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ABSTRACT
The Ring Buffer is a staple data structure in computer sci-
ence. They are excellent for high demand applications such
as multimedia, network routing, and trading systems. We
present a new ring buffer providing the wait-free progress
guarantee suitable for such applications. We are not aware of
any other array-based design providing this guarantee that
every thread must complete its operation in a finite number
of steps. Thus it is desirable for real-time and mission criti-
cal systems. However, the added complexity to achieve this
guarantee often results in reduced performance.
To prevent such pitfalls, our ring buffer introduces a method-

ology for diffusing contention resulting in increased perfor-
mance and scalabilty. On average, the design experiences
100% more operations than a coarse-grained locking ap-
proach, 15% more than TBB's concurrent bounded queue,
10% more than the lock-free approach presented by Krizhanovsky,
and 140% more than the cycle queue by Tsigas.
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1. INTRODUCTION
A ring buffer or cyclical queue is a First In, First Out

(FIFO) queue that stores elements on a fixed-length ar-
ray.This allows for efficient 0(1) operations, cache-aware op-
timizations, and low memory overhead. Because ring buffers
are limited to only the array and two counters they are de-
sirable for systems with limited memory. Many applications
(e.g. cloud-based services) depend on ring buffers to pass
work from one thread to another. The rise in many-core ar-
chitecture has resulted in increased performance from shared
data structures such as ring buffers. Existing research has
forgone the use of locks and permitted greater scalability
and core utilization for such designs. Such non-blocking de-
signs are categorized by the level of progress they guarantee
with wait-freedom being the most desirable categorization.
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Such a guarantee provides freedom from deadlock, livelock,
and thread starvation. Lock-free and obstruction-free de-
signs are not safe from all of these pitfalls [3].
We are aware of two other non-blocking ring buffers in

literature. Tsigas et al. presented a lock-free approach in
which threads compete to apply an operation [7]. Section 10
shows this approach suffers from thread congestion and poor
scaling. Krizhanovsky presented a non-blocking approach
which improves scalability through the use of the Fetch and
Add operation [5] but unfortunately, the design is susceptible
to thread starvation and is not thread death safe.
In the presented performance comparison, on average, our

design outperforms best available alternative designs by at
least 10%. Compared to the Intel Thread Building Blocks' (TBB)
concurrent_bounded_queue, it performs 15% more opera-
tions. These results support the hypothesis that the design
is optimal for many-core systems, as seen in Section 10.
We provide the following novel contributions. This is the

first array-based wait-free ring buffer. Other known ap-
proaches are susceptible to hazards such as live-lock and
thread starvation. Our design presents a new way of apply-
ing sequence numbers and bitmarking to maintain the FIFO
property. Our design maintains throughput in scenarios of
high thread contention. Other known approaches degrade as
the thread contention increases, making our implementation
more suitable for highly parallel environments.

2. RELATED WORKS
In this section we describe the implementation of other

concurrent ring buffers capable of supporting multiple pro-
ducers and consumers.

Tsigas et al. [7] present a lock-free ring buffer in which
threads compete to update the head and tail locations. An
enqueue is performed by determining the tail of the buffer
and then enqueuing an element using a CAS operation. A
dequeue is performed by determining the head of the buffer
and then dequeueing the current element using a CAS oper-
ation. This design achieves dead-lock and live-lock freedom;
if a thread is unable to perform a successful CAS operation,
the thread will starve. Unlike other designs, which are able
to diffuse contention, the competitive nature of this design
leads to increased contention and poor scaling.

Krizhanovsky [5] presents a lock-free and high performance
ring buffer. This implementation relies on the FAA opera-
tion to increment head and tail counters, which determine
the index to perform an operation. This reduces thread con-
tention and provides better scaling. Each thread maintains
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a separate tail and head value of the last completed enqueue
or dequeue, respectively. The smallest of all threads' local
head and tail values are used to determine the head and tail
value at which all threads have completed their operations.
These values prevent an attempt to enqueue or dequeue at a
location where a previously invoked thread has yet to com-
plete it's operation.

Intel Thread Building Blocks (TBB) [6], an industry stan-
dard for many concurrent data structures provides a con-
current bounded queue which utilizes a fine-grained locking
scheme. The algorithm uses an array of micro queues to
alleviate contention on individual indices. Upon starting
an operation, threads are assigned a ticket value which is
used to determine the sequence of operations in each micro
queue. If a thread's ticket is not expected, it will wait until
the delayed threads have completed their operations.

Since there are no other known wait-free ring buffers to
compare the performance of our approach against, we im-
plemented one using a wait-free Multi-Word Compare-and-
Swap (MCAS) [1]. The design uses MCAS to move a head
and tail marker around the buffer. Specifically, after iden-
tifying the position holding the head marker, a thread en-
queues an element by using MCAS to replace the head marker
with the value being enqueued and replace an empty value
at the next position with the head marker. If the next po-
sition holds the tail marker, this indicates the buffer to be
full. Similarly, to dequeue a value, a thread uses MCAS to
replace the tail marker with an empty value and to replace
the value at the next position with the tail marker. If the
tail marker is followed by the head marker, this indicates
the buffer to be empty.
In contrast to the design presented by Tsigas, our buffer

does not lazily update head and tail values but instead in-
crements the values for every operation. By reducing the
amount of threads attempting to CAS at a given buffer lo-
cation, our approach is able to reduce the amount of failed
CAS operations. We achieve this with the help of using FAA
to increment head and tail values similar to Krizhanovsky.
However, unlike this design we avoid the danger of live-lock
by using these values a.s sequence numbers and implement-
ing new strategies to maintain order.

3. RESTRICTIONS AND LIMITATIONS
Our approach requires support for the following atomic

primitives: Compare-and-Swap (CAS), Fetch and Add (FAA),
Load, and Store. Our design also reserves the least signifi-
cant bit of a reference for designating a state.
The presented implementation omits details related to

memory management of short-lived objects. The tested im-
plementation uses a scheme based on the combination of haz-
ard pointers and reference counting to prevent these objects
from being reused prematurely. Without such protection, it
could introduce the ABA-problem.
For brevity and clarity, the pseudocode omits code related

to the bitmarking of references. If a reference has been de-
termined to hold a bitmark, the next step would be to re-
move the bitmark from the local copy before dereferencing
the object.

4. ALGORITHM OVERVIEW
In this section, we first define the algorithms supporting

functions, then present an overview of our approach, and

finally describe our specific implementation of the enqueue
and dequeue operations. The specific implementation of the
following supporting algorithms are omitted for brevity and
we instead provide their definitions:
In contrast to designs in which threads compete to finish

an operation, our approach diffuses thread contention and
reduces forced dependency. We accomplish this through the
use of sequence counters to assign ordering of elements. A
thread performing an enqueue or dequeue operation will per-
form an FAA on the tail or head sequence counter, respec-
tively. The returned sequence identifier (seqid) is used to de-
termine the position to enqueue or dequeue an element from
the buffer. Specifically, the position is determined by the se-
qid modulo the buffer's length. This seqid is also stored in
a Node for placement in the buffer.

Op.try_set_failed()

is_EmptyNode(Node)

is_ElemNode(Node)

is_skipped(Node)

set_skipped(Node)

next_head_seq()

next_tail_seq()

get_head_seq()

get_taiLseq()

get_position(seq)

backoff()

attempts to CAS an operation record
helper to a FAIL constant

returns whether the Node is an
EmptyNode

returns whether the Node is an
ElemNode

returns whether the Node is marked
skipped

atomically marks the Node as skipped

increments the head seq value and re-
turns the previous value

increments the tail seq value and returns
the previous value

returns the current head seq

returns the current tail seq

returns the buffer position for a seq value
(seq modulo buffer capacity)

suspends a thread for some interval of
time to reduce contention

Figure 1: Supporting Functions

A Node in the ring buffer may be one of two types. If the
Node is an ElemNode it contains an element member and
the seqid. An EmptyNode simply contains the seqid and
represents an empty buffer location. Thus we initialize our
buffer by storing an EmptyNode at each location with the
seqid equal to that index.
Our implementation solves several dangers that may arise

by using this methodology.

• An enqueue thread is assigned a position that holds an
ElemNode.

• A dequeue thread is assigned a position that holds an
EmptyNode.

• A dequeue thread is assigned a position that holds an
ElemNode, but its seqid is less than the thread's seqid.

These dangers can arise as a result of inopportune context
switches and/or thread delay. Our implementation includes
a novel solution that uses reference bitmarking along with
the seqid to ensure that these dangers do not affect the cor-
rectness of our implementation.

5. PROGRESS ASSURANCE
For a design to be wait-free, a thread must be able to

complete its operation in a finite amount of time. If a given



thread cannot complete its operation, there is not system-
wide progress. Without the progress assurance scheme, our
algorithm may encounter a rare condition in which threads
starve. With larger ring buffer sizes this possibility can
be further reduced. This is because the larger capacity in-
creases the number of operations between a given enqueue or
a given dequeue making it less likely for threads to compete
for the same buffer index.
The progress assurance scheme is designed in a similar

fashion to Herlihy's announcement table [2]. Threads check
the table incrementally at the start of every operation and
help complete any operation found (as presented by Ko-
gan [4]). This design uses an announcement table of oper-
ation records, which contains a control word indicating an
operation's state. A specific operation record exists for both
types of operations performed on the buffer: EnqueueOp and
DequeueOp. The control word for each operation record is a
reference to a Node object. In addition to the control word,
the EnqueueOp must contain the element to enqueue. When
the control word is no longer null, the operation has been
completed.

6. DEQUEUE
To dequeue an element a thread first checks if the ring

buffer is empty (L. 4), returning false if it is. Otherwise,
it will acquire a dequeue sequence number (seqid) from the
head counter and determine the position (pos) to dequeue
an element (L. 7- 8). The thread will then prepare an Emp-
tyNode to replace the dequeued value (L. 9). The seqid of
the EmptyNode is set to the assigned seqid plus the buffer's
capacity. In the common case, the thread will replace an
ElemNode whose seqid matches its assigned seqid with the
prepared EmptyNode (L. 44). Uncommon cases, which are
often the result of thread delay, are described below.

• The node holds a reference to an operation record
(L. 17). This indicates the node was placed as part
of a delayed thread's operation. Upon its return from
the associate function the node will be replaced or the
reference to the operation record will be removed. The
node at the current position is then re-examined.

• The node at the current position is an EmptyNode or
has a .seqid number smaller than the seqid assigned to
the thread. (L. 9, 26). In this event, a backoff rou-
tine is used to provide an opportunity for the delayed
thread to complete its operation. If the current node
has not changed, the thread will attempt to advance
the position by either replacing the current EmptyN-
ode with the prepared EmptyNode or performing an
atomic bitmark if it is an ElemNode. If the node has
changed, the position will be re-examined.

In order to achieve FIFO ordering, threads can only re-
move an ElemNode if it had been assigned that node's
seqid. The atomic bitmark allows a thread to get a new
seqid without the risk of an ElemNode being enqueued
with a seqid that has been given up.

• The node currently at the position is bitmarked and
is an EmptyNode (L. 20). This state resulted from the
previously described situation, in which a thread bit-
marked an ElemNode. The thread assigned that node's
seqid must have replaced it with a bitmarked EmptyN-
ode. Section 9 describes the importance of replacing

Algorithm 1 Dequeue (&result)

1: try_help_another()
2: fails = 0
3: while true do
4: if is_empty() then
5: return false
6: end if
7: seqid = next_head_seq()
8: pos = get_position(seqid)
9: n_node = EmptyNode(seqid + capacity)
10: while true do
11: if fails++ == MAX_FAILS then
12: op = Dequeue0p0
13: make_announcement (op)
14: return op.result(result)
15: end if
16: node = buffer[pos].load()
17: if node.op then
18: node.op.associate(node, &(buffer[pos]))
19: continue
20: else if is_skipped(node) and is_EmptyNode(node) then
21: if buffer[pos].cas(node, n_node) then
22: break
23: else
24: continue
25: end if
26: else if seqid > node.seqid then
27: backoff()
28: if node == buffer[pos].load() then
29: if is_EmptyNode(node) then
30: if buffer[pos].cas(node, ri_node) then
31: break
32: end if
33: else
34: set_skipped(&buffer[pos])
35: end if
36: end 

if37: elseifseqid < node.seqid then
38: break
39: else
40: if is_ElemNode(node) then
41: if is_skipped(node) then
42: n_node = set_skipped(n_node)
43: end if
44: success = buffer[pos].cas(node,n_node)
45: if success then
46: *result = node.value
47: return true
48: end if
49: else
50:
51: 

backoff()
if node == buffer[pos].load() then

52: if buffer[pos].cas(node, n_node) then
53: break
54: end if
55:
56: 

ened ifdn if

57: end if
58: end while
59: end while

Algorithm 2 DequeueOp::associate (node, address)

1: success = helper.cas(null, node)
2: if success or helper.load() == node then
3: n_node = EmptyNode(node.seqid + capacity)
4: if !address.cas(node, n_node) then
5: node = set_skipped(node)
6: if address.load() == node then
7: n_node = set_skipped(n_node)
8: address.cas(node, n_node)
9: end if
10: end if
11: else
12: node.op.store(null);
13: end if



a bitmarked ElemNode with a bitmarked EmptyNode.
This state is resolved by replacing the bitmarked Emp-
tyNode with an unbitmarked EmptyNode.

• The node currently at the position has a seqid greater
than the assigned seqid (L. 37). This implies that some
thread caused this thread's seqid to be skipped and as
result this thread needs to get a new seqid.

If no additional mechanism is employed, these uncommon
cases could force a thread to indefinitely reattempt its op-
eration. In the event the user-specified threshold of allowed
attempts is reached (L. 11), the thread will post an an-
nouncement and switch to a slow path dequeue operation
(Algorithm 3). We describe in Section 8 specifically how
this announcement scheme is used to ensure an operation is
completed in a finite number of steps.

Algorithm 3 Wait-Free Dequeue (op)

1: seqid = get_head_seq() -1
2: while op.in_progress() do
3: if is_empty() then
4: return op.try_set_failed()
5: end if
6: seqid++
7: pos = get_position(seqid)
8: while op.in_progress() do
9: node = buffer[pos].load()
10: if node.op then
11: node.op.associate(node, &(buffer[pos]))
12: continue
13: else if is_skipped(node) then
14: if is_EmptNode(node) then
15: if !buffer[pos].cas(node, n_node) then
16: continue
17: end if
18: end if
19: break
20: else
21: if seqid < node.seqid then
22: backoff()
23: if node == buffer[pos].load() then
24: break
25: end if
26: else if sec > node.seqid then
27: break
28: else
29: if is_ElemNode(node) then
30: n_node = ElemNode(seqid, node.value, op)
31: if buffer[pos].cas(node, n_node) then
32: op.associate(n_node, &(buffer[pos]))
33: return
34: end if
35: else
36: break
37: end if
38: end if
39: end if
40: end while
41: end while

The wait-free dequeue operation is similar to the regular
dequeue operation with the following differences.

• The operation ends when some thread calls op.try_seLfailed
or op.associate. Upon return from either function the
operation will be completed.

• The thread is not assigned a seqid but instead loads the
current value of the head counter. This is important
to prevent the scenario where a thread is assigned a
position after the operation has been completed and
as a result no longer needs to dequeue a value.

• The node placed holds a reference to the operation
record being executed. This is used to prevent the
case where multiple threads complete the same opera-
tion. Multiple nodes may reference the same operation
record, but the operation record may only reference a
single node.

• After a node is placed, the operation's associate func-
tion is called. This ensures that if the node was placed
incorrectly, its reference to the operation record will
be removed. If it was placed correctly, the node will
be replaced by an EmptyNode.

6.1 Linearizability and Correctness

6.1.1 Linearizability
In the general case, the linearization point for a successful

dequeue operation is the atomic FAA operation that assigns
the seqid (L. 7). However, this is not realized until the
thread successfully places an EmptyNode in place of the El-
emNode with seqid matching the seqid assigned (L. 44). If
the wait-free path is used then the linearization point for a
successful dequeue operation is the successful association of
an ElemNode and a DequeueOp (Algorithm 2 L. 1).
The linearization point for a failed dequeue operation is

when a thread detects that the ring buffer is empty (Algo-
rithm 1 L. 4). If the wait-free path is used then the lineariza-
tion point for a failed dequeue operation is the successful
CAS that set the operation's Helper member to the FAIL
constant.

6.1.2 Correctness
To ensure elements are dequeued in a correct order, only

the thread assigned the seqid matching the ElemNode in
the buffer may return that stored element. If a dequeue
operation fetches a head seqid greater than the current,
the position is marked for correction but the ElemNode is
not removed. This behavior ensures delayed operations lin-
earize before subsequent operations at the same index. Even
though the delayed operation may return after an operation
with a greater seqid, the former linearizes first because of its
lesser seqid.

Since dequeues may also modify locations holding an Emp-
tyNode, these operations must also be correct. However a
dequeue will only replace an EmptyNode with another Emp-
tyNode having a greater seqid. As other dequeue operations
may also only dequeue ElemNodes with matching seqid, in-
creasing the seqid of the current EmptyNode does not affect
their linearization ordering. Additionally, enqueue ordering
will not be invalidated as the enqueue sharing the seqid of
the previous EmptyNode does not linearize until its EmptyN-
ode is placed. This enqueue will then reset its linearization
point when it finds a new seqid or when the helping scheme
associates its EmptyNode and EnqueueOp.

7. ENQUEUE
To enqueue an element a thread will first check if the ring

buffer is full (L. 4), returning false if it is. Otherwise, it will
acquire an enqueue sequence number (seqid) from the tail
counter and determine the position (pos) to enqueue an el-
ement (L. 7- 8). The thread will then prepare an ElemNode
with the assigned seqid that holds the element being en-
queued (L. 9). In the common case, the thread will replace



Algorithm 4 Enqueue (val)

1: try_help_another()
2: fails = 0
3: while true do
4: if is_full() then
5: return false
6: end if
7: seqid = next_tail_seq()
8: pos = get_position(seqid)
9: n_node = ElemNode(seqid, val)
10: while true do
11: if fails++ == MAX_FAILS then
12: op = EnqueueOp(val)
13: make_announcement(op)
14: return op.result()
15: end if
16: node = buffer[pos].load()
17: if node.op then
18: node.op.associate(node, &(buffer[pos]))
19: continue
20: else if is_skipped(node) then
21: break
22: else if node.seqid < seqid then
23: backoff()
24: if node != buffer[pos].load() then
25: continue
26: end if
27: end if
28: if node.seqid <= seqid and is_EmptyNode(node) then
29: success = buffer[pos].cas(node, n_node)
30: if success then
31: return true
32: end if
33: continue
34: else if node.seqid > seqid or is_ElemNode(node) then
35: break
36: end if
37: end while
38: end while

Algorithm 5 Wait-Free Enqueue (op)

1: seqid = get_tail_seq() -1
2: while op.in_progress() do
3: if is_full() then
4: op.try_set_failed()
5: return
6: end if
7: seqid++
8: pos = get_position(seqid)
9: n_node = ElemNode(seqid, val, op)
10: while op.in_progress() do
11: node = buffer[pos].load()
12: if node.op then
13: node.op.associate(node, &(buffer[pos]))
14: continue
15: else if is_skipped(node) then
16: break
17: end if
18: if node.seqid < seqid then
19: backoff()
20: if node != buffer[pos].load() then
21: continue
22: end if
23: end if
24: if node.seqid <= seqid and is_EmptyNode(node) then
25: if buffer[pos].cas(node, n_node) then
26: op.associate(n_node, Szbuffer[pos]);
27: return
28: end if
29: else if node.seqid > seqid or is_ElemNode(node) then
30: break
31: end if
32: end while
33: end while

Algorithm 6 EnqueueOp::associate (node, address)

1: success = helper.cas(null, node)
2: if success or helper.load() == node then
3: node.op.store(NULL)
4: else
5: n_node = EmptyNode(node.seqid)
6: if !address.cas(node, n_node) then
7: node = set_skipped(node)
8: if address.load() == node then
9: n_node = set_skipped(n_node)
10: address.cas(node, n_node)
11: end if
12: end if
13: end if

an EmptyNode whose seqid matches its assigned seqid with
the prepared ElemNode (L. 29). Uncommon cases, which
are often the result of thread delay, are described below.

• The node holds a reference to an operation record
(L. 17). This indicates the node was placed as part of
another thread's operation. This must be resolved by
calling the associate function for that operation. Upon
its return either the node has been replaced or the ref-
erence to the operation record has been removed. The
thread will then re-examine the current position.

• The reference currently at the position has a bitmark
(L. 20) indicating it was marked as skipped, showing
that the node needs to be fixed by a dequeue thread.
As a result, the enqueue thread will get a new seqid
and retry.

• The node currently at the position has a seqid number
less than the assigned seqid (L. 22). In this event, the
thread will call the backoff routine to provide time for
the delayed thread to complete its operation. If the
current node has not changed and it is an EmptyNode,
the thread will attempt to replace it with the prepared
ElemNode. Otherwise, it will get a new seqid.

• The current node at the enqueue location has a se-
qid greater than the assigned seqid (L. 34). This im-
plies that some thread caused this thread's seqid to be
skipped and as result this thread needs to get a new
seqid.

As described in Section 6 unless the wait-free path is used,
these uncommon cases could force a thread to indefinitely
reattempt its operation. The following are key differences
between the regular enqueue operation and the wait-free en-
queue operation:

• The operation ends when some thread calls op.try_set_failed
or op.associate.

• The thread is not assigned a seqid but instead loads the
current value of the tail seqid counter. This is impor-
tant for achieving maximum unskipped buffer indices
resulting from canceled operations.

• The node placed holds a reference to the operation
record being executed. This is used to prevent the case
where multiple threads complete the same operation.
Many nodes may reference the same operation record,
but the operation record may only reference a single
node.



• After a node is placed, the operation's associate func-
tion is called. This ensures that if the node was placed
incorrectly then the node will be replaced by an Emp-
tyNode. If it was placed correctly, its reference to the
operation record will be removed.

7.1 Linearizability and Correctness

7.1.1 Linearizability
In the general ca.se, enqueue operations linearize at the

atomic FAA assignment of the tail seqid (L. 7). The lin-
earization point is observed by other threads when the El-
emNode is placed in the buffer by the enqueueing thread
(L. 29). When relying on the wait-free path, operations
linearize upon successful association of an ElemNode and
EnqueueOp (Algorithm 6 L. 1).

If the buffer is full, the enqueue operation linearizes at the
detection of a full buffer (Algorithm 4 L. 4). When the wait-
free path is used, a failed operation linearizes upon setting
the operation's helper to FAIL.

7.1.2 Correctness
Elements are placed according to the seqid modulo capac-

ity only if the current element is an EmptyNode with seqid
less than or equal to the new. This ensures that delayed
enqueue operations cannot overwrite new data but instead
find a new enqueue location. Additionally, the Node type
check designates that an ElemNode cannot replace another
ElemNode. These constraints ensure enqueue operations do
not overwrite other enqueued elements and are placed in a
correct order with respect to parallel enqueues.

8. WAIT-FREE PROGRESS
We show that both the dequeue and enqueue algorithms

are wait-free by first examining the loops and their termi-
nating conditions. Both algorithms contain two nested while
loops and in general the outer loop executes until the oper-
ation has been completed and the inner loop executes until
the assigned seqid is no longer viable. The MAX_FAILS
constant is used to place an upper bound on the number of
times a thread will execute these loops. If this constant is
reached, make_announcement is called. By our definition of
this function, the operation must be complete upon its re-
turn. Thus, if all supplementary functions called by dequeue
or enqueue are wait-free, then these functions are wait-free.
Except for TryHelpAnother and make_announcement, the

functions called are utility functions that are used to sim-
plify the code explanation. These functions are inherently
wait-free because they contain no loops or calls to non-
wait-free functions. However, both TryHelpAnother and
make_announcement are capable of calling wait-free dequeue
or wait-free enqueue. Thus wait-freedom is determined by
the progress guarantee of these two operations.
Both wait-free dequeue or wait-free enqueue employ the

same looping structures which terminate when the operation
record (op) is no longer in progress. An operation record is
in progress as long as its helper member is null.
To determine the number of operations that must com-

pleted before a given thread is successfully helped, we ex-
amine the nature of the progress assurance scheme. After
exceeding the MAX_FAIL constant an operation will be
helped. Within NUM_THREADS operations, some ar-
bitrary thread will have incremented its helping index to

our current operation in need of help. Accordingly, after
NUM_THREADS2 operations all threads must be helping
the operation. With all threads helping, one thread is guar-
anteed to succeed its CAS to associate and complete the op-
eration. Therefore, each operation is wait-free with a maxi-
mum number of attempts MAX_FAIL-FNUM_THREADS2.

9. FIRST IN FIRST OUT BEHAVIOR
Applying the constraints expressed in Sections 6.1 and 7.1

we are able to derive a correctness about the ring buffer's
FIFO property. To achieve this, dequeue operations only
replace an EmptyNode with a matching seqid of the thread
performing the operation. This constraint is important to
maintain FIFO ordering of the buffer. We have also applied
a bitmarking strategy to ensure the correct ordering implied
by the seqid values.
Without this bitmarking strategy, the following scenario

presented would break FIFO behavior. Assume a buffer ex-
ists of arbitrary size N, filled to capacity. Thread T1 is
assigned a dequeue operation with seqid 0. Before T1 is
able to deqeueue the element at index 0, the thread is sus-
pended while other threads successfully dequeue elements
with seqids 1 through (N-1) (i.e. the remaining elements).
Another thread then attempts to enqueue, incrementing the
tail value and allowing T2 to examine a non-empty buffer in
order to fetch seqid N. Rather than removing the element
also seen by T1, T2 will bitmark the ElemNode for correc-
tion by the thread that guarantees FIFO (i.e. T1). However,
if this constraint is not in place and T2 were to remove this
ElemNode, the operation linearized after the dequeues with
seqids 1 through (N-1). This would break the FIFO prop-
erty because as described in Section 7.1, the enqueue oper-
ation for this element linearized first. However, Section 6.1
states that the element's dequeue operation must linearize
before the elements with greater seqid. When T1 with seqid
0 removes the element, the linearization occurs before the
subsequent dequeues for seqids 1 through (N-1). This pro-
vides FIFO ordering amongst concurrent operations. If the
ElemNode is bitmarked, T1 will place a bitmarked EmptyN-
ode to synchronize the position with the buffer.

10. RESULTS
This section presents a series of experiments that compare

the presented ring buffer design to the best available alter-
native designs. Tests include performance results of a coarse
locking design (Locking), TBB's concurrent_bounded_queue
(TBB), the Tsigas cycle_queue (Tsigas), Krizhanovsky's ring
buffer (Linux), and the MCAS derived approach (MCAS).
For each experiment we present the configuration of the test,
the collected results, and analysis of that performance.

10.1 Testing Hardware
Tests were conducted on a 64-core ThinkMate RAX QS5-

4410 server running the Ubuntu 12.04 LTS operating system.
The system has 4 AMD Opteron 6272 CPUs, which contain
16 cores per chip with clockrate 2.1 GHz. It is a NUMA
architecture with 314 GB of shared memory. Executables
were compiled with GNU's C++ compiler, g++ version 4.7
with the -03 flag enabled.

10.2 Experimental Methodology



Our performance analysis is based on measuring the through-
put of each buffer when a set of threads perform enqueue and
dequeue operations. Our testing methodology consists of a
main thread that initializes the buffer and spawns a set of
worker threads before starting each test. The capacity of
each buffer was of size 224 = 16777216 and contents were
pre-filled as necessary to ensure that no buffer completely
fills or empties its contents during the test. During the test,
threads choose operations according to the specific enqueue
and dequeue rate varied across tests. For the duration of
the test the main thread will sleep for 3 seconds, notify-
ing worker threads when the test is finished. The presented
results are the average of 5 executions.

10.3 100 % Distributions
In the following tests, enqueue and dequeue operations

were tested separately at a 100% enqueue or dequeue rate
to examine the throughput of said operations. The chosen
capacity prevented any buffer from becoming full or empty
during execution and each buffer was filled to capacity prior
to the dequeue test. Figures 2 and 3 show that our ap-
proach provides an average of at least 25% more enqueue
throughput than other locking and non-blocking approaches
but falls 8% behind that of TBB and 18% the Linux buffer
in regards to dequeues. However, our dequeue algorithm
scales more effectively than all other designs excluding the
Linux buffer, with improvement over TBB at least 68% with
64 threads. Enqueue throughput provided at least 150% im-
provement at 64 threads. We credit this scalability to the
manner in which the buffer assigns enqueue and dequeue lo-
cations, reducing the amount of failed CAS operations and
permitting less cache invalidations.
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10.4 80 %/20 % Distributions
This scenario was chosen to examine the performance when

each buffer experiences a greater rate of one operation type.
Figures 4 and 5 show results for execution at 80% of one
operation and 20% of the other in which each buffer was
initially filled to 50% capacity.
At a higher enqueue rate, our buffer outperforms the al-

ternative designs by an average of 16% or greater. This im-
provement is drastically increased as thread count increases,
exhibiting the designs scalability.
On average, when the dequeue rate is 80% our design out-

performed the Tsigas, Locking, and MCAS approcaches each
by at least 45% excluding TBB in which improvement was
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2%. The average throughput fell behind the Linux Buffer by
18% mostly due to the design performing more operations
for the lower thread counts. However, the improvement of
the design's dequeue rate is drastically increased as thread
count increases, averaging at least 280% improvement with
64 threads excluding the Linux Buffer in which improvement
was 4%.

Contention is further reduced in these tests due to the
separation of operations on the head and the tail. The com-
bination of the results provided in these tests and those in
Section 10.3, show that the algorithm is efficient at perform-
ing enqueue operations.

10.5 50 %/50 % Distributions



This test provides a metric of performance when each
buffer experiences an equivalent rate of enqueue and dequeue
operations. Contents of the buffer were filled to 50% capac-
ity. Our design outperforms the other ring buffers with an
average improvement of 46% or greater excluding the Linux
Buffer in which improvement was 1%.
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11. CONCLUSION
This paper presents the first wait-free ring-buffer suitable

for parallel modification by many threads. This design is
shown to be linearizable for all operations regardless of com-
plexity. Using defined linearization points, we have demon-
strated that the buffer stores and removes elements in a first
in, first out manner.
The presented design introduces a method to relieve con-

tention using a combination of atomic operations, sequence
values, and strategic bitmarking. Though our approach is
not the first design to use sequence counters, it is the only
design that is able to do so without the risk of live-lock
and thread starvation. We maintain the first-in-first-out or-
dering of the ring buffer by assigning sequence values used
as indices. Supplementing this is an introduction of strate-
gic bitmarking to mark locations for correction which would
otherwise invalidate this ordering. Additionally, the use of a
progress assurance scheme guarantees that each thread com-
pletes its operation in a finite number of steps. Using these
methods, we streamline thread operations with minimal hin-
drance to concurrent operations.
In a majority of tested scenarios, our design performs op-

erations faster than the best alternative approach. Addition-
ally, the ring buffer is capable of supporting greater amounts
of parallelism than any design to which it was compared ex-
cept in some cases the lock-free Linux Buffer. On average,
our buffer provides 15% improvement over the industry stan-
dard, TBB. Under contention, the design is capable of 300%
performance increase over TBB. When compared to other
non-blocking designs, our wait-free algorithm provides an
average of at least 10% improvement.
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