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Exascale: Paradigm For Future Scientific Problems

• Open doors to new discoveries.

• Aerospace engineering, energy,
astrophysics, biology, climate
modeling, national security, etc.

• Challenges?

Blue-brain project (web).

Molecular model of a bacterial ribosome.
(MRC Lab of Molecular Biology, web)

Global-scale simulation of storms (LBNL, web).
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• New architectures capable of combining tens of thousands of
CPUs and/or accelerators.

• Growing energy costs a
• Currently: 1/2 megawatts per petaflop/s.
• Projection: multiply by 1,000 to get to exascale, not affordable.
• Target: 50 MW for exascale by 2020.

• Software developers will have to learn how to build programs
that can make use of the new architecture.

ahttp://spectrum.ieee.org/computing/hardware/nextgeneration-supercomputers

• Concurrency/parallelism: nodes/cores/threads.

• Cost: data movement dominates.

• Locality: keep data local, reduce communication.

• Resiliency.
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Faults: Soft and Hard Errors

• Exascale will push hardware to the limits.

• Mean time between failures (MTBF)
• Currently: order of days/weeks a
• Exascale: Many more components MTBF — hours/minutes?

• Hard faults: nodes dying/hanging, network failures.

• Soft (silent) faults: changes in system caused by external forces, e.g.
bit-flips, masked errors. Difficult to detect.
• Cosmic rays.

• Variation in voltage, temperature.

• Conventional approaches may not be effective
• Time to save or restart from checkpoint may exceed MTBF.

• Need to evolve algorithms, not just hardware.

aTOWARD EXASCALE RESILIENCE: 2014 UPDATE, F.Cappello et al.,
SUPERCOMPUTING FRONTIERS AND INNOVATIONS, 2014
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What? Domain-decomposition-based solver for 2D partial differential
equations (PDEs).

How? Recasting the original PDE problem as a sampling problem,
followed by a resilient data manipulation to achieve the final
solution update.

Why? Resilient to both soft and hard faults.

We do not characterize all types of system faults that can occur,
but focus solely on the information that a simulation provides.
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m Overview

• Grid with current state.
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m Overview

• Grid with current state.

• Partition space with
overlapping subdomains.

• Define sampling range for
each boundary.
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m Overview

• Grid with current state.

• Partition space with
overlapping subdomains.

• Define sampling range for
each boundary.

• Sample uniformly and
solve PDE locally.
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m Overview

• Grid with current state.

• Partition space with
overlapping subdomains.

• Define sampling range for
each boundary.

• Sample uniformly and
solve PDE locally.

• Use samples to build
boundary maps:
= f(y2, YL) = a + by2 + cyL

y2 = g(yi, yR) = d + 6.3/2+ fyp

y1
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From samples build:

y2= g(y1 'YR)

From samples build:

y1= f(y2
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m Overview

• Grid with current state.

• Partition space with
overlapping subdomains.

• Define sampling range for
each boundary.

• Sample uniformly and
solve PDE locally.

• Use samples to build
boundary maps:
= f(y2, YL) = a + by2 + bYL

Y2 = g0/1 yR) = d+ ey2 + fyp

• A, YR are known BC.

• Fixed BC solve for new
state: (yi* , yn.

y

New state/new range
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Y yl Y2
Y5 Y6

X1 X2 
X3 X4 

X5X6

yi = fi (YL, Y2) 
Y2 = f2(Yi, Y4)

Y3 = f3(Yi , 
Y4) Y4 = f4(Y3, Y6)

Y5 = f5(Y3, Y6) 
Y6 = f6(Y5, YR)

Same procedure but 
inner boundary maps 

are 2D

YR
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Local PDE samples
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Local PDE samples
  Stage 5: regression, build

boundary maps
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•

Local PDE samples
  Stage 5: regression, build

boundary maps

Stage 6: solve boundary
maps system

Stage 7: update state,
repeat loop

Current state

.t•
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• - entation, Faults and Resilience

• MPI-based parallel code in C++.

• "Task-manager" framework:

• Separate data and computation.
• Data stored on "sandboxed" servers.
• Operations as tasks that clients execute.

• Subdomains (state) live on servers.
Clients are used for computations.
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• - entation, Faults and Resilience

• MPI-based parallel code in C++.

• "Task-manager" framework:
• Separate data and computation.
• Data stored on "sandboxed" servers.
• Operations as tasks that clients execute.

• Subdomains (state) live on servers.
Clients are used for computations.

• Resilient to hard faults (clients crashing):
hard faults missing information.

• Need capability within algorithm to deal
with missing data...
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• - entation, Faults and Resilience

• Hard fault:
what? Client dies.
how? Set idle.

result? Lost task.

• Fault occurrence as a Poisson process: F(t) = 1 — exp-rt.

• Six different failure rates, r, explored.
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• - entation, Faults and Resilience

• Hard fault:
what? Client dies.
how? Set idle.

result? Lost task.

• Network fault:
what? Communication.
how? Bit-flip task's data.

result? Corrupted data.
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• Fault occurrence as a Poisson process: F(t) = 1 — exp-rt.

• Six different failure rates, r, explored.
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• - entation, Faults and Resilience

• Hard fault:
what? Client dies.
how? Set idle.

result? Lost task.

• Network fault:
what? Communication.
how? Bit-flip task's data.

result? Corrupted data.

n twork fault 
O going task I 

,

•
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• Execution fault:
what? Computation.
how? Bit-flip task's data.

result? Corrupted data.

• Fault occurrence as a Poisson process: F(t) = 1 — exp-rt.

• Six different failure rates, r, explored.
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ore Tasks and Soft Faults

Sampling

• PDE solve in subdomain given BC.

• Keep generating samples until we have
sufficient data set.

• N samples to guard against faults.

Regression

• Build boundary maps from PDE
samples.

• Faults yield corrupted samples.

• fi noise model (Laplace) as filter.

• Analogy with compressed sensing: find
solution with as few non-zero residuals
as possible
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Local PDE samples

• • Data

— /2 regression
— L regression
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Wight
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Algncthm Results

Test Case: 2D steady-diffusion equation

• Elliptic PDE:

V (k(x)Vy(x)) = g(x), for x e f2 = (0, 1 )2

• Homogeneous Dirichlet BC: y

• Diffusivity and source term:

of2 = 0.

k(xi. x2) = 0.5 * (9.0 + 9.0 * tanh 
(d(xi,x2)) 

+ 1.0
0.01

g(xi. x2) = 0.5 * (2.0 + 2.0 * tanh (
d(xl , x2))
0.01 

1.0

where d(xi, x2) = 0.25 — — 0.5)2 + (x2 — 0.5)2.

• Non-trivial solution due to the steep gradient.

• Numerical solution based on 2nd-order finite-differences.
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LammikilMINEE
• Linear PDE boundary maps linear solution in one iteration.

• Length of overlap does not matter for linear problem.

• 3 x 3 subdomains, underlying uniform grid with n, = ny = 101.

• Solution is obtained(needed) only at boundaries.
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•roblem iz-

• With faults, we want to explore the effect of problem size.

• Problem size affects: communication, computation time, and
faults occurrence.

• Task-manager configuration: 1 server, 62 clients.

• 40 ensemble runs.
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• Bigger problem is more
expensive, yielding more faults.

• S9gs372: bounded by
communication cost.

• S4gs1032: sufficiently intense to
reveal growing trend for runtime.

• Convergene in all cases.
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tation fault

• Bigger problem, more faults.

• Overall, few faults: execution
time is small.

• Minimally affect runtime, too
few faults.

• Convergene in all cases.
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w•rk/Communication faults

• Number of faults similar between
small and large problem.

• Larger problem more affected by
network faults because each task
is more expensive to rerun.

• Convergence achieved in all cases.
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• How does algorithm behave when all faults are activated
and can occur concurrently?

• Three gradually increasing rates, from r1 to r6.

• Convergence is achieved in all cases.

• Runtime doubles for the largest case for highest rate.
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Results Conclusions

Conclusions and Ongoing Work

• Approach/implementation provides resilience to:
• Silent / Soft errors such as bit-flips.
• Missing data due to communication issues or node failures.

• Sampling/decomposition approach provides concurrency/parallelism.

• Convergence is achieved in all cases.

• Ongoing work
• Effective solution update for non-linear problems.
• Dimensionality reduction.
• Scalability for more complex problems.
• How does it compare to regular solvers?
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