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~~F MOTIVATION Liquid fuel injection
In Diesel and Gasoline engines

• inlet is turbulent (+ cavitation)
Re - 105, d = 90pm

• High pressure chamber and sonic flow
p = 60bar, ul = 600m/s

• Atomization process not understood
We 104, 1pm < rl < 100pm

o

0 10 20

Scale (mm) [J.E. Dec, 1997]

Liquid Fuel

En Rich Vapor-
Fuel/Air Mixture

— Diffusion Flame

I-1 Fuel-Rich Premixed Flame
I= initial Soot Formation

Thermal NO Production Zone
Soot Oxidation Zone

Low
Soot Concentration

4 MULTI-SCALE&MULTI-PHYSICS drive MIXING&COMBUSTION

Sandia High-Pressure
Combustion Vessel

Experimental background
High pressure vessels
[Pickett 2010, Skeen 2014]

High
Need for a

Fidelity Simulation
that is affordable
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'..:*\\, STATE OF THE ART Injection simulation
k--i-vz--*--- No comprehensive simulation approaches

/
1 DNS with Interface Capturing

[Menard 2007; Desjardins 2010]
Accurate and insightful

— Intractably costly

2 Filtered Interface Capturing
[Chesnel 2011]

Promising but empirical

(c)

Temperature Contour

3 Extension of dilute spray
with coarse AMR
[Som 2013]
- Essential features missing

— Useful to investigate other physics
(e.g. complex chemistry)

1 Prescribed downstream
boundary condition
[Tillou 2014]

Most applicable approach today
Low predictibility

T (K) RMS T (K)

2.00e+03 4.50e+02

I.62e+03 3.00e+02

I.23e+03 I.50e+02

8.50e+02 0.00e+00
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OBJECTIVE Comprehensive simulation

11   From nozzle outlet to dilute spray

• Sensitized to nozzle flow (in an LES sense)
Re 105, d = 90pm

• Robust to high pressures, velocities, and loadings
p = 60bar, u1 = 600m/s

• Compute the whole chamber (with combustion)
with a billion points

Spray-A injector
(n-Dodecane)

0.09 mm

injection Conditions 
Peak Velocity: 600 m/s
Peak Red: 117,000
Density: 650 kg/m3
Temperature: 363 K

Sandia High-Pressure
Combustion Vessel

Initial Conditions 
Pressure: 60 bar

Temperature: 900K
11)

Composition: (by volume) 0
0.00% 02, 89.71% N2,
6.52% CO2, 3.77% H20

1080 d

Computational Domain

O( 1pm, lOns )

0 ( 105pm, 106ns )

We introduce a
Simplified Approach
of interface flows

to describe
more physical scales
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00.- MODEL Two-phase approach
A simplified but promising approach

• Coupled Eulerian-Eulerian (gas and liquid moments)
can emulate at once

the inertial behavior of the dense liquid core

the break-up and dispersion of liquid blobs
(prescribes size of droplets)

the dilute spray regime with droplets

• Conservation for both light
and dense phases

no interface tracking

mesoscale-gradients handled more easily

as opposed to real gas approaches

but no built-in thermodynamics!

Dense Dilute
Spray Spray
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'1*\\c--,pr MODEL Sectional method
k--i-vL--*--- A cost-efficient way to capture polydispersity

/
• Various drop sizes are treated as a continuum:

Multi-Fluid [Laurent 2001, Doisneau 2013]

Nsec
systems

f(s) Coalescence

7ation

Break-up

atnk+dx-(nkuk) = 2c rkl+ 2B Tkl + 2E

at mk+ax• (mk uk) = 2c17+ 2Binc' + 2Eln
a t(ink uk)-f-a.x. (mkuk® uld= inkFk+ 

2 Cli+ 2.13 Ikl + 2E

a t (ink hk)-1-ax• (Mk hk lik) =171kHk -I- 2C k+ 213 l ici + 2Ek

Navier-Stokes with sources

...many integral source terms to compute
6
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'..:*\\ , MODEL Two-phase approach
Pressureless Gas Dynamics (PGD) decouples Lagrangian advection

• The coupled NS-PGD* system

atoGigYf + a.pgYfttg

atPgirl;

+ axp.quggux,.

at peg + azpge:Eiurg

t Mk + armkuk
atrakuk + axmkuk auk

trakhk + 8.7-nrkhku

Fk

= Hk

p + >-(-Fk+
pox 11r9 E(_H, +Fk(u,_ „ro+ h 0:1
"1+1+ Whn+ Crkn+ (EIT1+ Enki + 13/7-+ Cinn

urt-FiErkn+1+ B .guo ± Cr - u Enk +Kt-

] E 7k11+ ± + Cih,+ - hk (ET + Ezt + WTh-

pressureles

Needs to be closed

cr)
+ gcni

sections

*obtained from kinetic theory or conservation principles

Otf 0,cf 0,Ff 490Hf arEf = B C

f
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MODEL The closure problem
LES closures should respect dominant dynamics and equilibrium

• Need the rate of exchange for
Momentum (drag and dynamic subgrid model)

Heat (heating)

Mass (vaporization and combustion subgrid model)

• Derivation from first principles is hard
All thermophysical properties needed

Subgrid knowledge needed too (turbulent & atomizing)

• Should enforce thermodynamics and equilibria
Multifluid models by Saurel's team [D. Furfaro, 2015]
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ot, ANALYSIS Two-way couplingk---/--z,i- ,_ Two-way coupling as the main driver of characteristic times

• Two-way coupling drives characteristic times
- Example for drag (OD): [Doisneau, 2013]

at(Trigug) = mi (21,1 — 'Lig){
'7-

Ot(rnlittl) =

ml(ui ug)

<=>

• Correction factor can be large
since C reaches -100

C

at (Tngug

at (111 ug)

=0

7721
C=

Mg

o
0
0

ug
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~F ANALYSIS Two-way coupling
Two-way coupling as the main driver of characteristic times

• Two-way coupling drives characteristic times
Drag

Same argument for heating

Vaporization is driven by heating

O~td2 = —K
8A3
 log (1 

C (Tg  )

P1Cp,g hl

• Correction factor can be large
since C reaches -100

C

C =
ml

mg
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-amr-
.#0.

-- 
  NUMERICS Two-way coupling needsk,/

---*-- Effort on numerical methods for multi-scale coupled flows

• 1) Time integration
tailored splitting

Gas transport _7g

Section transport A

• 2) Space transport
novel serri agrangian scheme

rho_g

23.2

- 22.8

—22.422
21.6

Coupling
-1-ye64e

rho l

flow

100

—10

Spray sources
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NUMERICS Time integration
A Tailored Operator Splitting

Operator splitting
Recycle legacy solvers

- Robust time integration

- Local properties enforced

- Adaptable accuracy

Gas transport gg

Section transport gk

Coupling <1
+

Spray sources
,%+(-6°

• to integrate all phase exchange terms gC at once (RK4)
- Realizability, conservativity, equilibrium

- Strong couplings

• to integrate spray sources M`=F''
Realizability and convergence

- Strong particle-particle coupling

Nsec
FIGgic) gg Un

k=1

pgyjyt

PgUg

Pg 
eg

tin = nk

mk

mkuk

inkhk 12
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NUMERICS - PGD transport
A robust and accurate answer to PGD peculiarities

atmk + axmkuk = 0
aanktik + axmkuk0uk =
atmkhk + Oxmkhkuk = 0

-....m.......

Eulerian
(coupling)

IP X
.

Scatterin:
fr Projection

on the grid from fixec
locations)

(Mk

rnkuk)(t, X) —>

TnkTk

(19)(0
UP

Tp

%Lagrangia
transport

,n+1 _L unAt
etiP

• Novel semi-Lagrangian PGD transport scheme
Deterministic: no noise

Localizes spray info at mesh nodes: good for coupling

- Easier load balancing

- No fluxes to be computed: reduce cost and numerical diffusion
13
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.00-   NUMERICS PGD transport

it/

70 8

2D test with prescribed flow field

• Obtained cost-efficient and accurate results
4
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--imr--
..   NUMERICS PGD transportk,/

* Transport is 2nd order in space

• No CFL constraint
(unconditionally stable)

• Handles vacuum

• Handles 6-shocks

• Predictable load

0.1

0.01

0.001

8 0.0001

a)- le-05

le-06

le-07

le-08

le-09

le-10

'conv_gaus.de using 1:2  
'conv_gaus_deformed.dar using 1:4

1 /x
1 /x**2

Exact for
integer CFL

10 100 1000

# of cells

4 .
L ...... balance issues with stochastic Lagrangian
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TEST 1 Momentum Coupling
Comparison between E-ES and CLSVOF

v Supersonic injection (toy problem)
velocity plug-flow boundary

— no thermal transfer

— Tend = 4PS

Raptor with E-ES
Ax = 12.5 µm, At = 8 ns

Liquid mass fraction [-]

0 0.2 0.4 0.6 0.8 0.994

iMMEINE

0

Gas axial velocity [m/s]

0 200 400 600

Gas axial velocity [m/s]

0 200 400 600

2.5 0

Gas radial velocity [m/s]

4IP

-100 0 100

gib

Gas radial velocity [m/s]

-100 0

4

100

2.5 0 2.5

Agreement on gas
entrainment

* Liquid density
discrepancy from
pressureless
assumption

* Jet tip is different
because of lack of
surface tension

CLSVOF
Ax = 13.3 µm, At — 6 ns 16
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'..:*\\ , TEST 2 Induced turbulence
Entrainment and induced turbulence by jet injection

/

• Executed with RAPTOR + E-ES

Liquid density (100 kg/m3)
iso-contour

Liquid density [kg/m3]
100

•
0 01 5e+03

-100

22

Axial velocity [m/s]
0 200 400

11

600

Gas density [kg/m3]
22.2

H TaLl 

23

17

COMBUSTION RESEARCH FACILITY —11 0 Sandia National Laboratories



ME==M1111111,1pC-.

117

TEST 3 Fuel vaporization
Fuel vapor footprint

• Executed with RAPTOR E-ES
Box 3x3x1Omm

dini=90pm, Tend=40ps

quiescent gas at 60bar, 900K

n-dodecane at 702kg/m3, 600m/s

fuel_vap
1

0.01

—0.001

50Mcells (cartesian mesh)

Ax=12.5pm, At=8ns, Tend=40ps

1 section (prescribed initial size)

PGD transport (6-shocks)

d2-law

u_g

0 
1251 

100
ilim 1501miimim

7
Piliimm

rho l

11000

100

10
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,.*\\
GRE CONCLUSION

Conclusion 
Kinetic theory

- Two-way coupling

— Dedicated numerics

1 cell-wide injection (Raptor-E-ES)

.
•

—
•

• •

• ma "'lib - •

' '10 20 40 50 60 ' ' '70 80 90

Spray tools are promising to efficiently handle injection

vorticity
5e+05-

0

-5e+05 
.000

Perspectives 
• Dense core dynamics

pressure/crossings

turbulence

surface tension

• Verification

vs CLSVOF

vs stochastic Lagrangian

vs Real-Gas solver

• High-pressure mixing

atomization

"evaporation"

LES closure

• Validation vs ECN results (spray A)

• Combustion

chemistry

LES closure

numerics

10 20 30 40 50 60 70 80 90 19
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'..:*\\ MODEL Sectional method
CRE__

' A cost-efficient way to capture polydispersity

• Various drop sizes are treated as a continuum

Nsec
systems

f(S) Coalescence

mtion

Break-up

I
atnk-Fax.(nkuk) = 2Cinc+ 2Bz + 2E

atmk+ax• (mkuk) = 2CT+ 2B,T + 2E,

a t (mk uk)+ax• (mkuk® ito=mkFk+ I+ 2Bluc + 2E
dt(mkho+d,r(mkhkuk) = mkHk+ 2Ck+ 2Bcic + 2Ek

Navier-Stokes with sources

...many integral source terms to compute
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.#00-   NUMERICS PGD transport
Transport is 2nd order in space

m
a
s
s
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ce
nt

ra
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• No CFL constraint
(unconditionally stable)

• Handles vacuum

• Handles 6-shocks

2

1.5

0.5

0

0 0.2 0.4 0.6

abscissa
0.8

0.1

0.01

0.001

a cc co

a)- le-05

le-06

le-07

le-08

le-09

le-10  
1

'conv_gaus.de using 1:2  
'conv_gaus_deformed.dar using 1 :4 - - - - -

1 /x
1 /x"*2  

Integer CFL
=> exact

10

# of cells
100 1000
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NUMERICS Beyond PGD transport
  Prevention of 6-shocks

• 6-shocks are an artifact from v-1

the PGD assumption 
600 =soo

no grid convergence

erroneous density and gradients

troublesome with two-way coupling

• Higher order moment methods
are developed to solve this

=250

0
-250

-500

-600

v_I
600-- 500

250

0
-250

---500

-600-
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NUMERICS Raptor
A general solver optimized for LES

Theoretical framework
Fully-coupled, compressible
conservation equations

Real-fluid equation of state (high-
pressure phenomena)

Detailed thermodynamics, transport
and chemistry

Multiphase flow, spray

Dynamic SGS modeling
(No Tuned Constants)

Advanced UQ methods for
error/sensitivity analysis

• Numerical framework
Staggered finite-volume differencing
(non-dissipative, discretely
conservative)

Dual-time stepping with generalized
preconditioning (all-Mach-number
formulation)

Detailed treatment of geometry, wall
phenomena, BC's

150000

a)
a) 100000

-c
:E. 50000
o
0)

1
1

Near Iinear scalability
beyond 100,000 cores

100

95

90

85

80

50000 100000 150000
Number of Cores

Pa
ra

ll
el

 E
ff

ic
ie

nc
y,

 °A
) 

• High-performance computing framework
(Advanced parallel programming model that makes optimal use
of advanced MP-computer architectures)

• Results from strong and weak scaling on Oak Ridge National
Laboratory CRAY XK7 (Titan), June 2013
Test case — jet-in-cross-flow, 500-million cells
Strong scaling: 24,000 to 120,000 cores, > 90% efficiency
Weak scaling: 500-million-cells/24,000-cores
to 2-billion-cells/120,000-cores, < 4% increase in CPU time

• Currently being refactored for hybrid multi-core parallelism and
GPU acceleration (MPI/OpenMP/OpenACC) 25
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