cm™3
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The properties of White Dwarfs are determined by () s
spectral fitting, but disagrees with other methods

Spectral fit of WD J1916+3938*

« White Dwarfs are fundamentally

1.4x10718 ——r—r— T T T T J
important 2
» Evolutionary endpoint for ~98% of stars 1.2x10-15 i
» Simple in structure and evolution = ]
» Cosmic laboratories (cosmochronology) % 10-1
% 8x10-16 |+
- WD surface temperature and total e -
mass are usually determined by fitting & 4, g!
the observed spectra = '
) 4x10-18 |-
The spectroscopic method and _
gravitational redshift disagree by e T ©0 100 00 0
>10% in the stellar mass Wavelength (A)

*Hermes et al. (2011)



New Stark broadened line-shape calculations® | Neoora
partially fix the problem — are they right?

T.=10,000 K Tremblay & Bergeron
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Question: Are inaccurate H-Balmer line shapes responsible for the inaccurate
determination of WD mass?

Objective: Measure H-Balmer line shapes at relevant temperature and density.

*P. Tremblay and P. Bergeron, ApJ (2009)



ZAPP experiments utilize radiatively heated gas ) e
cells to provide benchmark data for the WD problem

Gas Cell Model

» Gas cells provide a precisely
known atom density

2 -

& Spectrometer
Fiber

Large cell size provides optical
depths needed for high-n lines

* Large cell minimizes the effect of
boundary layers

* Long fielding distance provides
uniform heating flux

\ 7 : 7 7 : N ..............

Optical
Spectrometer

*Falcon et al., HEDP 9 (2013)



Simultaneous streaked absorption and emission () &
In absolute units provide a unique capability

Emission Absorption
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The measured evolution of H-Balmer line shapes (i) i
provides tight constraints on models

*10'® e /om?® HTV HT&
’ ; Present Status

* Measurement of relative line-
shapes up to n=7 provides a
strong constraint on models

« Additional measurements at
higher density may be required to
fully address the WD problem

Line Transmission

» Continued scrutiny on the data is
prudent:
» Reproducibility of the result
» Plasma uniformity

-
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Summary: ZAPP experiments measure fundamental () i
properties of atoms in plasmas to solve important
astrophysical puzzles.

Fe Opacity

« Why can’t we predict the location of the
convection zone boundary in the Sun?

> Opacity of Fe at ~200 eV g ;

Si Photoionization
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* How does ionization and line formation occur 3 VAWM M S
in accreting objects and warm absorbers? T TR W
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> lonization distribution and spectral | | w E
properties of photoionized Ne and Si !

« Why doesn’t spectral fitting provide the correct
properties for White Dwarfs?

» Stark-broadened H-Balmer line profiles




ZAPP experiments inform and challenge the ) B
interpretation of spectral data from the world’s
multi-billion dollar x-ray observatories.
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Nailing fingerprints in the stars

Laboratory-based experiments are sorely needed to complement the rapidly proliferating spectral
data originating from observations by the latest space telescopes.

Suzaku

hat are stars made of? After astronomers detected a bright- quantum me« chanics. But hea l ents have many electra lh t
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“Laboratory-based experiments are sorely needed to complement the rapidly
proliferating spectral data originating from the latest space telescopes”

*Nature editor, Nature 503 (2013)



