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Goals of This Tutorial

• 4 Lectures

• Lecture 1: Context and Fundamentals
• Lecture 2: Forward Propagation
• Lecture 3: Characterization

• Sensitivity Analysis
• Representing Arbitrary Random Variables
• Representing Random Fields

• Lecture 4: Bayesian Inference — UQ Software
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Outline

O Introduction

() Sensitivity Analysis

() Representing Arbitrary RVs

• Representing Random Fields

• References
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Sensitivity analysis gives insight into key sources of
uncertainty

Experiments
Inference P(A)

Theory

P(A1D, I) =  
(D)

P('D À 

P

, I)P(A, /)

du 
= f(u; À)

dt

a
—(opYi)+v (0,5;.) + eeji +

Forward
Propagation P(u)

Predictive
Simulation

• Obtaining global sensitivity analysis from PCEs
• Identify dominant sources of uncertainty
• Attribution
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PC Postprocessing: global sensitivity information is
readily obtained from PCE

9(6 • • • • • =

• Global sensitivity analysis
decomposition

• Total variance

P

CkW

k=0

Variance

Var[gM Iwk112
k>0
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C Postprocessing: Main Effect and Joint Sensitivity
Indices

• Main effect sensitivity indices

St 
= 

Var[E(g(10] 

Var[gW]
kei[i ClIWkll2

Ek>o q(111111(112

• Ifi is the set of bases with only involved
• Si is the uncertainty contribution that is due to i-th

parameter only

• Joint sensitivity indices

Var[E(gUi,  si si  
i 

CNW k112

Var[g(4)] Ek>o q(111 V 02

• is the set of bases with only and involved
• is the uncertainty contribution that is due to (i,j)

parameter pair
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C Postprocessing: Total Effect Sensitivity Indices

• Total effect sensitivity indices

Var[E(g(_1)] Ekcii I I 12
=

Var[g0 Ek>o c?, I I tij k112

• The notation indicates terms that do not have in
them

• ffT is the set of bases with involved, including all its
interactions

• The sum of all 7; is usually > 1
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Sensitivity indices arRIT7Tcimputable from PC

g(0

Consider dimensionality d =
number of PC terms P + 1

= >23 GOV k(0

k=0

3, total order p = 2,
= (d + p)!I(d!p!) = 10.

9(6, 3) — co + c101(6) + col),(W + coi,b1(W +

+ c402(6) + c5'01(6)V)1(2) + c8lP1(001(6) + c702(2) + c8'01(2)'01(6) + 0902(6)

Variance contributions

Var(g) = 0 + ci (4) + 4(4) + c3(0.T)

+ Gi(4) + ci(o;)(o;) + ci(4)(4) + 4(4) + ci(o;)(4 + cm)
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Sensitivity indices arRIT7Tcimputable from PC

= E Covkw
k=0

Consider dimensionality d = 3, total order p= 2,
number of PC terms P + 1 = (d + p)!/(d!p!) = 10.

g(6,2,e3) = co+ + 0201 (e2) + oszPi (e3) +

+ c5'0 (e1 (e2 + cvbi (el (e3) + C702(e2) + c801(e2)01 (e3)

Variance contributions

+ c902 (e3)

Var(g) = 0 + cE(PT) + c3(0-T) +

+ Al+ Gi(IPi)(4 + ci(Oi)(1Pi) + G + ci(4)(4) + 4(oE)

Main effect sensitivities 6.11 6
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Sensitivity indices arRIT7Tcimputable from PC

= E Covkw
k=0

Consider dimensionality d = 3, total order p= 2,
number of PC terms P + 1 = (d + p)!/(d!p!) = 10.

9(6 , 6,6) = co + a1/P1(6 ) + c2,1 + 0301(6) +

+ c402 (6 ) + c$01 (6 )01(6) + c601 (6 )01(6) +

Variance contributions

Var(g) = 0 + 4(0) +14m) + cp,g) +

+ ciM) + ci(0)(4 + ciA(0) +

Main effect sensitivities 6 II 6

+ c801 (6)01 (6) + c902 (6)

+ ci<o;)(4) + cM)
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Sensitivity indices arRIT7Tcimputable from PC

= E Covkw
k=0

Consider dimensionality d = 3, total order p= 2,
number of PC terms P +1 = (d + p)!l(d!p!) = 10.

9(6 , 6) = co + 01 (6 ) + c20-1 (6) +

+ c402(6 ) + c501 (6 )01 (6) + c601 (6 )01(6) + c702(e2) + c801 (6)01 (6) +

Variance contributions

Var(g) = + ci(o) + c(,g) +

+4(4) + ci(0)(4 + ciA(iP;) + GIA) + ci(o;)(4 +14M)

Main effect sensitivities 6
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Sensitivity indices arRIT7Tcimputable from PC

= E COI I kW
k=0

Consider dimensionality d = 3, total order p= 2,
number of PC terms P + 1 = (d + p)!/(d!p!) = 10.

9(6 , 2,e3) = co +BO ) + 0201 (e2) + colPl +

+Err + )vl (2) + coOl (6 + cr02(e2) + coll,,1(2)71,1(3)

Variance contributions

+ c902(e3)

Var(g) = 0 + 4(4) + c3(o.T)

+ 4(03) _Erc.7771+ cm) + c(ow) + cm)

Total sensitivities II 6
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Sensitivity indices are directly computable from PC

g = CO I I kW

k=o

Consider dimensionality d = 3, total order p= 2,
number of PC terms P+ 1 = (d+p)!/(d!p!) = 10.

g(6, 2,6)= co+ c10(6) + + 030(6) +

+ c402(6) +11PF)0411+ c60 (6)0 (6) + ■

Variance contributions

Var(g)= 0 + cfm> + cE(q) + cm) +

+ 4(4) +7(4)(111+ ci(0)(o;) +

Total sensitivities 6

+ C902(6)

+ ci(0;)(4)_+ ci(4)
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Sensitivity indices arRIT7Tcimputable from PC

= E Covkw
k=0

Consider dimensionality d = 3, total order p = 2,
number of PC terms P + 1 = (d + p)!l(d!p!)= 10.

9(6 , 6) = co + ci/Pi (6 ) + 0201(6) +

+ c4P2(6) + c5o1 (6 )01(6) + ■

Variance contributions

+ cro2(e2) +111111+

Var(g) = 0 + 4(4) + cE(sq) + rcEI +

+ ciA) + Gi(pW) +rEM)(4)1+ GIA) +1—cE(P;)(4)

Total sensitivities 6 •

+ 4(4)
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Sensitivity indices arRIT7Tcimputable from PC
P 

g,(0 = >2, COV k(0

k=0

Consider dimensionality d = 3, total order p= 2,
number of PC terms P +1 = (d + p)!/(d!p!) = 10.

g(6 , 6,6) = co + (1 ) + c201 (6) + 03'0 (6) +

C402(1) =Fr (6) + C601(1)01(6) + C702(6) + C8'01(6)01(6) + C902(6)

Variance contributions

Var(g) = 0 + (0) + 4(0) + 4(0) +

+ 4(4) +c117711+ 4(4(0) + (4) + 4 (4)A + 4(4)

Joint sensitivities (6, e2)' (6,6) (6,6)
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Sensitivity indices arRIT7Tcimputable from PC

9,(0 = >2, CO I I k(0

k=0

Consider dimensionality d = 3, total order p = 2,
number of PC terms P+ 1 = (d + p)!/(d!p!) = 10.

9(6 , 6) = co + 01 (6) + 0201(W + 0301(6) +

+ c402(6 + c51,1)1 (6 )01 (e2) +

Variance contributions

+ c702(6) + c8l,b1(6)01(e3) + 0902(6)

Var(g) = 0 + (4) + 4(0) + c3(o) +
+ Gim) + ci(ow ci(0)(o7) + 4(4) + Gi(pw) + Cm)

Joint sensitivities (1,e2) 11(6,6-/ (e2, 6)
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Sensitivity indices arRIT7Tcimputable from PC

9,(0 = >2, CO I I k(0

k=0

Consider dimensionality d = 3, total order p = 2,
number of PC terms P+ 1 = (d + p)!/(d!p!) = 1 O.

9(6 , 6,6) = co + 01 (6 ) + c201 (6) + 0301(6) +

+ c402(6 + c51,b1 (6 )01(6) + c601 (6 )7,b1 (6) + c702(6) +

Variance contributions

Var(g) = 0 + (4) + 4(o) + c3(0) +

+4(4) + cioPTM) + cgM)(0) + 4(q) +71M)111+

Joint sensitivities (i,e2) (6,6) 17.3 

+ co02(6)

4A)
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C Postprocessing: Based Approaches

g(6 = >_: Ckq
k=0

• In some cases, need to resort to Monte-Carlo
estimation, e.g.

• Piecewise-PC with irregular
subdomains

• Output transformations, e.g. build PC
for log gW, but inquire sensitivity with
respect to g()

• A brute-force sampling of Var[E(g(10] is
extremely inefficient.
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C Postprocessing: Sa p 177Based Approaches

• Tricks are available, given a single set of
sampled input [Sahelli, 2002]. E.g., use

E[9'We.)21 = E[g( )g(e1 .1)] = N 1 1 >g(er))g(er)),
N

r=1

where is with i-th element replaced by
• Similar formulae available for joint sensitivity

indices.

• Con: as all Monte-Carlo algorithms, converges
slowly.

• Pro: sampling is cheap.

Debusschere — SNL UQ
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eat Transfer through a Window

Ti

h,(T, — T1) = 
(T1 — T2)

dw

k
w 

T2) /70( T2 — To)
dw

To 6 Uncertain, Gaussian
parameters

= 293K, a = 0.5%

To = 273K, = 0.5%

dw 0.01m, a = 1%

kw = 1 W/mK, = 5%

hi = 2W/m2K,o- = 15%

170 = 6W/m2K, = 15%
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Outputs are most sensitive to ambient temperatures
and convective heat transfer coefficients

6

0.2

Heat Flux

o T„ d„ o k„ h, o h„

• Main effect sensitivities
• Sum to 1 only if coupling terms do not matter

• kw has minimal contribution due to its low uncertainty
Debusschere — SNL UQ
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Outline

O Introduction

() Sensitivity Analysis

() Representing Arbitrary RVs

• Representing Random Fields

• References
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Obtaining PCEs forilli=r7nputs

Experiments
Inference PO)

Theory

1)P (A, I)
P(AID, I)

P(D)

du

dt 
f(u; À)

0
—(OPY)+ V " (0Pkiii) =V " (ei§i) + CC; +

Forward
Propagation

Predictive
Simulation

 )1:1
pH"

P(u)t A

• Representation of uncertain inputs with PCEs
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Obtaining PC coefficients for arbitrary random
variables is not trivial

Characterizing PCEs for uncertain inputs is a really
difficult problem

Inputs specified in a variety of ways, and often
incomplete

Probability density function
Samples, e.g. from inverse problem solution
Expert opinion (e.g. "about 3.5")

Particular case of a random variable specified by a
PDF is generally tractable
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Orthogonality enables a Galerkin projection to
determine the PC coefficients

U >_d UkW k

k=0

'Oo

= Euk(WiWk)=Lii(w?)
k=0

(utlfi)
=

0q)
Debusschere — SNL UQ
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Galerkin projection requires functional relationship
between random variable and germ of PCE

5

P(U) 3

2

1

P

U = UkW k(0

k=0

2 4 6 8

(U 
=

OPF)

u
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umulative Distribution Function (CDF) maps arbitrary
random variable to a uniform random variable

• Consider u with PDF p(u)

• CDF of u is given by

F(u) = I p(s)ds

• F(u) maps u to uniform
on [0, 1]

0.8

0.6

0.4

0.2

p(u)

00 
2 4

u
6

2 4

u
6 8
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verse CDF map enables Galerkin Projection

= F(u)

0.8

0.6

7/ 0.4

rl = 0.2

maps uniform 0
I/ to normal
RV

2 6

u

F-1(1)(0) 
P(u)3i=

2

(U Wi(e)) F-1 (OW) W i(Ow(Ode

8

u
Debusschere — SNL UQ
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C Illustration: PC ExparWrifor a Normal RV
0.45

0.40

• Wiener-Hermite 0.35

PCE constructed 0.30

for a Normal RV 0.25

• PCE-sampled 0.20

a,
PDF superposed 0.15

on true PDF 0.10

• Order = 1
0.05

0.004 

UkWk(0

k=0

Uo + U1

6 8 10
71

12 14 16
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C Illustration: PC ExparWrifor a Normal RV

• Wiener-Hermite
PCE constructed
for a Normal RV

• PCE-sampled
PDF superposed
on true PDF

• Order = 2

0.45

0.40

0.35

0.30

0.25

C.21 0 20

0.15

0.10

0.05

0.004 

UkW k(0

k=0

Up U2(e2 — 1)

6 8 10 12 14 16
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C Illustration: PC Expansion for a Normal RV

• Wiener-Hermite
PCE constructed
for a Normal RV

• PCE-sampled
PDF superposed
on true PDF

• Order = 3

4-1

0.45

0.40

0.35

0.30

0.25

14

UkW k(0

k=0

Up U1 I-12(e2 - 1) 1-13(e - 30

16
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C Illustration: PC Expansion for a Normal RV

• Wiener-Hermite
PCE constructed
for a Normal RV

• PCE-sampled
PDF superposed
on true PDF

• Order = 4

P

U = LikW k(0

k=0

= Up + U2(e - 1) ± U3(e - + u4(e — 6e + 3)

0.45

0.40

0.35

0.30

0.25

q 0.20

6
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PC Illustration: PC Expansion for a Normal RV

• Wiener-Hermite
PCE constructed
for a Normal RV

• PCE-sampled
PDF superposed
on true PDF

• Order = 5

U UktV k(0

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.004 
6 10 12 14

k=0

Uo e Lie - 1) + tie - 30 114(e - 6e + 3)

+ u5(e — 10e + 150

16
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C Illustration: WH PCE for a Normal RV
P
C
 c
oe
ff
ic
ie
nt
 

10

6

4

2

•—• PC order 5
•—• PC order 4
•—• PC order 3
•—• PC order 2
•—• PC order 1

2

order

14

13

12

11

10

9

7

— PC order 5
— PC order 4
— PC order 3

— PC order 2
— PC order 1

6 4 
-3 -2 -1 0 2

• First order Wiener-Hermite PCE exact for a normal
RV

• Linear function of

• Higher order terms are negligible

3 4
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C Illustration: WH PCE for a Lognormal RV
0 8

• Wiener-Hermite 0.7

PCE constructed 0.6

for a Lognormal 0.5

RV w 0.4
alCZ

• PCE-sampled - 0.3

PDF superposed 0.2

on true PDF 0.1

• Order = 1 0.Q2 

UkW k(0

k=0

= Up + L11

2
u

— Exact Lognormal

— PC order 1
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C Illustration: WH PCE for a Lognormal RV

• Wiener-Hermite
PCE constructed
for a Lognormal

4

3

RV

• PCE-sampled 2

PDF superposed
on true PDF

• Order = 2

UkW k(0

k=0

= Uo U2(e - 1)

u

— Exact Lognormal

— PC order 2
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PC Illustration: WH PCE for a Lognormal RV

• Wiener-Hermite
0.8 _

PCE constructed
for a Lognormal
RV

• PCE-sampled 0.4 -

PDF superposed
0.2

on true PDF

• Order = 3 0.0 2 
P

— Exact Lognormal

— PC order 3

UkT k(0

k=0

U2(e - 1) + 1-J3(e -

7/
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PC Illustration: WH
Arbitrary RVs Random Fields

E for a Lognormal RV
Reference.

0.8

— Exact Lognormal

• Wiener-Hermite
0 7 — PC order 4

PCE constructed 0.6

for a Lognormal "

RV 0.4-

• PCE-sampled r`Li

PDF superposed 0.2-

on true PDF 0.1

• Order = 4 0.Q2
2

P

U 1 k(0

k=0

= Up + I-12(e - 1) I-13(e - + u4(e — 6e + 3)
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PC Illustration: WH E for a Lognormal RV
0.8

• Wiener-Hermite
PCE constructed 06

for a Lognormal
RV q 0.4

• PCE-sampled - 0.3

PDF superposed 0.2

on true PDF 0.1

• Order = 5
P

U 1 k(0

0.7

u

— Exact Lognormal

— PC order 5

k=0

= Up + 1-12(e2 — 1) + u3(e - + u4(e - 6e + 3)

+ u5(e - 10e + 150
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C Illustration: WH PCE for a Lognormal RV

1.4

1.2

1.0

CD

.Y 0.8

lU
0 0.6
u

0_ 0.4

0.2

•-• PC order 5
•-• PC order 4
•-• PC order 3
•-• PC order 2
•-• PC order 1

0.00 2

order
4 5

5

0

— PC order 5
— PC order 4
— PC order 3

— PC order 2
— PC order 1

-3

• Fifth-order Wiener-Hermite PCE represents the given
Lognormal well

• Higher order terms are negligible

4
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Constructing an nD PC for a RV with a Given PDF

• Given RV z E IR with PDF: g(z), define:

P

z t i(e1 • • •

i=0

(n + p)! 
P + 1 =

n!p!

• No general procedure
• Construct PCE as model choice to represent

what is known about RV
• Can choose {n, p} and the mode strengths by

ensuring
accurate capture of
• the PDF g(z)
• select moments of z
• some observable of interest 0(z)

Debusschere — SNL UQ
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Multivariate Normal •proximation (MVN)

• Many distributions are unimodal and somewhat
shaped like Gaussians

• MultiVariate Normal approximations capture mean
and correlation structure of the random variables

• Easy to extract from a set of samples
• In 1D: just compute mean and standard deviation:

u = uo +
• Multi-D: Cholesky factorization of covariance

C = LLT

u =

# Compute mean parameter values

par_mean = numpy.mean(samples,axis=0)

# Compute the covariance

par_cov = numpy.cov(samples,rowvar=0)

# Compute the Cholesky Decomposition

chol_lower = numpy.linalg.cholesky(par_cov)

Debusschere - SNL UQ
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MVN Approximati of Distribution from Samples

5400

5350

5300

5250

520
10.30 1.32 1.34 1.36 1.38 1.40

s1

0.600

0.525

0.450

0.375

0.300

0.225

0.150

0.075

0.000

5400

5380

5360

5340

5320

5300

5280

5260

5240

Comparison of Posterior (blue) with MVN (red)

1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.39

S1

= 1.351 + 0.013676
CS = 5310 - 26.256 + 20.26 2
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Rosenblatt Transformation for Multi-D RVs

• Assume samples of multi-D RVs are (e.g. from
MCMC sampling of posterior parameter distribution)

• Rosenblatt transformation maps any (not necessarily
independent) set of random variables (A1, . . . , Ad) to
uniform i.i.d.'s {77,};1 1 (Rosenblatt, 1952).

771 F101)

772 = F211021A1)

Fd4-1, ,l(AdIAd-1, • • • À1)

• Rosenblatt transformation is a multi-D generalization
of 1D CDF mapping.

• Conditional CDFs are harder to evaluate in high
dimensions

Debusschere — SNL UQ
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Rosenblatt transformation of a given sample set
requires KDE

• Given samples {A(")},1;/  1 of the random variable = (A1, , Ad)

• Kernel Density Estimation (KDE) is needed to compute conditional CDFs

Tlk Fklk-1,...,1(XklAk-1, À1) =

f A k Pk,...,1(Aki ,Àk - 1 , • • - , x1 ) d.x'Pklk-1, 1P:k Pc-1, • • . , X1)CD:k =
—lc,. Pk-1,...,1(Ak-1, • • • , À1) k

rk 

,

1 
—k E exp ( (xi —x;"))2+...+Ne —41))2 )

n=1 
2h2

N

I E exp
n=1

N ( p‘i _,n
1 )2+. —+(4-1 — Xri)2) dAk

2h2

,..,
h7.r ()

AI( .Lsi. 0'1 — ÀSn))2+—+(4-1 — Xr 1)2  1 
p

2_, exp
k _ 4h))2

00

2h2 x exp 2h2
n=1 

N / 
(1 Àjn))2+—

+(a
k-1 An) 1 )2 )E exp

2h2
n=1

N 

exp 
(x1 _xln))

2
+•• •+(4-1 47i1)2  x 4, (  —hAScn) E

2h2
n=1

N exp (À1 — Àjn))2+—+N-1 —4') 1)2 )

2h2
n=1

dÀk
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Rosenblatt transfo ation enables Galerkin projection

20

15

5

0 6 0.8 1.2 1.4
Parameter a

0.8

0.6

0.4

0.

0.2

0.2 0.4 0.6
Parameter rl l

0.8

(a. b) = R-1 (6 , 6) ensures a well-defined quadrature
integration

a = E akk v k(0
k=0

b Eboik(e)
k=0

ak R;1 (0 k k(0w(Ock
a

bk OC f ic, 1 (0 III k(e)141(e)d
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• References
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Compact Represent. • s of Random Fields
20

10

-10

1.0

0.8

0.6

0.4

0 2

200 0.2 0.4 0.6 0.8 1 0 01 0 0.2 0.4 0.6
X

• Sometimes an uncertain input is a random field (also
called stochastic process)
• Friction coefficient along a wall
• Thermal conductivity in heterogeneous material
• Permeability in groundwater flow simulations

• Have infinitely many degrees of freedom
• To model effect of random fields on computations,

need compact representation that captures key
aspects of random field

0.8 1 0
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arhunen-Loève ( xpansions

• Assume stochastic process F(x, 8) :Dx8—>H. an
L2 random field on D

• With covariance function Cov(x, y)
• F can be written as

00

F(X,(9) = (F(X,9))0 +1:1/Akfk(xgk
k=1

• fk(x): eigenfunctions of Cov(x, y)
• Ak: corresponding eigenvalues, all positive
• 4: uncorrelated random variables, unit variance
• Samples obtained by projecting realizations of F onto fk
• Generally not independent

• For Gaussian are i.i.d. normal random variables
• The KLE is optimal: of all possible orthonormal bases

for L2(e x D) the {f (x)} minimize the mean-square
error in a finite linear representation of F(.)
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L Expansions - umerical Approach - 1

• Covariance Matrix, Cov(x, y) = (F(x, (9)F(y, O))B:

• specified analytically
• estimated from samples

• Estimate eigenvalues and eigenvectors for the
Fredholm equation of second kind:

ICov(x, y)f(y)dy = f (x)
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L Expansions - umerical Approach - 2

• Nystrom algorithm for Fredholm equation

wiCov(x, O(y;) = Af (x)
i=1

where w, are the weights for the quadrature rule that
uses Np points y where realizations are provided.

• Further manipulation leads to the eigenvalue problem

Ag

where A = WKW and g = Wf, with W being the
diagonal matrix W„ = \/w, and Ku = Cov(x„ yj).
Solutions consist of pairs of eigenvalues Ak and
eigenmodes fk = W-1 glc.
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L Expansions - umerical Approach - 3

• Samples of random variables are obtained by
projecting realizations of the random process F on
the eigenmodes fk

ekloi = (F(x, — (F(x, , fk(x)), I\/Ak

• ... or numerically

Np

•If 9/ = >2, wi (FN, 01) (FN 6T 0) fk()(1)/

1=1

• If Gaussian process: automatically have first order
WH PCE

• If not, same approaches as for converting RVs to
PCEs applied to KL RVs
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D Gaussian Process: Realizations

20

10

s 0

—10

6 = 0.1

A
•4444‘ •
lAse4 t

—28 
0.2 0.4 0.6

X
0.8 1 0

20

10

6 = 0.2

—10 -

4/1/""4  _ Nimmibt, --.41116N
WAZIF--40

28 0
0.4 0.6

X
08

• Covariance Cov(xi , x2) = exp(—(xi — x2)2 / 62)
• Sample realizations are noisier as correlation length

decreases

1 0
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D Gaussian Process: KL Modes for 6- = 0.10

29 realizations 213 realizations 217 realizations

• o

2

-3

t 0 02 0.4 0.6 0 8 10 t 0
x

• Eigenmodes of the covariance matrix
• Data covariance matrix constructed from 29 = 512,
213 = 8192, and 217 = 131072 Gaussian process
realizations

• Higher modes are more oscillatory

8 10 0 0.4
x

.8 10
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D Gaussian Process: KL Modes for 6 = 0.20

29 realizations 213 realizations 217 realizations
4

3

2

o

-2

-3

t 0 02 04 06 0.8 10 t 0
x x

• Eigenmodes of the covariance matrix
• Data covariance matrix constructed from 29 = 512,
213 = 8192, and 217 = 131072 Gaussian process
realizations

• Higher modes are more oscillatory

2

8 10 0 0.4
x

.8 10
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D Gaussian ProcessTrr Random Variables

= 0.1
0.45

0.40 - el

0.35

0.30

e2

e3

,̀1-j* 0.25 /
-

0.20

0.15

0.10

0.05

0.0Q4
—3 —2 -1 2 3

(0)

0.45

0.40

0.35

0.30

0
* 
25

0.20

0.15

0.10

0.05

MQ4

6 = 0.2

—3 —2 2 3

• Random variables obtained by projecting realizations
onto KL modes

• Uncorrelated by construction
• Also independent due to nature of Gaussian Process

4
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D Gaussian Process: nva ue Spectrum
102

ai
10°

mc.5" 102
2

106
a)

— S =0.05

— =0.1

— 6. =0.2

— 8 =0.5

0 10 20 30 40
Eigenvalue #

60

• Eigenvalue spectrum decays more slowly as
correlation length decreases
• More oscillatory modes needed to represent

fluctuations in x
• KL expansion generally is truncated after enough

modes are included to capture a specified fraction of
the total variance
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D Gaussian Process: onstructed Realizations

102
— b =0.05

— 6=0.1

— 6=0.2

— 6=0.5

0 10 20 30 40

Eigenvalue #
60

Large scale features can be resolved with small
number of modes

Smaller scale features require higher modes
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D Gaussian Process: onstructed Realizations

— =0.05
— 6=0.1

— 6=0.2
— 5=0.5

0 10 20 30 40
Eigenvalue #

60 0.2 0.4 0.6x

Large scale features can be resolved with small
number of modes

Smaller scale features require higher modes

0.8 1 0
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D Gaussian Process: onstructed Realizations

c 106

— =0.05
— 6=0.1

— 6=0.2
— 5=0.5

0 10 20 30 40
Eigenvalue #

60 0.2 0.4 0.6x

Large scale features can be resolved with small
number of modes

Smaller scale features require higher modes
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D Gaussian Process: onstructed Realizations

100 20
— =0.05

Loo — 6=0.1

— 6=0.2 10

— 5=0.5

s,

c 106

lL Lo-8

0

—10

2(8
10 20 30 40 60

Eigenvalue #

6 terms

0.2 0.4 0.6
x

Large scale features can be resolved with small
number of modes

Smaller scale features require higher modes

0.8 1 0
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D Gaussian Process: onstructed Realizations

— =0.05
— 6=0.1

— 6=0.2
— 5=0.5

0 10 20 30 40
Eigenvalue #

60

Large scale features can be resolved with small
number of modes

Smaller scale features require higher modes
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D Gaussian Process: onstructed Realizations

c 106

— =0.05
— 6=0.1

— 6=0.2
— 5=0.5

10 20 30 40
Eigenvalue #

60 0.2 0.4 0.6
x

Large scale features can be resolved with small
number of modes

Smaller scale features require higher modes

0.8 1 0
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D Gaussian Process: onstructed Realizations

c 106

— =0.05
— 6=0.1

— 6=0.2
— 5=0.5

10 20 30 40
Eigenvalue #

60

Large scale features can be resolved with small
number of modes

Smaller scale features require higher modes
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D Gaussian Process: onstructed Realizations

c 106

— =0.05
— 6=0.1

— 6=0.2
— 5=0.5

0 10 20 30 40
Eigenvalue #

60 0.2 0.4 0.6x

Large scale features can be resolved with small
number of modes

Smaller scale features require higher modes
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D Gaussian Process: onstructed Realizations

c 106
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Large scale features can be resolved with small
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D Gaussian Process: onstructed Realizations
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D Gaussian Process: onstructed Realizations

c 106
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Large scale features can be resolved with small
number of modes

Smaller scale features require higher modes
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D Gaussian Process: onstructed Realizations

c 106

— =0.05
— 6=0.1

— 6=0.2
— 5=0.5

0 10 20 30 40
Eigenvalue #

60

20

10

0

-10

3 terms

2B 0
0.2 0.4 0.6x

Large scale features can be resolved with small
number of modes

Smaller scale features require higher modes
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D Gaussian Process: onstructed Realizations
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D Gaussian Process: onstructed Realizations
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D Gaussian Process: onstructed Realizations
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D Gaussian Process: onstructed Realizations
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D Gaussian Process: onstructed Realizations
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D Gaussian Process: onstructed Realizations
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Large scale features can be resolved with small
number of modes

Smaller scale features require higher modes
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L of 2D Gaussian rocess

o a

6 = 0.1 6 = 0.2

0 a

0 2

= 0.5

• 2D Gaussian Process with covariance:
Cov(xi , x2) = exp(-11xi — x2112/62)

• Realizations are smoother as covariance length 6
increases
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2D KL - odes for

)f5

0 6

0.4

0.2

0.4 0.6
X

0.8

03f3

4 0 0.2 0.4 0.6 OX 10x 

f8

1.0

0.8

0.6

0.4

0.2

4 0 0.2 0.4 0.6 0.8 1 4 0 0.2 0.4 0.6 0.8 1 00 0 012 0.4 0.6 0.8 4 0 0.2 0.4 as as 10

• Data covariance matrix constructed from 212 = 4096
Gaussian process realizations
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2D KL - Modes for -

NA3 f3

4.0 0.2 0.4 0.6 0.8 1 0.8 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 4.0 0.2 0.4 0.6 0.8 1.0. 
X

V5f5
1.0

0.4

0.2

0 ' ' 

0.4

0.6 0.6

0.2

0.8 0.8 0.8

0.6

T

4.0 0.2 OA 0.6 0.8 1 4 0 0.2 OA 0.6 0.8 1 ° g 0 0.2 0.4 0.6 0.0 1 CI 0 0.2 0.4 0.6 0.8
X X X X

• Data covariance matrix constructed from 212 = 4096
Gaussian process realizations

1.0
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2D KL - Modes for 6 = 0.5
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• Data covariance matrix constructed from 212 = 4096
Gaussian process realizations
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2D KL - Eigenvalue Si2erun"---1
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2D KL - Eigenvalue SP687n7
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2D KL - Eigenvalu:
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• The KL expansion allows a compact, finite
dimensional representation of random fields

• Dimensionality reduction is strongest if eigenvalue
spectrum decays rapidly
• Long correlation length in random field realizations
• Relatively narrow range of feature sizes

• A potential drawback is that many samples are
needed to compute the covariance matrix accurately
• 1000's of realizations were needed to get smooth

eigenmodes in 2D examples shown earlier

• Often, a covariance function is assumed and the
associated eigenmodes are used to parametrize an
unknown random field
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urther Reading
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