OpenMP 4.5 Validation and Verification Suite
for Device Offload

Jose Monsalve DiaZT*7 Swaroop Pophalei*, Oscar Hernandezi7 David E.

Bernholdti, and Sunita Chandrasekaran
* Contributed Equally

JrUniversity of Delaware, Newark, DE, USA
{josem, schandra}@udel.edu

toak Ridge National Lab, Oak Ridge, TN, USA
{pophaless, oscar, bernholdtde}@ornl.gov

Abstract. OpenMP has been widely adopted for shared memory sys-
tems for over a decade. With the heterogeneity trend in architectures
rapidly growing, the programming model needed to evolve such that
applications could not only be ported to traditional CPUs but also to
accelerators often acting as discrete or integrated devices to CPUs. To
that end, OpenMP started to provide support for heterogeneous systems
since 2013 when the version 4.0 of the specification was ratified. OpenMP
4.5 is being enhanced to cover major requirements of Exascale Comput-
ing Project (ECP) applications. As a result it is time-critical to ensure
that the implementations of the 4.5 features are correct and conform-
ing to the specification. This paper focuses on building a Validation and
Verification testsuite that will test and present results for several offload-
ing features implemented in compilers such as Clang, IBM XL C/C++,
CCE, and GCC. We have results for our testsuite on TITAN, Summitdev
and Summit at the Oak Ridge National Lab. We will highlight some of
the ambiguities we encountered in the process of validating and verifying
feature implementations. We also make the testsuite available for any-
one to use and will walk the readers through the infrastructure and the
workflow of the testsuite. A website has been built to capture our efforts
narrated in this paper https://crpl.cis.udel.edu/ompvvsollve.

Keywords: OpenMP, Validation and Verification, Testsuite

This manuscript has been co-authored by UT-Battelle, LLC, under contract DE-
AC05-000R22725 with the US Department of Energy (DOE). The US government
retains and the publisher, by accepting the article for publication, acknowledges that
the US government retains a nonexclusive, paid-up, irrevocable, worldwide license
to publish or reproduce the published form of this manuscript, or allow others to
do so, for US government purposes. DOE will provide public access to these results
of federally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

https://crpl.cis.udel.edu/ompvvsollve

1 Introduction

In 2013 the OpenMP specification made a significant shift to provide support
for heterogeneous systems. They introduced a set of directives for identifying
code as well as data to be moved to the target device for computation. Other
than support for accelerators, SIMD support for vectorization, thread affinity
control, user defined reductions, updates to task construct by introducing task
groups and dependency clauses were also introduced. This led to the release
of Version 4.0. Significant further improvements for device support along with
runtime routines for device memory management was introduced in Version 4.5
in 2015 along with new taskloop construct that would enable loops to be divided
into tasks avoiding the requirement that all threads execute the loop. Support
for doacross loops to parallelize loops with well-structured dependences were
provided. Further support for tasks in the form of task priority was introduced.
SIMD extensions included the ability to specify exact SIMD width and additional
data-sharing attributes.

As the OpenMP specification continues to grow and evolve with all its exist-
ing and new features, it is critical to ensure that the different implementations
that claim conformance are functionally correct and true to the specification.
Having confidence in the correctness of implementations will encourage users to
adopt OpenMP 4.5 for large applications and port them to heterogeneous sys-
tems. Some of the applications that have been ported to GPUs at DOE labora-
tories using OpenMP 4.5 include Pseudo-Spectral Direct Numerical Simulation-
Combined Compact Difference (PSDNS-CCD3D) [1], a computational fluid dy-
namics code on turbulent flow simulation using GPUs and run to scale on the
Titan super-computer, Quick Silver [12], a proxy app of Mercury, that solves a
simplified dynamic Monte Carlo particle transport problem. Both these papers
discuss the challenges such as heterogeneous memory model, thread safety and
thread management, and common programming patterns that are not portable,
faced by the application developers before the code ran on a GPU using OpenMP
4.5.

As hardware continues to evolve, the trend for systems to be equipped with
specialized accelerators or co-processors attached to a CPU-based system is only
going to continue. Top500 reports that a hundred and two systems in the list
are configured with accelerators and coprocessors among which, eighty six use
NVIDIA GPUs, twelve use Intel Xeon Phi cards, five uses PEZY technology,
and two systems use a combination of NVIDIA GPUs and Intel Xeon Phi co-
processors [13]. Directive-based programming models, like OpenMP, can prove
to be very effective and useful especially when there are legacy codes that need
to be migrated to such evolving platforms. Programming models do not re-
quire application developers to be fully aware of hardware details or learn newer
programming languages thus allowing developers to spend more time on the al-
gorithms and the scientific findings and lesser time on deciphering the intricate
details of hardware and language.

Going forward we already know that ORNL’s Summit will be a heterogeneous
platform consisting of IBM Power9 and NVIDIA’s Volta GPUs. We also know

that Argonne National Lab will receive an Intel-based system (not Knights Hill),
Aurora, in the time frame of 2021. Having all this compute power is useless unless
we have vetted OpenMP 4.5 implementations that deliver what the specification
promises.

Compilers [11] that support OpenMP features include GCC 7.1 where OpenMP
4.5 is fully supported for C and C++. IBM XL C/C++ for Linux V13.1.5 on little
endian distributions and XL Fortran for Linux V15.1.15 on little endian distribu-
tions (available in Dec 2016) support OpenMP 3.1 and features in OpenMP 4.5
(include device constructs for offloading to NVIDIA GPU), Intel 17.0 supports
OpenMP 4.5 for C/C++ and Fortran, Cray Compiling Environment (CCE) 8.5
(June 2016) supports OpenMP 4.0, with OpenMP 4.5 support for device con-
structs, LLVM Clang 3.9 release supports all non-offloading features of OpenMP
4.5. Clang that supports offloading features is currently in development.

Such a wide range of compilers and interpretation of different implementers
can lead to differing implementations of OpenMP features. Our previous publica-
tions have captured such discrepancies [6,15]. To that end, this paper continues
to leverage our previous contributions on Validation and Verification testsuite
for OpenMP and build a number of functional test cases along with use cases
to test 4.5 offloading constructs and clauses or combinations of occurrences of
clauses on constructs in order to check for correctness and conformance of fea-
tures specifically to the 4.5 specification. Once our implementation of the new
OpenMP 4.5 features is complete (this is currently on-going work and not fully
complete yet), we plan to tie in the 3.1 testsuite and make them all available
under one repository to enable testing the entire 4.5 Specification.

This paper makes the following contributions:

— Releases a Validation and Verification testsuite currently comprising of ap-
proximately 60 tests that includes unit tests covering extensively target,
target data, target enter and exit data features, target update, target teams
distribute, and target teams distribute parallel for. We will continue to add
more test cases to this suite.

— The testsuite also contains use cases that represent kernels extracted from
production DOE applications and other frequently used computation kernels.

— Describe the testsuite infrastructure and add relevant license thus allowing
anyone to contribute and to the testsuite.

— Present bugs identified and their potential workarounds thus informing ap-
plication developers of challenges using key constructs.

— Evaluate implementations of different compilers and verify their conforma-
tion to 4.5 specification (these results are posted on https://crpl.cis.
udel.edu/ompvvsollve).

— List ambiguities in the specification that we came across while interpreting
definitions of clauses and constructs and relevant steps taken to clarify them.

— Assemble a user-friendly website with easy to find status update on compiler
implementations among other details.

The remainder of the paper is organized as follows: Section 2 discusses some
of the most relevant testsuite work by the authors and others. Section 3 gives

https://crpl.cis.udel.edu/ompvvsollve
https://crpl.cis.udel.edu/ompvvsollve

more insight into the new 4.x features. Section 4 explains the workflow and the
process of developing such a suite. Section 5 explains the testsuite infrastructure.
Section 6 and Section 7 present discussions, conclusion and future work.

2 Related Work

Related work on OpenMP Validation and Verification suite includes [6,7] that
present validation of OpenMP 2.0 implementations which was further extended
and improved in [15] to develop a more robust testsuite and provide up-to-
date test cases covering all the features until OpenMP 3.1. Some of our other
efforts include an OpenACC Validation and Verification testsuite [2,16] where we
discuss the compiler status of OpenACC 2.0 and 2.5 specifications respectively
and present ambiguities identified in the specification. Some of the tests also
focus on challenges with creating unit test cases covering possible combinations
of directives/clauses under study. The papers also highlights reported bugs being
fixed and the improvement in the compiler’s status over a period of time.

Other related efforts to building and using a testsuite include Csmith [17],
a comprehensive, well-cited work where the authors perform a randomized test-
case generator exposing compiler bugs using differential testing. Such an ap-
proach is quite effective to detecting compiler bugs but does not quite serve the
validation purpose since it is hard to automatically map a randomly generated
failed test to a bug that actually caused it.

LLVM has a testing infrastructure [5] that contains regression tests and whole
programs. The tests itself are driven by lit testing tool, which is part of LLVM.
Recently [3,4] published examples on how a user may program with OpenMP
4.5 on IBM’s heterogeneous platforms with GPU support. Though these provide
a very good overview on how to use OpenMP 4.5 offload features, they assume
that the underlying implementation is as per specification and correct.

3 New in OpenMP 4.x

Going from OpenMP Specification version 3.1 to 4.0, the most significant change
was the support for accelerators. OpenMP 4.0 provides directives to describe
when data and/or computation should be moved to another computing de-
vice/accelerator. This is usually indicated by the presence of target keyword
which in itself and as a part of others forms the new directives for device offload.
Other changes that OpenMP 4.0 brought are: SIMD constructs that enable vec-
torization of serial and parallelized loops, addition of error handling capabilities,
thread affinity mechanisms through OMP_PROC_BIND and OMP_PLACES,
tasking extensions for support task-to-task synchronization, Fortran 2003 sup-
port that allows interoperability of Fortran and C, user defined reductions, and
ability to enforce sequential consistency in atomics [9].

In November 2015 OpenMP Specification 4.5 was released. The significant
changes there were the introduction of the taskloop construct, allowing the
use of depend, threads and simd clauses on ordered directive, data sharing

changes allowing C++ methods to privatize accessible non-static members of an
object (with restrictions) [10], and changes in default mapping for offloading.

Scalar variables in OpenMP 4.0, in the absence of explicit mapping, were
implicitly mapped tofrom but in OpenMP 4.5 (without explicit mapping) the
scalars are implicitly privatized. They have the same effect as if they were de-
clared firstprivate on the target construct. Now the User has to explicitly
copy the scalar value back if the value is needed on the host. With OpenMP 4.5
C/C++ pointers are implicitly mapped. Hence the host pointer is translated to
the corresponding device pointer in case the pointed object is already mapped
else it is NULL.

The use_device_ptr clause to target data construct and is_device_ptr
clause to target construct allow using device specific memory routines. Also
new directives such as target enter data and target exit data were added
to enable mapping and un-mapping of variables independently (synchronously
or asynchronously) in separate functions or methods. Additional support for
mapping C++ references made possible to map structure elements individually
in OpenMP 4.5. Asynchronous offloading on the target directive through the
nowait and depend clauses is now possible. Lastly the declare target directive
was extended to be able to mark global variables for deferred mapping.

4 Testsuite Workflow

Analyze OpenMP 4.5
","‘ tive OR YES

Test with available YES Open for community NO

NO YES

A Implementation | File Bug report with

Bug vendor

Specification L
issue Add to the V&V
suite

Bring to OpenMP
Specification discussion

Fig. 1: Workflow for developing the Validation and Verification Suite

The testsuite presented in this work aims at providing tests that provide a
comprehensive coverage of different offload directives in OpenMP 4.5. The tests

are intended to establish accuracy of the interpretation of the OpenMP spec-
ification by an implementation and verify the correctness of the functionality.
Development of the tests is an on-going iterative process where we address both
the functional tests for different combinations of directives and clauses and ap-
plication kernels tests abstracted out of real world applications. We evaluate
all tests by verifying with the specification through a peer review process and
testing them on different OpenMP implementations available to us. Our cur-
rent testbeds (Summitdev, Titan and Summit) at ORNL. They have LLVM,
IBMXL, GNU and CCE compilers available, each implementation, in our ex-
perience, has different levels of support for OpenMP 4.5. We solicit community
feedback, especially from OpenMP developers, to review and refine the tests.
For a given directive we first refer to the OpenMP 4.5 specifications to list the
different directives and their constructs. Although it is hard to assess how many
tests are needed per directive, we try to keep an organized list of the tests we
have created. We start by listing all the directives, followed by the multiple con-
structs that can be used with such directive. For each construct we expand the
list with possible modifiers, options, or cases that could apply to that particular
construct. Our goal is cover as many valid combinations as possible. We have
found it difficult to assess the exact number of tests that are needed per combi-
nation of directive and clause(s). In most of the cases, new tests will often come
up during the discussion, as there are corner cases either from the description of
the specifications, or the interaction with the C and C++ programming model
that need to be addressed.

For our second category of tests we collect different application motifs and
distill them down to tests through our interaction with different DOE appli-
cations. These tests provide insights into how OpenMP 4.5 directives are used
in real-world applications and could potentially bring to light unexpected side
effects or performance degradation due to interactions between different target
directives. Currently, our Validation and Verification suite is hosted on bitbucket
for easy collaboration and though not complete (in coverage of all offloading di-
rectives) we plan to open it to the OpenMP community with this paper. A sum-
mary of the results can be seen at our website https://crpl.cis.udel.edu/
ompvvsollve. The framework, discussed in more detail in Section 5, is geared to
be stand-alone, with options to compile for different OpenMP implementations.

Figure 1 represents the development cycle of a test-case. There are three
possible positive outcomes of the process we have adopted. Either a test passes
through all the checks and makes it to the validation suite, or it uncovers a
bug in the vendor implementation of the OpenMP 4.5 standard, or highlights
a contentious concept or text that is easy to misinterpret and brings it to the
attention of the OpenMP community and specification developers. All tests are
written agnostic to where they are executed (host vs. target). We do this to
facilitate execution of tests in situations where the host is also configured to be
the target or no device is available at the execution time where the computation
could be offloaded. After a test executes the output indicates if the test passed
or failed and where it was executed (host or target). We have encountered cases

https://crpl.cis.udel.edu/ompvvsollve
https://crpl.cis.udel.edu/ompvvsollve

where we cannot confidently confirm the correctness. One such example is the
nowait clause. For such cases we do not use affirmative output messages. If the
test fails, it could have been because of a number of reasons other than the
incorrect implementation and we try to capture it as best as possible. Failure
could mean failure to compile or execution time failure that lead to crashes or
cryptic error codes. By providing feedback to the vendors we hope to make the
error codes more user friendly.

5 Validation Suite Infrastructure

In addition to having a well defined workflow to guarantee correctness (as de-
scribed in Section 4) it is equally important to provide a well defined and flexible
infrastructure that supports such a workflow. The design process of this infras-
tructure has been thoroughly discussed and incrementally improved, resulting in
a set of requirements that justify the different features that we have implemented
so far. These requirements are as follows:

1. In order to support the previously described workflow, we must define com-
munication mechanisms between active compiler developers, the OpenMP
community and the application developers. This requires creation of a web
portal and a code repository.

2. It is necessary to provide the user with an easy, flexible and simple to use
interface. This interface must allow fast deployment and execution of the
testsuite. To this end, the testsuite must adapt to new execution environ-
ments, providing customization of compilers’ options configuration and flags
etc. Additionally, it should be able to support different batch schedulers and
Linux environment modules.

3. Those who would like to use this testsuite must be able to obtain and export
compilation and execution results for an off-line system evaluation. Hence,
the designed infrastructure should allow them to obtain results in either a
well defined raw logfile format, an intermediate format for exporting to other
analysis tools and scripts, or create a well presented report.

With these requirements defined, we present our infrastructure in the rest of
this section.

5.1 Development environment and website

As described in our workflow, sharing and evaluating tests is an important part
of the test creation process. This requires code sharing and tracking changes. To
this end, a repository was created in Bitbucket. We use the features available
in a git repository, plus the additional components provided by Bitbucket to
support our development workflow. This repository can be found in [14].

In addition to the Bitbucket repository, we have created a website that con-
tains all project related information, including project objectives, documenta-
tion on how to use and contribute to this software, publications, and repos-
itory guidance. Furthermore, we envision this website as a point of contact

with those that would use this testsuite, where they can find documentation,
examples, and results obtained from the systems evaluated. Our website is
https://crpl.udel.edu/ompvvsollve .

5.2 Makefile

A Makefile has been created and included in this project. It is used as an entry
point to our testsuite. The Makefile allows users to compile, run, and report test
results. A set of make rules has been created for each purpose, together with a
set of options that modify each rule’s behavior (e.g. verbosity, log creation and
tests selection). Furthermore, it is possible to use the standard CC and CXX
flags to select different compilers. Our testsuite uses the following syntax:

make CC=ccompiler CXX=cppcompiler [OPTIONS] [RULE]

Rules for Makefile See Table 1 for a list of all the rules that can be used.

Table 1: Set of rules available in the Makefile

Rule Description

compile Compile tests using the compilers specified by CC and CXX.

run Run tests that have been previously compiled.

all Compile and run tests using the compilers specified by CC and CXX

compilers |Print a list of available compilers

report_json |Given a set of logfiles, create a JSON file containing all the results
report_html|Create an HTML-based results report that allows filtering and search.
clean Remove all compiled tests.

options A set of options can be used to modify the behavior of the rules. The
SOURCES_C and SOURCES_CPP options can be used with compile and all rules
to select which tests to compile. To select what tests to run the TESTS_TO_RUN
option should be used. The VERBOSE option can be used to increase verbosity
level of the make command, while VERBOSE_TESTS will increase verbosity level of
the tests outputs. This is, each test can display additional information at runtime
about what it is executing and where the error is encountered. The option LOG
switches logs on and off, while LOG_ALL changes if the output of the Makefile
commands should be included in the log files. NO_OFFLOADING can be used to
turn off offloading capabilities in the compiler.

Other options have been created to adapt the testsuite to the underlying
system. It is common to use environment modules to provide multiple software,
compilers and libraries within the same system. Additionally, batch schedulers
are used to guarantee exclusive and fair access to systems in environments where
many users access the same resources. However, this creates new challenges to our

https://crpl.udel.edu/ompvvsollve

testsuite. The options MODULE_LOAD and ADD_BATCH_SCHED are available for this
purpose. The first one will execute amodule load... command before compiling
or running the tests. The second one will pre-append a batch scheduler command
(e.g. jsrun and aprun) to tests that are running. However, since these elements
change from system to system it is necessary to create a system description file
and use the SYSTEM option to select this description file.

The following use case examples will compile and run all the tests, in verbose
mode enabled in both the tests and the make command. Logs will be created
including all output from compilers, tests runtime outputs, and make commands
outputs. According to the Summit [8] system description file, we will add the
jsrun command before running each tests, and we will load all the required
modules before compiling and running each tests.

make CC=clang CXX=clang++ SYSTEM=summit VERBOSE=1 VERBOSE_TESTS=1 \
LOG=1 LOG_ALL=1 ADD_BATCHSCHED=1 VERBOSE_TESTS=1 MODULELOAD=1 all;

Customizations As mentioned before, it is possible to customize the test-

suite to adapt it to the system environment. A template for a system descrip-

tion file is provided which contains the following options: BATCH_SCHEDULER,
C_COMPILER_MODULE, CXX_COMPILER_MODULE, C_VERSION, CXX_VERSION, and CUDA_MODULE.
The VERSION commands will be used during the log creation. For further in-
formation and example, refer to the documentation on our website.

5.3 Results, Logs and Reports

Although it is possible to obtain results directly from the standard output. We
have made it easier for the user to create logs and reports for offline results
evaluation. So far there are three options to obtain results: Raw format, JSON
format, or HTML format.

Raw format When the LOG option is used in the make command, a new folder
called logs is created. It contains a log file per test that was compiled and/or
executed. Log files are accumulative in the sense that if the make command is
issued multiple times, they will all be registered within the same log files. To
differentiate multiple runs, as well as compilation from run, we have created a
header and footer line per entry, containing system information, compiler used,
source file, compiler command, and time. Refer to our website for Header and
footer formats.

JSON format Although the raw format is easy to read, it is not well structured
and it would be hard to parse and automate to generate final reports. For this
reason, we have created the report_json rule that uses a script to parse the raw
format and output a JSON file. The structure of the JSON file is as follows:

[{

’

HTML format Using the JSON file, it is possible to create a user-friendly and
readable report. This report uses a pre-defined HTML template with advanced
javascript and css libraries that allows the listing of all the tests in a table,
access to more information for each test, filter out results by compiler, systems
and PASS/FAIL results or even search an specific name or clause. An snapshot

"Binary p
"Compiler
"Compiler
"Compiler
"Compiler
"Compiler
"Compiler
"Runtime
"Runtime
"Runtime
"Runtime
"Runtime
"Test
"Test
"Test
"Test

.1

comments":
name": "...
path": "..."
system": "...

ath": "...

command" :

>

n n
o e e >

ending date": Loy,

name" :
output":
result":

n
. >

n

"PASS/FAIL",

starting date": o,

ending date": Loy,

only":
output":
result":

"PASS/FAIL",

false/true,

starting date": Lo,

of these results can be seen in Figure 2

Filter results

>

B

n
. B

RESULTS

target_map

xlc 13.01.0007.0000
xic 13.01.0006.0001

summit
summitdev
titan

[compteresui IR
st rn s BERY

FAIL © PASS

FAIL © PASS

Test name ¥
1 target_map_method_array.cop
target_map_method _arraycpp

3 target_map_method_armaycpp

4 target_map_method_array.cop
target_map_method_arraycpp
6 target_map_method_amaycop

7 target_map_static_membercpp

Fig. 2: Snapshot of the HTML report generated by the testsuite

Test system ¥
summit
summit
summitdev
summitdev
summitdev
titan

summit

Compiler n
clang++ 42
xle++ 1301
clangs+ 4.2]
Xlc++ 1301

g+ 711

[tests/target/test_target_map_local_array.c

2 clang 421

cc 865

clang++ 421

PASS

FAIL

6 Discussion

Each test is compiled with four different compilers that are available to us. Some
of these compilers provide complete support for OpenMP 4.5 constructs while
others have indicated to offer only partial support (at the time of writing this
paper). By using multiple implementations we are able to analyze the validity of
the tests and at the same time how each compiler’s implementation behaves for
a particular construct under study. The compilers we use include GCC Version
7.1.1, IBM XL Version 14.1 Beta 7, Cray CCE Version 8.6.1 and Clang Version
3.8.0. It is worth noticing that this version of Clang has been modified for our
running environment, and it is not exactly the same available in the main LLVM
trunk.

We uncovered many implementation bugs, misunderstanding/misinterpreta-
tion of the definitions in the specification that led to us (incorrectly) reporting
as an implementation bug, as well as ambiguities in the specification throughout
this process. Due to space constraints we only discuss the more interesting cases.

6.1 Implementation bugs

— Target construct in methods of a class
During testing target directive in C++ methods, we noticed that Clang
failed to map an array tofrom in one of the OpenMP implementations.
Since there is no explicit restriction in the OpenMP specification such usage
scenarios are valid. Similarly, a target construct in static method of class
failed to map class static variables. The later was fixed as a result of the bug
report.

— Compiler crashes
We noticed that the Clang compiler crashed when collapse clause was
used with dependent iteration spaces. Though the behavior is invalid the
implementers agreed that it should present an error to the user and not
crash. With the Cray implementation, when trying to use map delete or
release of a variable that was originally mapped by target enter data,
led to compiler crashes. The bug reported was promptly addressed to correct
such a behavior.

— Scalar values and defaultmap
For the Cray compiler implementation, we uncovered that the defaultmap
would not correctly map to the scalar values. Scalar variables in OpenMP
4.0, in the absence of explicit mapping, were implicitly mapped tofrom but in
OpenMP 4.5 (without explicit mapping) the scalars are implicitly privatized.

From our experience most of the errors on our part were from not account-
ing for the default mapping on the target clause. Earlier in the development
phase, especially while trying to test target data directive we would run into
errors such as an array segment mapping to device with default length (e.g.
map(array[1:])) would fail at runtime or we would get errors saying that the
test was trying to map data that was already mapped. We understand that this

behavior is going to change in OpenMP 5.0, where the implicit data mapping
on the target construct will work differently from explicit data mapping. In the
presence of partial mapping, the reference counter will get incremented and it
will no longer be classified as undefined behavior.

6.2 Specification Ambiguities

There have been moments when interpreting the specifications document has
been problematic. This brought intense discussions in our meetings and/or led
to the submission of invalid bug reports. Here we discuss three cases that we
would like to go through with the OpenMP community.

When using classes in C++, it is a common practice to use the this pointer
to refer to the current object, or to access methods or data members of the class.
There are difficulties for a programmer using OpenMP to use the this pointer
for setting data environment as map(to: this) or map(to: this->attribute)
to map the object or an attribute. In the former case, the problem is the inter-
pretation of the this. It is interpreted as a pointer but as a special expression.
This will cause most of the compilers to complain. In the latter case, the oper-
ation this->attribute is an arbitrary expression and the map clause expects a
list item that is mappable.

In the second case, we were attempting to test the private and firstprivate
clauses in combination with offload directives. The specifications document [10]
in section 2.15.3.3 says that “Inside the construct, all references to the original
list item are replaced by references to the new list item. In the rest of the region,
it is unspecified whether references are to the new list item or the original list
item.”. When used with device regions, it is not easy to understand what is the
meaning of "rest of the region”, as there are three different concepts that must
be distinguished: region, target region and task region. It has not been possible
for us to clearly identify and separate all these regions, and to understand the
rest of the paragraph.

Finally, we present an issue with the array section dependencies. When us-
ing the depend() clause, it is possible to specify array sections in the form of
depend(inout: a[10:5]). This clause will map 5 elements of the array a start-
ing from position 10. However, in the description of the depend clause, section
2.13.9, restriction 1 “List items used in depend clauses of the same task or sibling
tasks must indicate identical storage locations or disjoint storage locations.”.
This implies that it is not possible to map array sections that overlap. Addi-
tionally, this section mentions that dependencies only take into consideration
storage locations, which creates doubts with respect to the difference between
specifying an array section, compared to specifying the element where the array
section begins. That is, the difference between depend(inout: a[10:5]) and
depend(inout: a[10]). We hope that the specification committee would make
requirements more explicit.

7 Conclusion and Future Work

Our ongoing work on the OpenMP validation and verification test-suite targets
features of the OpenMP 4.5 standard in the order of priority as identified by DOE
applications. Particularly the offloading mechanisms for target devices. Although
the majority of our current set of tests are implemented in C and C++, we plan
to have Fortran versions in the near future. Our workflow discussed in Section 4
ensures that we make every effort to catch and mitigate implementation or in-
terpretation errors while developing the tests. We try to capture corner cases
that we believe might be prone to implementation errors or that are important
to applications. Section 5 detailed how to access, execute and customize the test-
suite along with how to visualize the results. A website has been built to capture
our efforts narrated in this paper https://crpl.cis.udel.edu/ompvvsollve.
As of this writing we have not covered the entire OpenMP 4.5 API but we hope
that this paper will encourage compiler developers and anyone else interested to
use the testsuite and provide feedback. While we implement tests for the remain-
der of the OpenMP 4.5 offloading and new API we want to begin concurrent
dialogue with such users of the testsuite to ensure smooth adaptability of the
V&V suite.

References

1. Clay, M.P., Buaria, D., Yeung, P.K.: Improving scalability and accelerating petas-
cale turbulence simulations using openmp. http://openmpcon.org/conf2017/
program/ (2017), to Appear

2. Friedline, K., Chandrasekaran, S., Lopez, M.G., Hernandez, O.: Openacc 2.5 val-
idation testsuite targeting multiple architectures. In: International Conference on
High Performance Computing. pp. 557-575. Springer (2017)

3. Grinberg, L., Bertolli, C., Haque, R.: Hands on with openmp4. 5 and unified mem-
ory: Developing applications for ibm hybrid cpu+ gpu systems (part i). In: Inter-
national Workshop on OpenMP. pp. 3-16. Springer (2017)

4. Grinberg, L., Bertolli, C., Haque, R.: Hands on with openmp4. 5 and unified mem-
ory: Developing applications for ibm hybrid cpu+ gpu systems (part ii). In: Inter-
national Workshop on OpenMP. pp. 3-16. Springer (2017)

5. LLVM: Llvimn Testing Infrastructure Guide. https://1lvm.org/docs/
TestingGuide.html#test-suite-overview

6. Miiller, M., Neytchev, P.: An openmp validation suite. In: Fifth European Work-
shop on OpenMP, Aachen University, Germany (2003)

7. Miiller, M.S., Niethammer, C., Chapman, B., Wen, Y., Liu, Z.: Validating openmp
2.5 for fortran and ¢/c++. In: Sixth European Workshop on OpenMP, KTH Royal
Institute of Technology, Stockholm, Sweden (2004)

8. Oak Ridge National Laboratory: Summit: Scale new heights. discover new solu-
tions. https://www.olcf.ornl.gov/summit/

9. OpenMP: Openmp - enabling HPC since 1997. http://www.openmp.org/about/
openmp-faq

10. OpenMP: Openmp 4.5 specification. http://www.openmp.org/wp-content/
uploads/openmp-4.5.pdf

https://crpl.cis.udel.edu/ompvvsollve
http://openmpcon.org/conf2017/program/
http://openmpcon.org/conf2017/program/
https://llvm.org/docs/TestingGuide.html#test-suite-overview
https://llvm.org/docs/TestingGuide.html#test-suite-overview
http://www.openmp.org/about/openmp-faq
http://www.openmp.org/about/openmp-faq
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

11.

12.

13.

14.

15.

16.

17.

OpenMP: Openmp compilers. http://www.openmp.org/resources/
openmp-compilers/

Richards, D.F., Bleile, R.C., Brantley, P.S., Dawson, S.A., McKinley, M.S.,
O7Brien, M.J.: Quicksilver: A proxy app for the monte carlo transport code mer-
cury. In: Cluster Computing (CLUSTER), 2017 IEEE International Conference
on. pp. 866-873. IEEE (2017)

Top500: Top500 november 2017 list highlights. https://wuw.top500.0rg/lists/
2017/11/highlights/

University of Delaware and Oak Ridge National Laboratory: Openmp 4.5 validation
and verification suite. https://bitbucket.org/crpl_cisc/sollve_vv/src
Wang, C., Chandrasekaran, S., Chapman, B.: An openmp 3.1 validation testsuite.
In: International Workshop on OpenMP. pp. 237-249. Springer (2012)

Wang, C., Xu, R., Chandrasekaran, S., Chapman, B., Hernandez, O.: A valida-
tion testsuite for OpenACC 1.0. In: Parallel & Distributed Processing Symposium
Workshops (IPDPSW), 2014 IEEE International. pp. 1407-1416. IEEE (2014)
Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in ¢
compilers. In: ACM SIGPLAN Notices. vol. 46, pp. 283-294. ACM (2011)

http://www.openmp.org/resources/openmp-compilers/
http://www.openmp.org/resources/openmp-compilers/
https://www.top500.org/lists/2017/11/highlights/
https://www.top500.org/lists/2017/11/highlights/
https://bitbucket.org/crpl_cisc/sollve_vv/src

	OpenMP 4.5 Validation and Verification Suite for Device Offload

