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Importance of O, Electrochemistry mg.
Electrical Energy Storage
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Cheng et al. Chem. Soc. Rev. 2012

Multi-electron ceramic/air batteries (Primary)

1. VP +16 OH 11 VO,*> + PO, + 8 H,0 + 10 &"; E0 = 1.07 V vs NHE
2. 0,+2H,0+4e[]40H; E0 = 0.40 V vs NHE
3. VP +6OH +5/20, ] VO,*+ PO,* + 3 H,0: Eo=1.47V

TN Lambert et al. Chem. Commun. 2011 47, 9597-9599.




Importance of O, Electrochemistry mg.

Sodium/air batteries (Secondary)

Anodic half-reaction: Na = Na* + e E% =0.00 V/Na
Cathodic half-reaction: O, + 2H,0 + 4e- = 4 OH- E%=+3.1 V/Na
Full cell reaction: 4Na + O, + 2H,0 = 4Na + 40H-

J. Power Sources 2011, 196(16), pp 6835-6840 Na/air ~ 1690 Wh kg

Li-ion 200-250 Wh kg
Alkaline Fuel Cells

Anodic half-reaction: 2 H, +4 OH- [14H,0 + 4e

Cathodic half-reaction: O, +2 H,O +4e” [| 4 OH-

Full cell reaction: 2 H2 + O2 02 HZO Bi-directional cathode could allow
Proc. Nat. Acad. Sci. 2008, 105(52), 20611-20614 for anode activation

Solar Fuels Synthesis

Fuel Generation: 2H* +2e (1 H, E® = 0.00 V/RHE
or CO, + 6H* + 6e- [1 CH,OH + H,O E°®=+0.05V/RHE
Source of protons: 2H,0 1 20, + 4H* + 4e- E® = +1.23 V/IRHE

Gorlin et al. J. Am. Chem. Soc. 2010, 132, 13612-13614




Our interest has been Alkaline Systems @&,

Problem:

1.) Cathode: kinetics, high overpotentials, poor reversibility ~ 60% of energy
losses due to cathode

2.) Leading Catalysts are expensive and rare metals/oxides

(e.g. Pt, Ir, IrO,) — Also — poor stability and electrochemical selectivity.
Solution: Develop new non-Pt catalysts = durable, active, economically viable

Ni-a-MnO, & Ag-Graphene Nanoribbons  Porous Co,;0, spinel films

Cu-a- MnO2 Nanowwes Composite
SEM( lmages’ o Cu -0 MnO2 —_— :

V4 ",
ol & / -
¥ !

‘dlsper’Sedr’wnh graphene 'in a SEM image of electrochemically

‘ \Gatalyst f|Im TEM |maes of a) MWCNT b) AgGNR deposited cobalt oxide thin films
N ES - HRTEM images of c) Ag-GNR, d) Ag
nanocrystal along one of its T.N. Lambert et al. unpublished work

crystallographic planes; SEM images of
e) MWCNTSs, f) Ag-GNR.

D. J. Davis et al. Electroanal. 2013, 1, 164-170




Manganese oxide Nanowires

An effective catalyst must facilitate O, adsorption and HO,- decomposition

Size  nm MnO, > um MnO,
Morphology nanowires/spheres > nanoparticles

Bulk particles
Bgi

(L
Ty T

L 200am s o U an
7.9 m?/g 32.9 m?/g 40.1 m?/g

F. Cheng, et al. Chem. Mater. 2010, 22, 898-905
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Ni- and Cu-a-MnO, Nanowires =N

I VI Hydrothermal synthesis \Y; v
MnSO4-H20 + (Ni/Cu-SO4-H,0) + KMnOa4 > Ni-a-MnO, or Cu-a-MnO,
140° C,12-120 h
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Ni- and Cu-a-MnO, Nanowires e,

05

.| 2500 rpm = ORR n-values are improved with doping.
T s | = Peroxide production is < 5% for all catalysts; this
F . : : :
§ Al MnoO. | corresponds to a fast peroxide disproportionation
2 2 :
g2 .l | reaction.
2 CUM"OZ . .
- | = Reaction rates also improved:
© ash NiMnO, | = MnO,: 3.98 x 103 cm/s
] = CuMnO,: 6.70x 103 cm/s
£00 -500 400 -300 -200 -100 O 100 200
Potential [mV vs Hg/HgO] = NiMnO,: 1.53x 102 cm/s
4500 (i) Direct four electron pathway:
4000 1 Cu-a-MnOz2 02 + 2H20 + 4e > 40H
3500 ¢ n=34 N ] .
L ol 3 (ii) Indirect (peroxide) pathway:
5 ] 02 + H20 + 2e > OH + HO
5 00 Ni-a-MnOz2
@ 2000 n=3.5 followed by either
E 1500 (a) the further reduction of peroxide:
1000 MnO: HO2 + H20 + 2e'=> 3 OH"
B0 L L. n=3.1 or (b) the catalytic peroxide decomposition:
rad'’s"” HO2 = % 02+ OH"




What is role of metal ion (Cu)dopant ? @,

Series of Cu-a-MnO, NW electrocatalysts

: Ratio Onset n Current | Half- Rate Rct
o Mn:Cu (mV) (e-) density | wave | (cm/s) (Q)
£-0.0005 . 2500 rpm (mA/cm? | (mV)
o Increasing 0.1 M KOH )
2 Cu content O . .
- -0.001 2 1:0.25 | -107.7 | 3.28 -1.93 -312 | 0.0078 | 5744 |:
) M
»n :
§'°'°°15 7 1:05 | 973 | 331 | -214 | -303 | 0.0097 | 4380 |:
T 0.002 ,
g 1 1:1 -100.3 | 3.20 -2.82 -292 0.019 3430 |.
= v v
0-00025 Average 1:1
Average 1:0.5
Average 1:0.25
-0.003 ‘

06 0.5 0.4 03 02 01 0 01 0.2
Potential [V vs. Ag/AgCl]




Cu-a-MnO, Nanowires ()
Koutecky-Levich Analysis RRDE Analysis
1.210* : : . , 0.06 : : . . .
o= 110* |
<
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>
= 2000 +
0 1 1 1 1 0 XH1202 ] 21(IR/N)II[(IR/N) l+ (ID)]I
0.04 0.06 0.08 0.1 012  0.14 06 -055 -05 -045 -04 -0.35 -0.3
rad2s"? Potential (V vs. Hg/HgO)
Kinetic Rate Constants n values
Cu-1.3: 7.8 x 103cm s All < 6% implies
Cu-2.4:9.7 x 103cm s’ n values > 3.8
Cu-2.9:1.9x102cm s
n values ~ 3.2-3.3 Apparent 4 e process




What is role of metal ion (Cu)dopant ? @,

Series of Cu-a-MnO, NW electrocatalysts

Geometric vs. Electronic Effects ?

Sy Increasing Reactant Percent BET Pore Size Pore
G Cu content 351°°MV£QH Ratio Copper Surface (nm) Volume
<. 0, (Mn:Cu) Area (m?3/g) (cm3/g)
>
"é 1:0 (MnO,) 0 73.6 13.4 0.31
3 1:0.25 13 50.1 9.4 0.14
c
£ 1:0.5 2.39 80.7 9.2 0.19
=
= ik, s 141 2.92 83.8 11.6 0.24

-0.003 Average 1:0.25

206 05 04 03 02 01 0 01 02
Potential [V vs. Ag/AgCl]

Surface Area is important but not sole reason for activity > a-MnO,




Structural Effects of Cu ? M

Tetragonal (/4/m) Structure

1&

MnOg polyhedra

a=98A

Analysis of XRD

* Bond Lengths (higher covalency)
Cu-9.3-0-Mn0, (1.900 + 0.010 A)
a-MnO, (1.915 + 0.035 A)

 Lattice volume (/attice expansion)
Cu-9.3-0-Mn0, (278.12 A3)
a-MnO, (276.45 A3)

 Crystallite size (more edge defects)
Cu-9.3-a-MnO, (16 nm)
a-MnO, (36 nm)

Lattice expands, becomes more covalent and there are more (catalytic)
edge sites

Cu?* jons (0.73 A) in place of smaller Mn3* (0.645 A) or Mn** jons (0.530 A) is
consistent with an overall expansion in the lattice.




Structural Effects of Cu ? ()

O, evolution upon heating

. TGA/DSC/MS
1410 0.05 - T
o B :1cumn
= oS 004 a-MnO,
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Temperature (°C) Temperature (°C)
* O, release observed ~ 90 °C earlier for Cu-a-MnO,
indicates a portion of more weakly bound O, Higher number of crystalline
edge defects

* Mass losses/water content up to 700 °C:
Cu-0-MnO, 1.57 umol O, / 4.67% H,O More loosely bound O
MnO, 1.16 umol O, / 2.18% H,0O




Electronic Effects of Cu ?
AE Mn 3s splitting correlates with Mn3*/Mn4*

4.7 T

XPS [ .an ' '
AE Mn 3s AE = [ 4.62 eV H_ 4.65 n .
Cu-2.92 S s _+_
s
™ 455 ]
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% 45
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(72) Mo 0:1 oiz ol.a 014 ois ois oi7 0.8
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Cu-1.30 ol
4.65h
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=
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Binding Energy (eV) * Bulk % Cu, AAS '

* Increasing copper leads to increasing surface Mn3*

* Less Cu observed at surface versus bulk




Electron Configuration of Mn3* =

d“ and d” are most active metal ions in O, B-site of perovskite oxide catalysts
=> relevant to our Mn3* here.

d4 = High Spin in Octahedral coordination

0z 2-
02-?/3 | .‘&
Mn3* ‘Mn3*
| v,
(o) o2 (@)
Transition metal (B-site) Lafiiiiariids (A-sifte) . . d-manifOId in
- : d-manifold with
| S d*: d-manifold : tetragonal
L o.| @2BwAcm o) oxygen ligands symmetry
| 3 e high spin : :
2 0o 3 L (g spiry (high spin)
o s o~ - LaNizO;
E 0.8 . 33 -;g ___________________ — dxz-yz
v e\ ye Ny (0 4 Cgo T 4
) o St e Y 4444 — 4
lla,Caco, & 4 Lamo [ T 4_4_4_1_,‘,5:::: ---------------- dxy
0.6 — T " T — T e e
1 2 3 4 5 6 7 8 9 44 d
d-electron Xz, yz

Adapted from J. Suntivich et al. Nature
Chemistry. 2011. 3, 546-550.




The role of Mn3*/Mn#* Couple =

* The transfer of the e, electron during
H,O + e

O0—M n4;0 the OH/0,* exchange drives the
reaction forward
€ ﬂ OH * O, adsorption energy trends of Mn-O,
can be approximated by those of Mn-O*
OOH-

OH-
* Hence more covalent structures should
O—Mn3*—0 O—Mn3*—0 have faster kinetics (as observed)

O,+e
Rate-limiting step

O—Mn‘*;o
LSi x* (0-0) E.'g x* (0-0)

T e

Mn?3*:d4 ion =

High Spin in Octahedral coordination Mn3*-OH + O, + & — Mn#-0O02% + OH-




Conductivity effects of M"*? @

Charge transfer resistance values suggest increased conductivity

Copper Nickel
Cu-1.3: 5744 + 1925 Q **Ni-2.0: 7919 Q
Cu-2.4:4380+ 796 Q Ni-4.4: 4840 Q

Cu-2.9: 3430 + 1136 Q

Electrical Contacts

As Prepared Dispersed NWs

“mag ‘ det ‘ WD ‘ HV HFW | tilt |
20000 x| TLD [ 5.3 mm |10.00 kV[12.8 ym| 0 °|

Temperature dependent 4-point

CY15 CINT User Proposal:

w/Brian Swartzentruber and Collin Delker conductivity measurements




Graphene Ni- and Cu-a-MnO, Blends @,

0 [ T T
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& 0.1 M KOH
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Potential [mV vs. Hg/HgO]

Cu-MnO,: 78% of current obtained by Pt/C, n= 3.9
Ni-MnO,: 91% of current obtained by Pt/C, rate = 3.50 x 10-2cm/s

Pt/C rate = 3.24 x 102cm/s
CuMnO, outperforms Pt/C in the potential range of -127 mV to -267 mV

For GLC (Prof. JM Tour@ Rice) synthesis see:
Z.Jinetal J. Am. Chem. Soc. 2010, 132, 15246-15251.

Cu-a-MnO, NWs / GLC / Nafion

\-.

GLC:

Conductivity = 2.59 S/cm

Surface Area (carbon) = 900-1000 m?/g
Excellent Dispersion of NWs

Cu-a-MnO, NWs / Vulcan XC-72/ Nafion

e

s ¢
& i X L el
- hJ - - =3 ), = &

- s ol & L -

Vulcan:

Conductivity = 107.5 S/cm
Surface Area (carbon) = 230-250 m?/g
Poor dispersion of NWs




Electrocatalytic Selectivity @

Chronoamperometric Percent Response

CH,OH |
100 el b B T e

80 |
— 20% Ni-a-MnO2
S 60 80% GLC
E -
7
o
= 40 e
.° o 9900000000 0000000000
— 20% Pt/C

20

Time [seconds]

2800 3000 3200 3400 3600 3800 4000

Preliminary probe to
examine crossover effects
in alkaline methanol fuel
cells

Arrow indicates injection
of methanol (2 wt.% final)

20% Pt/C suffers a ~60%
decrease in current.

20% NiMnO,/80% GLC
only shows a 5% decrease
in current.




Current density (mA/cm?)

Bifunctional Electrodes for O,

25
H@) =H@) A(Eoer-Eorr)
20 | -, wave 10 mA cm2
50% NiMnO,/50% Vulcan
ol 20% Ir/C 0.57 1.85 1.28
20% Pt/C 0.75 5 13 1.38
10 20% Ir/C? 0.69 1.61 0.92
5| NiMnO, 20% Pt/C1 0.86 2.02 1.16
Mn,O,' 0.75 1.77 1.02
%0 0z 04 06 08 1 12 a-MnO,-SF?2 0.78 1.72 0.94
Potential (V vs. Ag/AgCl) Ni/a-MnO2-SF2 0.76 1.74 0.98
3

a-NiMnO, MnO, 0.7 1.8 1.1
(Not Optimized) Ni-a-MnO, 1:0.5 0.71 1.99 1.15
Ni-a-MnO./Vulcan 0.76 1.91 1,32

Manganese Oxide, Jaramillo, J. Am. Chem. Soc. 2010, 132, 13612—-13614.
Bifunctional MnO,, Meng, J. Am. Chem. Soc. 2014, 136, 11452
MnOx bifunctional catalyst, Su, PCCP, 2012, 14, 14010

19



Ni- and Cu-a.-MnO, Electrocatalysts H&.

Summary

" The -dopant species, when added to a-MnO,, improves the
electrochemical performance (half wave, current, kinetics) as a catalyst
for ORR in alkaline media.

= Ni/Cuis “inside the wire”
= Nijand Cu lead to higher Mn3*/Mn** ratio at the surface
= Mn3*/Mn# plays role in mediating ORR

= Cu leads to increased covalency, smaller crystallite domain and lattice
expansion

= Some O is more loosely bound — (catalytic) edge sites

= Cu-a-MnO, displays an (almost) apparent 4 e process

= Graphene/Ni/Cu-a-MnO, blends are highly active ORR electrocatalysts
= OER performance for Cu-a-MnO, is poor (?) but Ni-a-MnO, is promising

= Conductivity ?
= Single wire conductivity measurements ongoing
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Literature Pathways

Coexisting Reaction Schemes

Direct four electron pathway: Indirect (peroxide) pathway:
02 + 2H20 + 4e- 9 40H" 02+ H20 + 2e" > OH + HO>

MnO2 + H20 + e ¢ MnOOH + OH- MnO2 + H20 + e ¢ MnOOH + OH-

2 MnOOH + 02 &> 2 (MnOOH:+-0) MnOOH + 0; ¢> MnOOH-+-0,

Oxygen adsorbs onto two neighboring sites. Oxygen is adsorbed onto a single Mn @ﬁim

(MnOOH:-:0) + e > MnO: + OH" MnOOH-:-0, + e €2 MnO2 + HO2>

Adapted from: F. Cheng et al. Chem. Mater. 2010, 22 (3), 898-905.




Analyzing the Catalytic Performance

S 4000

=
3500

£
S 3000
g 2500
'q;, 2000
£ 1500
1000
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0

=

Current density [Alcmz]

Linear Scanning
Voltammogram (LSV)

0 Steady
state
current
plateau
region

-0.001
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-0.003

-0.004

—

-0.005

-0.006 i

-06 -0.5 -04 -03 -0.2 -01 0

01 0.2

Potential [V vs. Ag/AgCl]

Using
current
density

values at a
constant
potential for
each
rotation
speed,
construct a
Koutecky-
Levich plot.

Ve

/

Use slope

solve for

/

number of

y = 13124x + 1655.1

electrons.

0

0.05

0.1

0.15

the K-L Plot to

Koutecky-Levich Equation

1 1 1
—T =
i i g

| |
0 ﬁ@‘,ca‘ DY u-1/6C0m1/2

n = number of electrons transferred

1/i = slope of K-L plot
F = Faraday constant
A = geometric electrode area (cm?)
at k = rate constant for oxygen reduction
° = saturated concentration of O, in 0.1M KOH
Do,= diffusion coefficient of oxygen
v = kinetic viscosity of electrolyte solution

w = rotation rate

Inverse rotation rate [rad-12s'/2]



Comparison of a-MnO, NW Catalysts @,
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Comparison of a-MnO, NW Catalysts @i,

Koutecky-Levich Analysis Published n-value for MnO, = 3.1;

our data consistent with this value

4500 (Cheng et. al., Chem. Mater. 2010, 22, 898-905)

< 4000 Cu-a-MnO2 -/ = ORR n-values are improved with
< - ing.

oL, 3500 - ; doping

Y~ L = Peroxide production is < 5% for all
S 3000 - 1 .

@ catalysts; this corresponds to a
S 2500 - N"q MnO- . fast peroxide disproportionation
O 2000 | ] reaction.

@

m .'-- ..-..- | 1 1 .

£ 1500 .- e Reaction rates also improved

S ‘ e h=4 = MnO,=3.98x103 cm/s

= 1000 - ] = NiMnO, = 1.53 x 102 cm/s

500 . 1 1 1 = CuMnO,=6.70x 103 cm/s
0.04 006 008 01 012 0.14
112 1/2
rad



Ni- and Cu-a-MnO, Nanowires )

Graphene less conductive
than Vulcan

20% NiMnO,
80% RGO,
20% NiMnO,

20% CuMnO, | > 78% of current obtained by Pt/C
80% Graphene| > n=3.9%20.2¢"

Current density [mAIcmz]
Current density [mA/cm?]

-3 . -3 20% NiMnO, { > 91% of current obtained by Pt/C
80% Vulcan 80% Graphene| > 3.50 x 10-2cm/s
o N
4 ‘ 20% NiMnO, 4 20% Pt on C vs. 3.24 x 102 cm/s for benchmark
80% Graphene
600 -500 -400 -300 -200 100 0 100 200 600 -500 -400 -300-200-100 0 100 200
Potential [mV vs. Hg/HgO] Potentlal [mV vs. Hg/HgO]
7000 ‘ 100 = 5o oW A
— n o MeOH Crossover Experiment
< 8000 > | via chronoamperometry
‘j‘ 5000
d:) * Probe to examine crossover effects
& 4000 -  Arrow indicates injection of 2 wt.% MeOH
3 3000 * 20% Pt/C suffers a ~60% W in current.
@ * 20% NiMnO,/80% GLC ~5% W in current.
9 2000 -
o
= 1000
0 1 1 il L |
0.04 0.06 0.08 01 012 0.14

0 L 1 1 1 L 1
112 1/2 2800 3000 3200 3400 3600 3800 4000
Time [s]

Good performance but what is the role of metal ion doping ?

rad



Electrochemical Analysis ()
Rotating DISk EIectrode (RDE) Studles
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Catalytic Role of Mn3*/Mn#*

4+(0)2- - 3+_OH- - . '
(1) Mn4+tO ot Hzo(aq) + e — Mn3*-OH ot OH (e Electro-reduction
(2) Mn3+-OH'(S) + O, (ghagsorbsd T & —> Mn4+-O-OZ-(S) + OH-(aq) Displacement (rate limiting step)
(3) Mn4+'0'02-(s) + Hzo(aq) +te — Mn3+'O'OH-(S) + OH-(aq) Surface perOXide
4) Mn®*-O-OH-, + e — Mn**0% q, + OH Surface oxide reformation
E—— — o N — Mn3*/Mn#* couple mediates ORR
XPS :n AE = 4.62eV Cu-9.3- s H B
AEMn3s | | ' : .
S el _+_ Doping can influence
8 ass) il | - electro-reduction
5 e . - peroxide decomposition
445 | . - conductiVity
0 M gimecencuxes " Doping has been claimed to
S 0 P — influence
.l f - stabilization of Mn?®* ions
% “ _H‘ le AE Mn 3s splitting correlates with Mn3*/Mn#*
; a5t ;f {* Increasing copper leads to increasing
a5 surface Mn3*
T mnensss © s Less Cu observed at surface versus bulk

94 92 90 8 8 84 82 80
Binding Energy (eV)




0,(g) + 2H,0 + 4e- = 40H-(aq) +0.401vs SHE




What is role of metal ion (Cu)dopant ? @,

Koutecky-Levich Analysis vs. RRDE Studies

Mn:Cu
1:0.25
1:0.5
1:1

Inverse Current (-A™)

1.210*

K-L n values 3.2-3.3

110 |

8000 |

6000 +

4000

2000

0 Il 1 1 1
0.04 0.06 0.08 0.1 0.12 0.14

rad-1.~'2$1f'2

X202 = 2(Ir/N) / [(Ir/N)*+(Ip)]

Yo X202 = Xi202%X 100%

6% = n values ~ 3.8

0.06

0.05 F

0.04

0.03

0.02 |

| 500 rpm
0.1M KOH
0,

qo.s 055 05 045 04 035 0.3
Potential (V vs. Hg/HgO)

0.01

| is the ring current,
N is the collection efficiency
| is the disk current

Data suggests that up to 20% peroxide (RDE: n ~ 3.2) could be produced but majority of
that undergoes catalytic decomposition prior to disassociation from the catalyst (RRDE:

=38,




Ni- and Cu-a-MnO, Nanowires

MnSO4-HzO + (Ni/Cu-SO4-H,0) + KMnOa4

@

National _
Laboratorias
Hydrothermal synthesis v

Ni-a-MnO,, or Cu-a- MnO

VI

140° C,12-120 h
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a-MnO,: n=3.1

For highly active a-MnO, see: F. Cheng et al. Chem. Mater. 2010, 22, 898-905.




Current density [mAlcmz]

Highly active Graphene blends ()

Graphene-like carbon blends more active than Vulcan blends despite lower conductivity
= better dispersion and synergistic behavior

2500 rpm ]
0.1 M KOH] CuMnO, outperforms Pt/C in the

0, potential range of -127mV to -267mV

CuMnO,/GLC [ > 78% of current obtained by Pt/C, n = 3.9
NiMnO,/GLC | > 91% of current obtained by Pt/C
20% Pt/C rate = 3.50 x 10-2cm/s
| Pt/C rate = 3.24 x 102cm/s

'§soo 500 400 -300 200 -100 0 100 200
Potential [mV vs. Hg/HgO]

For GLC (Prof. JM Tour@ Rice) synthesis see:
Z.Jinetal. J. Am. Chem. Soc. 2010, 132, 15246—-15251.

(i) Direct four electron pathway:
02 + 2H20 + 4e" > 40H"

(ii) Indirect (peroxide) pathway:
02 + H20 + 2e > OH + HO?

followed by either
(a) the further reduction of peroxide:
HO2 + H20 + 2e' > 3 OH"

or (b) the catalytic peroxide decomposition:
HO2 2> % 02+ OH-

Cu-a-MnO, NWs / GLC / Nafion

an ™y e t - A \

GLC:

Conductivity = 2.59 S/cm

Surface Area (carbon) = 900-1000 m?%/g
Excellent Dispersion of NWs

Cu-a-MnO, NWs / Vulcan XC-72/ Nafion
2% b W RAE RSN A

Vulcan:

Conductivity = 107.5 S/cm
Surface Area (carbon) = 230-250 m?%/g
Poor dispersion of NWs



Importance of O, Electrochemistry mg.

A. Multi-electron ceramic/air batteries (Primary)

1. VP+16 OH 11VO,* +PO,*>+8H,0+10e;E°=1.07 V vs NHE VPJ/air ~ 4.3 KWh L
2. O, +2H,0+4e [140H; E°=0.40 V vs NHE VS
3. VP+60OH +5/20,11V0O2*+PO,+3H,0; Ec=147V Gasoline 2.7 kWh L

TN Lambert et al. Chem. Commun. 2011 47, 9597-9599.

B. Sodium/air batteries (Secondary) Na/air ~ 1690 Wh ka-'
alair ~ g

Anodic half-reaction: Na =Na* + e E®=0.00 V/Na
Cathodic half-reaction: O, + 2H,0 +4e- =4 OH-  E°=+3.1V/Na o VS p
Full cell reaction: ~ 4Na + O, + 2H,0 = 4Na* + 40H- Li-on 200-250'Wh kg

Review: J. Power Sources 2011, 196(16), 6835-6840

C. Alkaline Fuel Cells (Bi-directional beneficial)
2 H, + 4 OH- (] 4H,0 + 4e- Bi-directional cathode could allow

Anodic half-reaction: i
for anode activation

Cathodic half-reaction: O, + 2 H,O + 4e- (] 4 OH-
Full cell reaction: 2H,+0,0 2H,0

Proc. Nat. Acad. Sci. 2008, 105(52), 20611-20614
D. Solar Fuels Synthesis

Fuel Generation: 2H* + 2e" [ H, E®=0.00 V/RHE
or CO, + 6H* + 6e” [1 CH,OH + H,0 E0 = +0.05 V/RHE
Source of protons:  2H,0 [ 20, + 4H* + 4e E0 = +1.23 V/RHE Water Electrolysis

Gorlinet al. J. Am. Chem. Soc. 2010, 132, 13612-13614
-



