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Introduction

Goals of Th|s Tutorial

e 4 Lectures

Lecture 1: Context and Fundamentals
Lecture 2: Forward Propagation
Lecture 3: Characterization
e Sensitivity Analysis
e Representing Arbitrary Random Variables
e Representing Random Fields

Lecture 4: Bayesian Inference — UQ Software
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Sensitivity

Sensmvr[y analysis gives |nS|ght into key sources of

uncertainty

Experiments Inference P()
P——jP0iD, ) = P(DIA NP 1) A Predictive
/- P(D) e e
Y|

du

; |
— f(u: 2 , 7
= Forward d I‘ i

Propagation p(u)/[ ,, o
‘ u

¢ Obtaining global sensitivity analysis from PCEs

¢ |dentify dominant sources of uncertainty
e Attribution

Theory ‘ i‘;"wﬁs";) +V - (0pYia) = V - (0S) + 00; + @
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Sensitivity

PC Postprocessing: global sensitivity information is
readily obtained from PCE

e Global sensitivity analysis = Variance
decomposition
e Total variance

Var[g(€)] = > _ cil[Wil P

k>0
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Sensitivity

PC Postprocessing: Mam Effect and Joint Sensmwty

Indices
e Main effect sensitivity indices

_ Var[E(g(€16)] _ Xker Gl lYill®
T Var[g(€)] T ElVlP

o T; is the set of bases with only &; involved
e S;is the uncertainty contribution that is due to i-th
parameter only
¢ Joint sensitivity indices

- VarlB(g(El6.9)] g g Twey lIVHlE
: Var(g(&)] I S o ElVAIP
» [ is the set of bases with only ; and ¢; involved

e §j is the uncertainty contribution that is due to (/, /)
parameter pair
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Sensitivity

PC Postprocessing: Total Effect Sensitivity Indlces

« Total effect sensitivity indices

 VarlE(9(€lE_)]  Lkery Gkl l?

T = —
Var[g(¢)] > k=0 il [ Wl |2

e The notation &_; indicates terms that do not have &; in
them

o 17 is the set of bases with &; involved, including all its
interactions

e The sum of all T; is usually > 1
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Sensitivity

Sensmwty indices are dlrectly computable from PC

P
9(&) = ckW(€)
k=0

Consider dimensionality d = 3, total order p = 2,
number of PC terms P +1 = (d + p)!/(d!p!) = 10.

9(&1,62,83) = o + c1p1(&1) + cp1(§2) + cbi(€s) +
+ Capo(&1) + Cs1(&)Y1(&2) + Cev1(€1)vr(83) + crbe(€e) + cgi(€2)¥r(€3) + Coba(€a)

Variance contributions

Var(g) =0+ G + EWh + S +

() + BWhHWd) + Wil + Fwl) + FWwhHwd) + W)
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Sensitivity

Sensmvuty indices are dlrectly computable from PC

5
9(&) = ckWk(8)
k=0

Consider dimensionality d = 3, total order p = 2,
number of PC terms P+ 1 = (d + p)!/(d!p!) = 10.

9(€1,62,63) = co + | Ci(&)| + covr(E2) + car(éa) +
+ Caha(§1) + csh1(E1)1(E2) + Cep1(&1)¥1(&3) + crvba(be) + Cehi(€2)¥1(€3) + Cova(€3)

Variance contributions

Var(g) = 0+ W) + B(v}) + Bw?) +
BB + 2w + BuhWdh) + Swh) + BEh ) + Bud)

Main effect sensitivities & & &
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Sensitivity

Sensmvuty indices are dlrectly computable from PC

P
9(&) = ckWk(8)
k=0

Consider dimensionality d = 3, total order p = 2,
number of PC terms P+ 1 = (d + p)!/(d!p!) = 10.

9(&1,6,&) = co+ cirp1(&1) + Ghi(€2) |+ cavr(&s) +
+ catpa(&1) + os1(€1)1(&2) + cep1(ér)r(E3) + Cxthaléa) + cebt(£2)v1(€3) + Covba(€s)

Variance contributions

Var(g) =0+ c2(y?) + GWf) + c5w?) +

GWh) + EWHWH + WhHwh + egWe) + FWwHwh + Bl

Main effect sensitivities & & &3
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Sensitivity

Sensmvuty indices are dlrectly computable from PC

P
9(&) = ckWk(8)
k=0

Consider dimensionality d = 3, total order p = 2,
number of PC terms P+ 1 = (d + p)!/(d!p!) = 10.

9(&1,82,83) = co + c1p1(&1) + ovi(&2) + | Cappi(&a) | +
+ capa(€r) + cspr(E1)1(E2) + Gev1(&1)¥1(&3) + crva(€e) + cebi(€2)¥1(&3) + | Cotba(€a)

Variance contributions

Var(g) =0+ Z(y?) + cE(y?) + Il +

C4<¢’2> + Cs<7/)1><1/11> + Ce<1/’1><1/’1> + C7<¢§> + C§<7/)1 q/’1 + Cs("fﬁ"g}

Main effect sensitivities ¢ & &3
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Sensitivity

Sensmvuty indices are dlrectly computable from PC

5
9(&) = ckWk(8)
k=0

Consider dimensionality d = 3, total order p = 2,
number of PC terms P+ 1 = (d + p)!/(d!p!) = 10.

9(€1,62,63) = co + | Ci(&)| + covr(E2) + car(éa) +
+ catha(&1) + | es51(E1)w1(E2) + Ge1(61)1(&3) + cripa(ée) + cebi(€2)v1(€3) + Covba(€s)

Variance contributions
Var(g) = 0+ | G@RY + c2(u?) + Ew?) +
W) - B - B - p + duhwd + dud)

Total sensitivities 5’17 & &3

Debusschere — SNL uQ



Sensitivity

Sensitivity indices are directly computable from PC

-
9(&) = ckWk(8)
k=0

Consider dimensionality d = 3, total order p = 2,
number of PC terms P+ 1 = (d + p)!/(d'p!) = 10.

9(61,62,€3) = co+ C11(&1) + | Cai(€2) + csvi(és) +
+ caa(&1) + G5 (E1)1(82) + cov1(€1)v1(E3) + Crtba(€2) +  Cabi(€2)¥i(€s) + Covz(é3)

Variance contributions
Var(g) =0+ cE(y?) + @GN + ¢S5 +

+ B3 + RN + c2(wd) (v} +|elus) + RN + c3(vd)

Total sensitivities & & &3
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Sensitivity

Sensmvuty indices are dlrectly computable from PC

5
9(&) = ckWk(8)
k=0

Consider dimensionality d = 3, total order p = 2,
number of PC terms P+ 1 = (d + p)!/(d!p!) = 10.

9(&1,82,83) = co + c1p1(&1) + ovi(&2) + | Cappi(&a) | +
+ catpa(&1) + os1(Er)1(&2) + Ge1(€n)i(&3) + crya(éz) +|cebi(€2)1(€3) +  Cotba(és)

Variance contributions
Var(g) =0+ C12<¢1> + C2 1/’1 -+ ‘%("1’1) +
Gud) + Ewhwh) + [N + <33 + eatunw) + (e Ga)

Total sensitivities & & [&
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Sensitivity

Sensmvuty indices are dlrectly computable from PC

g(e) = Z CkVk(€)
k=0

Consider dimensionality d = 3, total order p = 2,
number of PC terms P + 1 = (d + p)!/(d!p!) = 10.

9(&1,62,63) = o + C1p1(&1) + cp1(&2) + capi(€s) +
+ caa(&r) + [OUNEDIE) + Cowr (€1)W1(Es) + Criba(éa) + Cowrr(E2)wr(€s) + Covba(éa)

Variance contributions

Var(g) =0+ ¢i(Wf) + c5(Wf) + WP +

23 + PEEMENUEN + 2 (v?) (W) + B(wd) + EWE)(E) + cE(y3)

Joint sensitivities (&,&) (&1,&) (&2, 6)
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Sensitivity

Sensmvuty indices are dlrectly computable from PC

g(e) = Z CkVk(€)
k=0

Consider dimensionality d = 3, total order p = 2,
number of PC terms P + 1 = (d + p)!/(d!p!) = 10.

9(&1,62,63) = o + C1p1(&1) + cp1(&2) + capi(€s) +
+oeata(€r) + o5t (E)v1(62) + e @)IER) + crva(€a) + cai(E2)wi(Es) + cora(E)

Variance contributions

Var(g) =0+ ¢i(Wf) + c5(Wf) + WP +

B8 + AR (W) + W) + cF(vd) + cEWE)(WE) + c5(yd)

Joint sensitivities (¢1,&) (&1,&) (&2,8)
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Sensitivity

Sensmvuty indices are dlrectly computable from PC

g(e) = Z CkVk(€)
k=0

Consider dimensionality d = 3, total order p = 2,
number of PC terms P + 1 = (d + p)!/(d!p!) = 10.

9(&1,62,63) = o + C1p1(&1) + cp1(&2) + capi(€s) +
+ caa(&1) + Csvr (€)1 (&) + Cevn(E1)1(€) + crva(€2) + |Catn(&)¥i(&s) + Covn(é3)

Variance contributions

Var(g) =0+ ¢i(Wf) + c5(Wf) + WP +

Ewd) + EW WD) + AW + Bl + ety + c2(v)

Joint sensitivities (51 3 fg) (51 ; §3) (52,53)
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Sensitivity

PC Postprocessing: Samplmg -Based Approaches

9(&,...,8a) = ZCka

¢ In some cases, need to resort to Monte-Carlo
estimation, e.g.
e Piecewise-PC with irregular
subdomains
e Output transformations, e.g. build PC
for log g(&), but inquire sensitivity with
respect to g(&)
e A brute-force sampling of Var[E(g(&|&)] is
extremely inefficient.
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Sensitivity

PC Postprocessing: Samplmg -Based Approaches

e Tricks are available, given a single set of
sampled input [sattelii, 2002]. E.g., use

E[g(€)%] = E[g(€1€)g(€'1€)] = Z (€")g

where £ is ¢’ with i-th element replaced by ¢;.
e Similar formulae available for joint sensitivity
indices.

e Con: as all Monte-Carlo algorithms, converges
slowly.
e Pro: sampling is cheap.
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Sensitivity

Heat Transfer through a Window

T, - T,
T -T) = kT2
T, —T.
W)y,
w
T, 6 Uncertain, Gaussian
parameters

T = 293K,0 =0.5%
Te = 273K,0 =0.5%
dv = 0.01m,0 =1%

Qo

S

ky = 1W/mK,o =5%
i = 2W/m’K,0 = 15%
hy, = 6W/m’K,o = 15%
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Sensitivity

Outputs are most sensitive to ambient temperatures

and convective heat transfer coefficients

o
=

Sensitivity

o
P

0.2

Heat Flux T, 13

l— 7, 7, W, "3 N D h,,l
e Main effect sensitivities

e Sum to 1 only if coupling terms do not matter
¢ k, has minimal contribution due to its low uncertainty
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Arbitrary RVs

Obtamlng PCEs for Uncertain Inputs

Experiments Inference P())
PF——{P\D, = ERAFC) A Predictive
— ds Simulation
;r.'.,_ﬂ.&
K

/R
— = f(u; A 7 -
ar ~ " Forward ' I‘ i
Propagation : ‘
Theory ‘ (6pY;) + V - (0pYi) = V - (0S)) + 0; + g pag P(U)| ﬁ
u

e Representation of uncertain inputs A with PCEs
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Arbitrary RVs

Obtamlng PC coefficients for arbitrary random

variables is not trivial

e Characterizing PCEs for uncertain inputs is a really
difficult problem
e Inputs specified in a variety of ways, and often
incomplete
o Probability density function
e Samples, e.g. from inverse problem solution
e Expert opinion (e.g. “about 3.5”)
e Particular case of a random variable specified by a
PDF is generally tractable
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Arbitrary RVs

Orthogonallty enables a Galerkin projection to
determine the PC coefficients

P P
Uy UV = (Wiu) = "t (W) = u; (W2
k=0 k=0
uv;
= Uy = Ch)
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Arbitrary RVs

Galerkln projection requires functional relationship

between random variable and germ of PCE
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Arbitrary RVs

Cumulative Distribution Function (CDF) maps arbitrary

random variable to a uniform random variable

0.8
0.6]

e Consider u with PDF p(u) Mo

0.2]

e CDF of u is given by

Fw = [ " p(s)os

e F(u) maps u to n, uniform p(“)af
on [0,1] .
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Arbitrary RVs

Inverse CDF mapping enables Galerkin Projection

0.8 08
0.6 b
¢ = F(U) n 0.4 " o4
o n=2() -
maps uniform %7 e A——
n to normal . ¢
RV ¢ .
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Arbitrary RVs

PC lIIustratlon PC Expansion for a Normal RV

0.45

e Wiener-Hermite o3
PCE constructed

for a Normal RV §o.25

o PCE-sampled o
PDF superposed =~ °*
on true PDF o10f

e Order =1 1

0.00

.
u o= ) uWk(é)
k=0

= U+ U&
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Arbitrary RVs

PC lIIustratlon PC Expansion for a Normal RV

0.45

e Wiener-Hermite 035
PCE constructed

for a Normal RV Ll'go.zs

o PCE-sampled o
PDF superposed ~ °*
on true PDF 010

e Order =2 o

0.00

.
u o= ) uWk(é)
k=0

= U0+U1§+U2(§2— 1)
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Arbitrary RVs

PC lIIustratlon PC Expansion for a Normal RV

0.45

e Wiener-Hermite g3
PCE constructed

for a Normal RV go.zs

e PCE-sampled o
PDF superposed ~ °*
on true PDF i

e Order =3 °

0.00

P
u o= ) uVi(©)
k=0

= Up+ Uré + Up(€% — 1) + us(€® — 3¢)
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Arbitrary RVs

PC lllustration: PC Expansion for a Normal RV

0.45 .
e Wiener-Hermite
PCE constructed 030
for a Normal RV ’éw

o PCE-sampled & oo
PDF superposed
on true PDF 0100

e Order =4 ::

P
U= Y UWl(§)
k=0

= Up+ &+ Up(€2 — 1) + us(€3 — 3E) + us(¢* — 662+ 3)
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Arbitrary RVs

PC lllustration: PC Expansion for a Normal RV

0.45

e Wiener-Hermite 035
PCE constructed 030
for a Normal RV ;3“,0‘25

e PCE-sampled S
PDF superposed o
on true PDF B

e Order=5 -

.
u = Y uVi(€)
k=0

= Up+ hé + (€2 — 1) + us(€3 — 3€) + ug(¢* — 662+ 3)
+ us(£% — 1063 + 15¢)
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Arbitrary RVs

PC lllustration: WH PCE for a Normal RV

10, 14
e—e PCorder5 — PCorder 5
e—e PCorder 4 13}| == PC order 4
8 e—e PCorder 3 = PCorder3
e—e PC order 2 12}| = PCorder2
e e—e PC order 1 — PCorder1
Q5 1
U
frm —
© v
O 4 3
g 9
O
o
2 8
7
0
1 2 3 4 5 >4 -3 -2 -1 0 1 2 3 4
order £

e First order Wiener-Hermite PCE exact for a normal
RV

e Linear function of £
e Higher order terms are negligible
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Arbitrary RVs

PC lIIustratlon WH PCE for a Lognormal RV

- E==
o Wiener-Hermite by et
PCE constructed

for a Lognormal o
RV

e PCE-sampled
PDF superposed 02

on true PDF 01 J
e Order =1 0.05 2 3 7y s 8
P u
u = Z Ukwk(f)
k=0
= Uy + U1§

Debusschere — SNL uQ



Arbitrary RVs

PC lIIustratlon WH PCE for a Lognormal RV

e Wiener-Hermite . == FEOmeTE

PCE constructed

for a Lognormal =3

RV E
A2

e PCE-sampled

PDF superposed
on true PDF ' $\
e Order =2 / .
P
u = Z UV (§)
k=0

= U+ W€+ Up(€2 — 1)
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Arbitrary RVs

PC lllustration: WH PCE for a Lognormal RV

— Exacl;LognormaI
. . — order
« Wiener-Hermite = e
PCE constructed

for a Lognormal

0.8

RV 5
Q
o PCE-sampled Sy
PDF superposed

0.2

on true PDF
e Order=3 00 J

P =2 0 2 4 6 8
U= ) uVi(©)
k=0

= Uy + W&+ Ug(fz — 1) + U3(§3 - 35)
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Arbitrary RVs

PC lllustration: WH PCE for a Lognormal RV

0.8

= Exact Lognormal
0.7 = PC order 4

¢ Wiener-Hermite

PCE constructed e

for a Lognormal =~

RV & 04
3

e PCE-sampled
PDF superposed 02}
on true PDF 01

e Order=4 005 2 5 3 G 8
P
u o= ) ukVk(€)
k=0

= U+ W€ + (€2 — 1) + us(£3 — 3€) + ug(¢* — 662+ 3)
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Arbitrary RVs

PC lllustration: WH PCE for a Lognormal RV

[E e
« Wiener-Hermite i — Feomers

PCE constructed ne

for a Lognormal ~

RV E/ 0.4
Ay

e PCE-sampled
PDF superposed 02
on true PDF 01

°® Order = 5 0.0
P
u o= ) ukVk(€)
k=0

= U+ W€ + (€2 — 1) + us(£3 — 3€) + ug(¢* — 662+ 3)
+ us(€5 — 1063 + 15¢)

™
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Arbitrary RVs

PC lllustration: WH PGE for a Lognormal RV

1.4
e—e PCorder5 15f| == PC order 5
12 e—e PC order 4 = PCorder 4
: e—e PCorder 3 = PC order 3
o—o PCorder 2 —— PC order 2
4&‘ 1.0 e—e PCorder 1 10p| = PCorder 1
Q
=08 =
= w
@ ER
Qo6
(9]
O
a.04
0
0.2
o 1 2 3 4 5 -4 -3 -2 -1 0 1 2 3 4
order 3

¢ Fifth-order Wiener-Hermite PCE represents the given
Lognormal well

e Higher order terms are negligible
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Arbitrary RVs

Constructmg an nD PCE for a RV with a leen PDF

e Given RV z € R with PDF: g(z), define:

P |
2= zVi(&. & .. &), PJH:U’%’D?)'
i=0
e No general procedure
e Construct PCE as model choice to represent
what is known about RV
e Can choose {n, p} and the mode strengths by
ensuring
accurate capture of
» the PDF g(2)
» select moments of z
» some observable of interest ¢(z)
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Arbitrary RVs

Multlvarlate Normal Approximation (MVN)

e Many distributions are unimodal and somewhat
shaped like Gaussians
e MultiVariate Normal approximations capture mean
and correlation structure of the random variables
e Easy to extract from a set of samples
¢ In 1D: just compute mean and standard deviation:
u=uy+ ué
e Multi-D: Cholesky factorization of covariance

# Compute mean parameter values

par_mean = numpy.mean (samples,axis=0)
C = LLT # Compute the covariance

par_cov = numpy.cov (samples, rowvar=0)
u = LE # Compute the Cholesky Decomposition

chol_lower = numpy.linalg.cholesky (par_cov)
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Arbitrary RVs

MVN ApprOX|matlon of Distribution from Samples‘

Comparison of Posterior (blue) with MVN (red)

5400
0.600 5380
0525 5360
e 5340
0375
0.300 85320
0.225 3300
0.150 5280
0.075 5260
0.000 5240
520030 132 134 136 138 140 131 132 133 134 135 1.36 137 138 139

S1

S, = 1.351 +0.01367¢;
CS = 5310 — 26.25¢, + 20.26¢,
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Arbitrary RVs

Rosenblatt Transformatlon for Multi- D RVs

e Assume samples of multi-D RVs are (e.g. from
MCMC sampling of posterior parameter distribution)
¢ Rosenblatt transformation maps any (not necessarily

independent) set of random variables (\+, ..., \y) to
uniform i.i.d’s {n;}9, (Rosenblatt, 1952).
m = Fi(\)

e = F2|1()\2|)\1)

nd = Fad—1,..1(AalAa=1,..., A1)

¢ Rosenblatt transformation is a multi-D generalization
of 1D CDF mapping.

e Conditional CDFs are harder to evaluate in high
dimensions
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Arbitrary RVs

Rosenblatt transformation of a given sample set

requires KDE

® Given samples {A } ¢ of the random variable X = (Aq, ..., A\q)
® Kernel Density Estimation (KDE) is needed to compute conditional CDFs
T = Pt Okl A=, M) =
Ak Y NIV A1)
ko Mk—11 -0 M
= Prik—1,... 10 (Al Ak—1, A1)dN :/ e dXg
v/oo ‘ oo Pr—1,..., 1 (Xk—1, -5 A1)

N (n)y2 7 \(my2
M RS e Y )

Sexp| -

e ( 2h2

B e A >

N
( i
S b s
n=1

’
dry

O =A R g —A )2

N 7 _y\(my2
K _ 1 -1 M= IR _ Qum A7
;eXp < 2n2 > X vz P < 2n2

g =AM2 4 (g 45(”11)2)

N
s PBL (7 2h2
=
N (VTN L S N o A=Al
=

T | (n>1)2> ’

i (A — 1
e | - o
n=1
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Arbitrary RVs

Rosenblatt transformatlon enables Galerkin prOJectlon
E 0 E 04
06 o8 lParamekgra 4 e v . 8;3“1;[;01.]61 v
(a,b) = R~1(&, &) ensures a well-defined quadrature
integration
- —1
a = kzzoak"’k(ﬁ) ak“/'laé(_fl‘"k(f)w(&)df
F 1
b = b b R, d.
> b oo [ bb(s)wk@)w(s) :
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Random Fields

Compact Représentations df Random Fields

_28.0 0.2 0.4 0.6 0.8 1.0 0'8.0 0.2 0.4 0.6 0.8 1.0

e Sometimes an uncertain input is a random field (also
called stochastic process)
e Friction coefficient along a wall
« Thermal conductivity in heterogeneous material
o Permeability in groundwater flow simulations
e Have infinitely many degrees of freedom
¢ To model effect of random fields on computations,
need compact representation that captures key
aspects of random field
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Random Fields

Karhunen-Loévé (KL) Expahsions

e Assume stochastic process F(x,0) : D x © — R an
L? random field on D

With covariance function Cov(x, y)

F can be written as

F(x,0) = (F(x,0))y + > /Axfi(X)ék
k=1

fk(x): eigenfunctions of Cov(x, y)
Ak corresponding eigenvalues, all positive
&k: uncorrelated random variables, unit variance

e Samples obtained by projecting realizations of F onto f
e Generally not independent
e For Gaussian F, & are i.i.d. normal random variables

e The KLE is optimal: of all possible orthonormal bases
for L2(© x D) the {f(x)} minimize the mean-square
error in a finite linear representation of F(-)
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Random Fields

KL Expansmns Numerlcal Approach - 1

 Covariance Matrix, Cov(x, y) = (F(x,0)F(y,0)),:
» specified analytically
¢ estimated from samples

e Estimate eigenvalues and eigenvectors for the
Fredholm equation of second kind:

/ Cov(x,y)f(y)dy = M(x)
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Random Fields

KL Expansmns Numerlcal Approach P

e Nystrom algorithm for Fredholm equation

Np
Z w;Cov(x, yi)f(yi) = M(x)
i=1
where w; are the weights for the quadrature rule that
uses N, points y; where realizations are provided.
e Further manipulation leads to the eigenvalue problem

Ag = \g

where A = WKW and g = Wf, with W being the
diagonal matrix W = /w; and K = Cov(x;, y;).
Solutions consist of pairs of eigenvalues )\« and
eigenmodes f, = W~ 1g.
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Random Fields

KL Expansion‘s‘- Numerical‘ Approach - 3

e Samples of random variables &, are obtained by
projecting realizations of the random process F on
the eigenmodes f

Elo, = (F(X.0) = (F(X,0))g , (X)) / v/ M

e ... or numerically

No
Ekloy =D Wi (F(xi,01) — (F(x1,0))9) fi(X:)// Ak
i=1

e If Gaussian process: automatically have first order
WH PCE

e If not, same approaches as for converting RVs to
PCEs applied to KL RVs
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Random Fields

1D Gaussian Process: Realizations

f(x)

20 T T T 20

10r

f(x)

oA

-10

—2 . . . —2 . .
8.0 0.2 0.4 0.6 0.8 1.0 8.0 0.2 0.4 0.6 0.8 1.0

 Covariance Cov(xi, x2) = exp(—(x; — X2)2/52)
e Sample realizations are noisier as correlation length
decreases
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Random Fields

1D Gaussmn Process: KL Modes foro =0.10

29 realizations 213 realizations 217 realizations

=7 — 4
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 _6.0 0.2 0.4 0.6 0.8 1.0
X X X

e Eigenmodes of the covariance matrix
« Data covariance matrix constructed from 2° = 512,
213 = 8192, and 2! = 131072 Gaussian process
realizations
e Higher modes are more oscillatory
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Random Fields

1D Gaussmn Process: KL Modes for 9 = 0.20

29 realizations 213 realizations 217 realizations

—f —

== Ji — &
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 _6.0 0.2 0.4 0.6 0.8 1.0
X X X

e Eigenmodes of the covariance matrix
« Data covariance matrix constructed from 2° = 512,
213 = 8192, and 2! = 131072 Gaussian process
realizations
e Higher modes are more oscillatory
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Random Fields

1D Gaussmn Process: KL Random Variables

0=01 =02

0.45 T T T T 0.45
0.40F 0.401
0.35f 0.35f
0.301 0.30F

go.zs— E go,zs—
E 0.20 E 0.20
0.15F 0.15F
0.10f 0.10f
0.05F 0.05

0.00!

0'00—4 -3 -2 -1 0 1 2 3 4

e Random variables obtained by projecting realizations
onto KL modes

e Uncorrelated by construction
¢ Also independent due to nature of Gaussian Process
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Random Fields

1D Gaussmn Process Elgenvalue Spectrum

=
o
~

=
o
©

,_.
o
%

,_.
e
S

Eigenvalue Magnitude
S

fun
o
&

0 10 20 30 40 60
Eigenvalue #

e Eigenvalue spectrum decays more slowly as
correlation length decreases
¢ More oscillatory modes needed to represent
fluctuations in x
e KL expansion generally is truncated after enough
modes are included to capture a specified fraction of
the total variance
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Random Fields

1D Gaussian Process: Reconstructed Realizations

=
o
°

—
o
¥

,_\
S
S

Eigenvalue Magnitude
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—
o
&

10 20 30 40 60
Eigenvalue #

o

e Large scale features can be resolved with small
number of modes

e Smaller scale features require higher modes
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1D Gaussian Process:

Random Fields

Reconstructed Realizations

Eigenvalue Magnitude

20

10

-10

2 terms

0 10 20 30 40 60
Eigenvalue #

-2,

0.2

0.4

0.6

0.8

e Large scale features can be resolved with small

number of modes

e Smaller scale features require higher modes
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Random Fields

1D Gaussian Process: Reconstructed Realizations

20

4 terms

Eigenvalue Magnitude

0 10 20 30 40 60 8% 0.2 0.4 0.6 0.8 1.0
Eigenvalue # X

e Large scale features can be resolved with small
number of modes

e Smaller scale features require higher modes
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Random Fields

1D Gaussian Process: Reconstructed Realizations

20

6 terms

Eigenvalue Magnitude

0 10 20 30 40 60 8% 0.2 0.4 0.6 0.8 1.0
Eigenvalue # X

e Large scale features can be resolved with small
number of modes

e Smaller scale features require higher modes
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Random Fields

1D Gaussian Process: Reconstructed Realizations

20

8 terms

Eigenvalue Magnitude

0 10 20 30 40 60 8% 0.2 0.4 0.6 0.8 1.0
Eigenvalue # X

e Large scale features can be resolved with small
number of modes

e Smaller scale features require higher modes
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Random Fields

1D Gaussian Process: Reconstructed Realizations

20

10 terms

Eigenvalue Magnitude

0 10 20 30 40 60 8% 0.2 0.4 0.6 0.8 1.0
Eigenvalue # X

e Large scale features can be resolved with small
number of modes

e Smaller scale features require higher modes
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Random Fields

1D Gaussian Process: Reconstructed Realizations

20

14 terms

Eigenvalue Magnitude

0 10 20 30 40 60 8% 0.2 0.4 0.6 0.8 1.0
Eigenvalue # X

e Large scale features can be resolved with small
number of modes

e Smaller scale features require higher modes
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Random Fields

1D Gaussian Process: Reconstructed Realizations

20

16 terms

Eigenvalue Magnitude

0 10 20 30 40 60 8% 0.2 0.4 0.6 0.8 1.0
Eigenvalue # X

e Large scale features can be resolved with small
number of modes

e Smaller scale features require higher modes
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Random Fields

1D Gaussian Process: Reconstructed Realizations

20

18 terms

Eigenvalue Magnitude

0 10 20 30 40 60 8% 0.2 0.4 0.6 0.8 1.0
Eigenvalue # X

e Large scale features can be resolved with small
number of modes

e Smaller scale features require higher modes
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Random Fields

1D Gaussian Process: Reconstructed Realizations

20

1 terms
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e Large scale features can be resolved with small
number of modes

e Smaller scale features require higher modes
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Random Fields

1D Gaussian Process: Reconstructed Realizations

20

2 terms
(]
©
=
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=
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; i b -2 ; ! 1
0 10 20 30 40 60 .0 0.2 0.4 0.6 0.8 1.0
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e Large scale features can be resolved with small
number of modes

e Smaller scale features require higher modes
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Random Fields

1D Gaussian Process: Reconstructed Realizations

20

3 terms
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e Large scale features can be resolved with small
number of modes

e Smaller scale features require higher modes
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Random Fields

1D Gaussian Process: Reconstructed Realizations
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4 terms
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e Large scale features can be resolved with small
number of modes

e Smaller scale features require higher modes
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Random Fields

1D Gaussian Process: Reconstructed Realizations
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5 terms
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e Large scale features can be resolved with small
number of modes

e Smaller scale features require higher modes
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Random Fields

1D Gaussian Process: Reconstructed Realizations

20

6 terms
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e Large scale features can be resolved with small
number of modes

e Smaller scale features require higher modes
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Random Fields

1D Gaussian Process: Reconstructed Realizations
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7 terms
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e Large scale features can be resolved with small
number of modes

e Smaller scale features require higher modes

Debusschere — SNL uQ



Random Fields

1D Gaussian Process: Reconstructed Realizations
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8 terms
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e Large scale features can be resolved with small
number of modes

e Smaller scale features require higher modes
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Random Fields

1D Gaussian Process: Reconstructed Realizations
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9 terms
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e Large scale features can be resolved with small
number of modes

e Smaller scale features require higher modes
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Random Fields

KL of 2D Gaussian Process

e 2D Gaussian Process with covariance:
Cov(xi, x2) = exp(—|[xi — x|[?/6?)

e Realizations are smoother as covariance length ¢
increases
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Random Fields

2D KL - Modes for § = 0.1

VAsfs
. '— 0.8 —

%80 02 o4 o6 o8 1 %80 02 04 o6 08 1 %30 02 o4 06 08 10
X X X

%80 02 04 06 08 1
X

Vs Vel

1 1

. .
0.6

Ea> @
0.4 :

%80 02 o4 o6 os 1 %80 02 04 o6 08 1

e Data covariance matrix constructed from 212 = 4096
Gaussian process realizations

= i |
%85 02 o4 o6 08 1 %80 o0z 04 o6 08 10
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Random Fields

2D KL - Modes for § = 0.2

09,

02 04 06 08
X

0.8
0.6
0.4

0.2

%80 02 04 06 %80 02 o4 o06 08 1 °80 02 o0a o6 08 1 %80 02 04 06 08 10

e Data covariance matrix constructed from 212 = 4096
Gaussian process realizations
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Random Fields

2D KL - Modes for 6 = 0.5
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e Data covariance matrix constructed from 212 = 4096
Gaussian process realizations
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Random Fields

2D KL - Eigenvalue Spectrum
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Random Fields

2D KL - Eigenvalue Spectrum
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Random Fields

2D KL - Eigenvalue Spectrum
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Random Fields

KL: Summary ”

e The KL expansion allows a compact, finite
dimensional representation of random fields
e Dimensionality reduction is strongest if eigenvalue
spectrum decays rapidly
e Long correlation length in random field realizations
¢ Relatively narrow range of feature sizes
¢ A potential drawback is that many samples are
needed to compute the covariance matrix accurately
e 1000’s of realizations were needed to get smooth
eigenmodes in 2D examples shown earlier
« Often, a covariance function is assumed and the
associated eigenmodes are used to parametrize an
unknown random field
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