This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
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As a part of the Source Physics Experiment (SPE) site characterization, Sandia National Laboratories, in conjunction with HK Ex- The Magni test was conducted in December 2014 at the NNSS as a small-scale The Thor test was conducted in March 2015 at the NNSS. This is a continuation of the Magni test and was conducted in Yucca Flat allu- After it was verified that the airborne sensor could detect the hammer shots above the rotor and vibration noise we proceeded to
ploration, deployed a large (13 metric ton) seismo-acoustic hammer source at the Nevada National Security Site (NNSS) in Decem- shakedown test prior to the larger survey (Thor). We deployed 6 Hyperion, seis- vium. For this test our primary objective was to fly a digital, seismically decoupled Hyperion infrasound sensor above the Seismic deploy the airborne sensor at various locations above and around the hammer. In addition to the airborne sensor we deployed four
ber 2014. This was a small-scale test of a planned larger, active source, seismic survey to be conducted with the seismo-acoustic mically decoupled infrasound sensors with REFTEK digitizers. The 6 sensors Hammer. After several test flights we successfully collected three flights of airborne infrasound data above the hammer. In addition to ground stations roughly 30 m North, South, East, and West of the hammer. The airborne sensor then hovered 30 m above ground
hammer source in 2015 at the NNSS. During early field-testing of the hammer source we found that, as the mass hit the ground, a were deployed roughly 100 m azimuthally around one of the hammer shot points collecting infrasound data on the airborne platform we installed four ground-based infrasound sensors around the hammer to ob- level (AGL) and 30 m North, directly above and finally, 30 m South of the Hammer. Winds during the test were from South to North.
significant downward deflection of the surrounding surface imparted an observable infrasound pressure wave into the atmo- along the Southeast line (left). After the hammer test shot location near the serve the 3-D wave-field (discussed on right panel). The photos below show one configuration of mounting (below left), the vehicle in NORTH

center of the line, the hammer shots moved from the Southeast to Northwest. The
sensor network remained stationary while the hammer was relocated.

sphere. We present results from the early field-testing as well as the results from the small-scale experiment and airborne sensor
data collect at the NNSS. The early field-testing was conducted in a crane yard in North Las Vegas, NV with asphalt at the surface
while the test at the NNSS was done on alluvium. The alluvium has a higher flexure rate than the asphalt thus allowing better sur-
face deflection and subsequent atmospheric coupling. For nuclear explosion monitoring, with infrasound, the ground surface is
the source of the atmospheric pressure perturbations and by characterizing the source geology we hope to better understand the

flight with sling-load mounting (below middle) and hovering above the hammer (below right), also with slingload mounting.
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BELOW: Two peak-to-peak amplitude plots from all of the hammer shots recorded
by each of the infrasound sensors on a linear scale (below left) and log amplitude
(below right) for sensor 6. The amplitudes increase as the hammer is moved from
the test shot location and then from Southeast to Northwest. The amplitude varia-
GROUND ARRAY tion (below left plot) shows the range variation in sensor location. The log plot
j SR (below right) shows the amplitude increasing and then decreasing over the course
=l of the hammeer shot sequence. This may be related to when the hammer is reposi-

BACKGROUND

The HK Exploration Seismic Hammer™ (SH) has been developed to generate large, repeatable seismic impulses for active source
seismic experiments. The SH is an impulsive source capable of generating up to .19 mega-joules of energy by hydraulically lifting
and then dropping a 13 metric ton mass from a height of 1.5 m. The hammer is capable of up to 3 shots per minute with remark-
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able consistency. Researchers with the Source Physics Experiment (SPE) are currently using the SH at the Nevada National Secu- ABOVE: Map showing the 6 Hyperion, seismi- tioned and the soil has to be recompacted.
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The North Las Vegas (NLV) hammer test was the initial proof-of-concept test to determine if the seismic hammer produced infra- > o S0 the sensor on the octocopter ob- | . Octocopter transit Octocopter hovering 50 m hovered 30 m AGL and 30 m North of the hammer, directly above the hammer and 30 m South of tONS:
sound. HH Seismic deployed the hammer at a crane yard in North Las Vegas, NV. We installed 6 Hyperion, seismically decoupled serving a hammer hit while on Of;i‘;%‘#er to station above hammer the Hammer.
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not. Largest source-to-receiver distance was 0.5 km. right panel is a passing train. Hammer shots are very consistent.
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