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Abstract. In this paper, we present a simple a posteriori error estimate for the weak Galerkin
(WG) finite element method for the Stokes equation. This residual type estimator can be applied to
general meshes such as polytopal mesh or meshes with hanging nodes. The reliability and efficiency
of the estimator are proved in this paper. Four numerical tests demonstrate the effectiveness and
flexibility of the adaptive mesh refinement guided by the designed error estimator.
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1. Introduction. The weak Galerkin (WG) method is a natural extension of
classical finite element methods for the discontinuous functions. This method was first
proposed by Wang and Ye in [49] as a general framework for solving partial differential
equations (PDE). The key in WG formulation is to replace the classical derivatives by
the weakly defined discrete derivatives. Then by adding a parameter-free stabilizer,
one can derive a stable, symmetric, and positive definite formulation. Therefore, the
advantages of WG methods include the flexibility of employing polygonal meshes and a
natural way to design high-order numerical schemes by using polynomials with higher
degrees. WG method has been used to solve different PDEs on general polytopal
meshes, such as [28, 29, 30, 31, 32, 50, 51].

In recent studies, many numerical schemes, such as discontinuous Galerkin (DG)
methods, hybridized DG (HDG) methods, virtual element, etc, have been developed
and analyzed on general polytopal meshes [6, 7, 8, 9, 10, 11, 12, 21, 35, 36, 37, 38,
39, 41, 17, 40]. On the other hand, the a priori error estimate has been investigated
for corresponding PDEs. The a posteriori error estimate and adaptive finite element
methods have been widely used in modern computational science and engineering to
obtain better accuracy with minimum effort for the simulation of singular problems.
It can be achieved through adaptive mesh refinement that adds extra resolutions at
places of greater importance. However an effective a posteriori error estimator based
on polygonal meshes is still challenging to develop [15, 53] due to the technical difficul-
ties in analysis. Most efforts in a posteriori error analysis are still based on simplicial
meshes and strong assumptions[13, 14, 16, 22, 25, 34, 46, 47]. In reference [15], the
authors designed an polygonal error estimator for the virtual element method. Ref-
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erence [24, 26] developed a simple posteriori error estimator for weak Galerkin finite
element approximation for Poisson equations. Obviously, the adaptive mesh refine-
ment process will be more effective and local for the polytopal finite element methods
that allow general polygon/polyhedron. The Stokes equations describe steady-state
fluid flows in the limit of zero Reynolds number, where the inertial acceleration and
convection can be dropped from the Navier-Stokes equations. The Stokes model has
been used as a canonical example in both mathematical analysis and algorithm de-
velopment related to fluid motion. In the present study, we use the Stokes problem
to demonstrate the application of our adaptive WG formulation and error estimates.

We establish a simple a posteriori error analysis for the weak Galerkin finite ele-
ment approximation [30] to the Stokes equation. This fully computable error estimator
can be applied on general polygonal/polyhedral meshes. Also the error estimate is
computed locally on each element T , and thus can be carried out in a parallel fashion.
In fact, our a posteriori error estimator only consists of the parameter-free stabilizer
and data oscillation. Both of them are computed locally on each element T . Because
of such properties as being fully computable, and involving only local and simple
calculation, our error estimator is efficient and effective in the adaptive procedure.

For simplicity, we consider a model problem that seeks an unknown function u
satisfying

−∆u +∇p = f , in Ω,(1.1)

∇ · u = 0, in Ω(1.2)

u = 0, on ∂Ω,(1.3)

where Ω is a polytopal domain in Rd (polygonal or polyhedral domain for d = 2, 3).
For a bounded domain D in Rd, we denote by Hs(D) the standard Sobolev space

of functions with regularity s ≥ 0, with norm ‖ · ‖s,D accordingly. For s = 0, we write
L2(D) instead of H0(D) and use norm ‖·‖D. When D = Ω, we denote ‖·‖s := ‖·‖s,Ω
and ‖ · ‖ := ‖ · ‖0,Ω. Furthermore, we introduce the space H(div; Ω) := {v ∈ L2(Ω)d :
∇ · v ∈ L2(Ω)d} with the norm ‖w‖2H(div,T ) := ‖w‖2 + ‖∇ ·w‖2, which will be used

later. Finally, the standard inner product (·, ·) for L2(Ω)d will also be used.
The weak form in the primary velocity-pressure formulation for the Stokes prob-

lem (1.1)-(1.3) seeks u ∈ [H1(Ω)]d and p ∈ L2
0(Ω) satisfying u = 0 on ∂Ω and

(∇u,∇v)− (∇ · v, p) = (f ,v),(1.4)

(∇ · u, q) = 0,(1.5)

for all v ∈ [H1
0 (Ω)]d and q ∈ L2

0(Ω). Here, L2
0(Ω) := {q ∈ L2(Ω),

∫
Ω
q = 0}.

The remainder of this paper is organized as follows. Section 2 introduces the
construction of the finite element space. In Section 3, we discuss the a priori error
analysis results of H1-error for velocity and L2-error for pressure respectively. Section
4 is contributed to the a posteriori error estimate. Extensive numerical experiments
are carried out in Section 5 to validate the algorithm and theoretical conclusions.
The paper concludes with a summary of main results and brief discussion of future
research plans, which are presented in Section 6.

2. Weak Galerkin Finite Element Schemes. Let Th be a partition of the
domain Ω consisting of polygons in two dimensions or polyhedra in three dimensions
satisfying a set of conditions specified in [27, 50]. All the elements of Th are assumed
to be closed and simply connected polygons or polyhedra. We need some shape
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regularity for the partition Th described as Section 4.1 in reference [27]. Denote by
Eh the set of all edges or flat faces in Th, and let E0

h = Eh\∂Ω be the set of all interior
edges or flat faces. For every element T ∈ Th, we denote by hT its diameter and mesh
size h = maxT∈Th hT for Th.

For a given integer k ≥ 1, let Vh be the weak Galerkin finite element space
associated with Th defined as follows

Vh = {v = {v0,vb} : v0|T ∈ [Pk(T )]d, vb|e ∈ [Pk(e)]d, T ∈ Th, e ⊂ Eh}

and

V 0
h = {v : v ∈ Vh, vb = 0 on ∂Ω}.

We would like to emphasize that any function v ∈ Vh has a single value vb on each
edge e ∈ Eh.

For the pressure variable, we have the following finite element space

Wh = {q : q ∈ L2
0(Ω), q|T ∈ Pk−1(T )}.

Definition 2.1. For any v = {v0,vb}, a weak gradient ∇wv ∈ [Pk−1(T )]d×d is
defined on T as the unique polynomial satisfying

(2.1) (∇wv, τ)T = −(v0, ∇ · τ)T + 〈vb, τ · n〉∂T , ∀τ ∈ [Pk−1(T )]d×d.

Definition 2.2. For any v = {v0,vb}, a weak divergence ∇w · v ∈ Pk−1(T ) is
defined on T as the unique polynomial satisfying

(2.2) (∇w · v, τ)T = −(v0, ∇τ)T + 〈vb · n, τ〉∂T , ∀τ ∈ Pk−1(T ).

The usual L2 inner product can be written locally on each element as follows,

(∇wv,∇ww) =
∑
T∈Th

(∇wv,∇ww)T ,

(∇w · v, q) =
∑
T∈Th

(∇w · v, q)T .

Now we introduce some bilinear forms on Vh as follows:

sT (v,w) = h−1
T 〈v0 − vb,w0 −wb〉∂T ,

s(v,w) =
∑
T∈Th

sT (v,w),

a(v,w) = (∇wv,∇ww) + s(v,w),

b(v, q) = (∇w · v, q).

Denote by Q0 the L2 projection operator from [L2(T )]d onto [Pk(T )]d. For each
edge/face e ∈ Eh, denote by Qb the L2 projection from [L2(e)]d onto [Pk(e)]d. We
shall combine Q0 with Qb by writting Qh = {Q0, Qb}. Let Qh be the L2 projection
from L2(T ) onto Pk−1(T ).

Weak Galerkin Algorithm 1. A numerical approximation for (1.1)-(1.3)
can be obtained by finding uh ∈ V 0

h and ph ∈Wh satisfying the following equations:

a(uh,v)− b(v, ph) = (f ,v0), ∀ v ∈ V 0
h ,(2.3)

b(uh, q) = 0, ∀ q ∈Wh.(2.4)
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3. Solvability and A Priori Error Estimate. In this section, we shall cite
some theoretical conclusions. Define a discrete H1 equivalent norm,

(3.1) |||v|||2 = (∇wv,∇wv) + s(v,v).

The boundedness and a certain coercivity for the bilinear form a(·, ·) and the
boundedness and inf-sup condition for the bilinear form b(·, ·) have been proved in the
reference ([51]). Thus, the solvability holds true for the weak Galerkin finite element
scheme (2.3)-(2.4).

Lemma 3.1. The weak Galerkin finite element scheme (2.3)-(2.4) has one and
only one solution.

The following lemma can be found in [51].

Lemma 3.2. Assume the exact solution to problem (1.1)-(1.3) has the regularity
(u; p) ∈ [H1

0 (Ω) ∩Hk+1(Ω)]d × (L2
0(Ω) ∩Hk(Ω)) with k ≥ 1. Let uh ∈ V 0

h , ph ∈ Wh

be the weak Galerkin finite element solution of the problem (2.3)-(2.4). Then, there
exists a constant C such that

|||Qhu− uh|||+ ‖Qhp− ph‖ ≤ Chk(‖u‖k+1 + ‖p‖k).(3.2)

Besides, we define the following notation, for v ∈ [H1
0 (Ω)]d, vh ∈ V 0

h ,

‖v − vh‖21,h = (∇v −∇wvh,∇v −∇wvh) + s(vh,vh).(3.3)

In addition, let Qh be the local L2 projection onto [Pk−1(T )]d×d, we have the
following properties.

Lemma 3.3. On each element T ∈ Th, we have the following commutative prop-
erty for v ∈ [H1(T )]d,

∇w(Qhv) = Qh(∇v),(3.4)

∇w · (Qhv) = Qh(∇ · v).(3.5)

The projection property of Qb and Cauchy-Schwartz inequality give∑
T∈Th

‖Q0u−Qbu‖2∂T =
∑
T∈Th

〈Q0u−Qbu, Q0u−Qbu〉∂T =
∑
T∈Th

〈Q0u− u, Q0u−Qbu〉∂T

≤
( ∑
T∈Th

‖Q0u− u‖2∂T
)1/2( ∑

T∈Th

‖Q0u−Qbu‖2∂T
)1/2

,

and hence together with trace inequality, one can obtain

s(Qhu, Qhu) =
∑
T∈Th

h−1‖Q0u−Qbu‖2∂T ≤
∑
T∈Th

h−1‖Q0u− u‖2∂T

≤ Ch2k‖u‖2k+1.

Thus by the triangular inequality, the above lemma, inequality, and the projection
property of Qh, one has

‖u− uh‖21,h ≤ ‖u−Qhu‖21,h + |||Qhu− uh|||2

= ‖∇u−∇wQhu‖2 + s(Qhu, Qhu) + |||Qhu− uh|||2

= ‖∇u−Qh(∇u)‖2 + s(Qhu, Qhu) + |||Qhu− uh|||2

≤ Ch2k
(
‖u‖2k+1 + ‖p‖2k

)
.
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Moreover, the triangular inequality and the projection Qh give the following es-
timate

‖p− ph‖ ≤ ‖p−Qhp‖+ ‖Qhp− ph‖ ≤ Chk
(
‖u‖k+1 + ‖p‖k

)
.

Thus, we have the following theorem.

Theorem 3.4. Assume the exact solution to problem (1.1)-(1.3) has the regular-
ity (u; p) ∈ [H1

0 (Ω) ∩Hk+1(Ω)]d × (L2
0(Ω) ∩Hk(Ω)) with k ≥ 1. Let uh ∈ Vh be the

weak Galerkin finite element solution of the problem (2.3)-(2.4). Then, there exists a
constant C independent of h such that

‖u− uh‖1,h + ‖p− ph‖ ≤ Chk(‖u‖k+1 + ‖p‖k).(3.6)

4. A Posteriori error estimator for the WG method. For simplicity of
notation, results shall be presented in two dimensions and the results can be extended
to three dimensional problem. First, define a differential operator for a vector function
v = (v1, v2) ∈ R2 as follows:

curl v =

(
−∂v1∂y −∂v1∂x
−∂v2∂y −∂v2∂x

)

Let fh be the L2 projection of f to Vh. Then we introduce a local estimator as
follows

η2
T = sT (uh,uh) + osc2(f , T ),(4.1)

where osc(f , T ) is a high order local data oscillation defined by

osc2(f , T ) = h2
T ‖f − fh‖2T .

Define a global error estimator and data oscillation as

η2 =
∑
T∈Th

η2
T ,(4.2)

osc(f , Th)2 =
∑
T∈Th

osc(f , T )2.(4.3)

Let K be an element with e as an edge. It is well known that there exists a
constant C such that for any function g ∈ H1(K)

(4.4) ‖g‖2e ≤ C
(
h−1
K ‖g‖

2
K + hK‖∇g‖2K

)
.

Lemma 4.1. Let u ∈ H1
0 (Ω) and uh ∈ V 0

h be the solutions of (1.1)-(1.3) and
weak Galerkin scheme (2.3)-(2.4), respectively. Then there exists a positive constant
C such that:

(4.5) ‖u− uh‖21,h ≤ Cη2,

where ‖u− uh‖21,h =
∑
T ‖∇u−∇wuh‖2T + h−1‖u0 − ub‖2∂T .
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Proof. We shall apply Helmholtz decomposition first. It is well known [19] that
for ∇u − ∇wuh ∈ [L2(Ω)]2, there exist r ∈ H1

0 (Ω)2 (divergence free) and q ∈ L2
0(Ω)

s ∈ H1(Ω)2 such that

(4.6) ∇u−∇wuh = ∇r + curl s + qI

and that

(4.7) ‖r‖1 + ‖s‖1 ≤ ‖∇u−∇wuh‖.

It follows

(∇u−∇wuh,∇u−∇wuh) = (∇u−∇wuh,∇r + curl s + qI).

From the weak form (1.4), we have

(∇u−∇wuh,∇r) = (∇u,∇r)− (∇wuh,∇r) = (f , r) + (∇ · r, p)− (∇wuh,∇r)

= (f , r)− (∇wuh,∇wQhr)

= (f , r−Q0r0) +
∑
T∈Th

h−1〈u0 − ub, Q0r−Qbr〉∂T − (∇w ·Qhr, ph)

= (f − fh, r−Q0r0) +
∑
T∈Th

h−1〈u0 − ub, Q0r−Qbr〉∂T − (Qh(∇ · r), ph)

= (f − fh, r−Q0r0) +
∑
T∈Th

h−1〈u0 − ub, Q0r−Qbr〉∂T

≤ (osc(f , Th) + s1/2(uh,uh))‖∇r‖
≤ (osc(f , Th) + s1/2(uh,uh))‖∇u−∇wuh‖.

Then,

(∇u−∇wuh, curl s) = (∇u, curl s)− (∇wuh, curl s) = −(∇wuh,Qh(curl s))

=
∑
T∈Th

(
(u0,∇ · (Qh(curl s)))T − 〈ub,Qh(curl s) · n〉∂T

)
=
∑
T∈Th

(
〈u0 − ub, (Qh(curl s)) · n〉∂T − (u0, curl s)T

)
=
∑
T∈Th

(
〈u0 − ub, (Qh(curl s)− curl s) · n〉∂T

)
.

By Cauchy-Schwarz inequality, the trace inequality and the inverse inequality,
one obtains,

〈u0 − ub,Qh(curl s) · n〉∂T ≤ Cs
1/2
T (uh,uh)‖curl s‖T .

The inverse inequality and the fact ∇curl s = 0 imply

〈u0 − ub, curl s · n〉∂T =
∑
e⊂∂T

〈u0 − ub, curl s · n〉e

≤
∑
e⊂∂T

‖u0 − ub‖H1/2(e)‖curl s · n‖H−1/2(e)

≤ C
( ∑
e⊂∂T

h
−1/2
T ‖u0 − ub‖2e

)1/2

‖curl s‖H(div,T )

≤ Cs1/2
T (uh,uh)‖curl s‖T .
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Combining the above estimates and taking summation over T gives

(∇u−∇wuh, curl s) ≤ Cs1/2(uh,uh)‖curl s‖.(4.8)

Besides,

(∇u−∇wuh, qI) = (∇ · u, q)− (∇wuh,Qh(q)I) = −(∇wuh,Qh(q)I)

= (u0,∇Qh(q))−
∑
T∈Th

〈ub · n,Qh(q)〉∂T =
∑
T∈Th

(∇w · uh,Qh(q))T

= 0.

Using all the above estimates, we arrive at the conclusion.

Lemma 4.2. Let p ∈ L2
0(Ω) and ph ∈ Wh be the solutions of (1.1)-(1.3) and

weak Galerkin scheme (2.3)-(2.4), respectively. Then there exists a positive constant
C such that:

(4.9) ‖p− ph‖ ≤ Cη.

Proof. For v ∈ H1
0 (Ω), one has

(∇ · v, p− ph) = −(f ,v) + (∇u,∇v)− (∇ · v, ph)

= −(f ,v) + (∇u,∇v)− (∇w ·Qhv, ph)

= (f , Q0v − v) + (∇u,∇v)− (∇wuh,∇wQhv)−
∑
T∈Th

h−1〈u0 − ub, Q0v −Qbv〉∂T

= (f − fh, Q0v − v) + (∇u−∇wuh,∇v)− s(uh, Qhv)

≤ C‖∇v‖
(

osc(f , Th) + ‖∇u−∇wuh‖+ s1/2(uh,uh)

)
≤ C‖∇v‖ η.

The inf-sup condition induces the following

‖p− ph‖ .
∑

v∈[H1
0 (Ω)]2

(∇ · v, p− ph)

‖v‖1

≤ Cη,

and thus completes the proof.

Theorem 4.3. Let u ∈ H1
0 (Ω), p ∈ L2

0(Ω) and uh ∈ V 0
h , ph ∈ Wh be the

solutions of (1.1)-(1.3) and weak Galerkin scheme (2.3)-(2.4), respectively. Then
there exists a positive constant C such that:

(4.10) ‖u− uh‖1,h + ‖p− ph‖ ≤ Cη.

Proof. By combining Lemma 4.1 and Lemma 4.2, one can derive this theorem.

Define

‖u− uh‖21,T = ‖∇u−∇wuh‖2T + sT (uh,uh).



8

Then we can obtain the following local lower bound automatically.

Theorem 4.4. The local estimator ηT is defined in (4.1). Then

(4.11) η2
T ≤ ‖u− uh‖21,T + ‖p− ph‖20,T + osc2(f , T ).

5. Numerical Example. In this section, we shall validate the proposed algo-
rithm with several tests. First, we shall explore the convergence properties of errors
measured in ||| · |||-norm and ‖ · ‖1,h-norm and the error estimator η. In the following,
we shall measure

Eng-Error: |||Qhu− uh|||,

H1-Norm: ‖u− uh‖1,h =

( ∑
T∈Th

‖∇u−∇wuh‖2T + h−1
T ‖u0 − ub‖2∂T

)1/2

,

L2-Norm: ‖p− ph‖ =

( ∑
T∈Th

‖p− ph‖2T
)1/2

.

Futhermore we denote

‖(u− uh; p− ph)‖h := (‖Qhu− uh‖21,h + ‖p− ph‖2)1/2,(5.1)

which will be denoted as H1error in Figure 5.2, 5.3, 5.9, and 5.10.
Two different types of effectivity for the estimator are defined as follows,

Eff-1 =
|||Qhu− uh|||

η
,(5.2)

Eff-2 =
‖(u− uh; p− ph)‖h

η
.(5.3)

5.1. Example 1. Let domain Ω = (0, 1)×(0, 1) and the exact solution be chosen
as:

u =

(
− exp(x)

(
y cos(y) + sin(y)

)
exp(x)y sin(y)

)
, p = 2 exp(x) sin(y).(5.4)

The weak Galerkin scheme with k = 1, 2, 3 has been used to solve Stokes equa-
tion. In this test, the exact solution is smooth and we can expect optimal rate in
convergence. Table 5.1 reports the error profiles and convergence results. It can be
observed that the errors measured in ||| · |||-norm and ‖ · ‖h-norm converge at the order
O(hk), which agrees with the theoretical results. Also the effectivity index is close to
a constant, thus validating our analytical predictions.

Next, we shall perform the adaptive finite element methods to solve singular
problems. A typical adaptive algorithm are shown as follows:

Solve→ Estimate→ Mark→ Refine.

In our numerical experiments, the following steps shall be performed: we first solve
weak Galerkin numerical solution on a given initial mesh, estimate the a posteriori
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Table 5.1
Example 1. Error profiles and convergence results.

1/h η order |||uh −Qhu||| order Eff-1 ‖(u− uh; p− ph)‖h order Eff-2
k = 1

2 6.7814E-01 6.6829E-01 0.99 1.2240E+00 1.80
4 5.6302E-01 0.27 5.5775E-01 0.26 0.99 8.2631E-01 0.57 1.47
8 3.7976E-01 0.57 3.4907E-01 0.68 0.92 4.7498E-01 0.80 1.25
16 2.1590E-01 0.81 1.9113E-01 0.87 0.89 2.4438E-01 0.96 1.13
32 1.1344E-01 0.93 9.8875E-02 0.95 0.87 1.2201E-01 1.00 1.08
64 5.7739E-02 0.97 5.0032E-02 0.98 0.87 6.0710E-02 1.01 1.05

k = 2
2 1.1093E-01 1.3203E-01 1.19 2.0762E-01 1.87
4 5.4268E-02 1.03 5.8601E-02 1.17 1.08 7.8419E-02 1.40 1.45
8 1.9410E-02 1.48 1.8833E-02 1.64 0.97 2.4817E-02 1.66 1.28
16 5.6318E-03 1.79 5.2363E-03 1.85 0.93 6.9264E-03 1.84 1.23
32 1.5042E-03 1.90 1.3746E-03 1.93 0.91 1.8243E-03 1.92 1.21
64 3.8813E-04 1.95 3.5187E-04 1.97 0.91 4.6786E-04 1.96 1.21

k = 3
2 8.4639E-03 9.1513E-03 1.08 1.3916E-02 1.64
4 1.8507E-03 2.19 1.8674E-03 2.29 1.01 2.7447E-03 2.34 1.48
8 3.1269E-04 2.57 2.9126E-04 2.68 0.93 4.4243E-04 2.63 1.41
16 4.4535E-05 2.81 4.0109E-05 2.86 0.90 6.1946E-05 2.84 1.39
32 5.9606E-06 2.90 5.2462E-06 2.93 0.88 8.1996E-06 2.92 1.38
64 7.6508E-07 2.96 6.7257E-07 2.96 0.88 1.0834E-06 2.92 1.42

error estimator ηT and η, mark the elements that require further refinement, refine
the marked elements, and then repeat until the maximum iteration number is reached
or a stopping criterion is satisfied. The Dörfler/bulk marking method is used in the
mark procedure.

The mesh is refined by two different methods (as [26]): quadrilateral refinement
(refinement-1) or pentagonal refinement (refinement-2). The details of the mesh re-
finement can be found in reference [26]. Since our numerical scheme works on polyg-
onal mesh, all the refinement will keep the local structure and does not need further
refinement to remove hanging nodes.

5.2. Example 2. Let domain Ω = (0, 1)× (0, 1) and the exact solution is chosen
as:

u =

(
3
2

√
r(cos( θ2 )− cos( 3θ

2 ))
3
2

√
r(3 sin( θ2 )− sin( 3θ

2 ))

)
, p = −6r−1/2 cos(

θ

2
).(5.5)

It is known that this test problem has a corner singularity of order 0.5 at the
origin (0, 0). Due to the singularity, the uniform grids can not produce the numerical
scheme with optimal rate in convergence. The adaptive finite element methods can
be applied to improve the numerical performance.

Figure 5.1 compares the two different refinement strategies for weak Galerkin
element k = 3 for chosen stopping criterion ‖(u− uh; p− ph)‖h ≤ 0.05. The H1-error
(‖(u−uh; p−ph)‖h) and DOFs are shown as the caption. The refinements are focused
on origin. It can be seen that the adaptive refinements guided by error estimator ηT
accurately detect singularity in the problem.
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Fig. 5.1. Example 2: Refined mesh by refinement-1 for ‖(u− uh; p− ph)‖h = 4.47E − 02 and
Dof= 6090 (Left); Refined mesh by refinement-2 ‖(u − uh; p − ph)‖ = 4.55E − 02 and Dof=6560
(Right).

Figures 5.2-5.3 present the convergence results of k = 1, 2, 3 with two different
refinement methods. Both of them show the optimal rates in convergence with respect
to degrees of freedom, which are O(Dof−k/2).

10
3

10
4

10
-4

10
-3

10
-2

10
-1

10
0

10
1

slop = -0.50

slop = -1.00

slop = -1.50

H1error for k=1

Estimator η for k=1

H1error for k=2

Estimator η for k=2

H1error for k=3

Estimator η for k=3

Fig. 5.2. Example 2: Convergence results for refinement-1.
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Fig. 5.3. Example 2: Convergence results for refinement-2.

Next, we start with an initial mesh which is a combination of mixed polygons
shown as Figure 5.4. This mesh is generated by randomly moving the interior ver-
tices from structured mesh. It is noted that this mesh contains non-convex polygons.
The same adaptive weak Galerkin method will be performed: two different refine-
ment strategies will be adopted for the marked cells. Figure 5.5 compares the two
different refinement strategies for weak Galerkin element k = 3 with chosen stopping
criterion ‖(u − uh; p − ph)‖h ≤ 0.05. Again, the singularity at origin is captured by
the refinement.
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Fig. 5.4. Example 2: Initial mesh with general polygons.
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Fig. 5.5. Example 2: Refined mesh by refinement-1 (Left); Refined mesh by refinement-2 (Right).
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Fig. 5.6. Example 3: Domain of L-shape problem.

5.3. Example 3. L-shape problem: let domain Ω = (0, 1)2\[0, 1] × [−1, 0] (as
shown in Figure 5.6). The exact solution is chosen as follows

u = rλ
(

(1 + λ) sin(θ)Φ(θ) + cos(θ)Φθ(θ)
sin(θ)Φθ(θ)− (1 + λ) cos(θ)Φ(θ)

)
,

p =
−rλ−1((1 + λ2)Φθ(θ) + Φθθθ(θ))

1− λ
,(5.6)

with

Φ(θ) =
sin((1 + λ)θ) cos(λω)

1 + λ
− cos((1 + λ)θ)

− sin((1− λ)θ) cos(λω)

1− λ
+ cos((1− λ)θ),

ω =
3π

2
,

λ = 856399/1572864 ≈ 0.54448.

This solution satisfies the homogeneous Stokes equation. But u /∈ [H2(Ω)]2 and
p /∈ H1(Ω). Due to the singularity in the problem, we shall apply adaptive weak
Galerkin algorithm to improve numerical performance in the computing.
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Fig. 5.7. Example 3: Refined mesh by refinement-1 for ‖(u− uh; p− ph)‖h = 8.60E − 02 and
Dof= 34792 (Left); Refined mesh by refinement-2 ‖(u− uh; p− ph)‖ = 9.50E − 02 and Dof=35618
(Right).
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Fig. 5.8. Example 3: Zoom in view for Fig.5.7 on [−0.08, 0.08] × [−0.07, 0.07]: refinment-1
(Left); refinment-2 (right).

Figure 5.7-5.8 compares two different refinement methods with k = 3 by setting
stopping criteria as ‖(u−uh; p−ph)‖h ≤ 0.01. Both methods perform the refinement
centered at origin, and thus can capture singularity in the problem.
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Fig. 5.9. Example 3: Convergence results for refinement-1.
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Fig. 5.10. Example 3: Convergence results for refinement-2.

Figures 5.9-5.10 report the convergence results for two different adaptive refine-
ment methods. From both of them, one can observe the convergence rate with respect
to DOFs is optimal at O(h−k/2). All the results confirm our theoretical conclusions.

5.4. Example 4. Driven cavity. Let Ω = (0, 1)2 and the boundary condition for
u be given as shown in Figure 5.11.
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Fig. 5.11. Example 4: Domain for driven cavity problem.

Since the exact solution is not available, we only compare our refinement with
results in previous literatures. As is known, the singularity are located at points (0, 1)
and (1, 1). Thus we expect our adaptive refinement can locate these two points.

First we start with 10 × 10 uniform rectangular mesh. After 20 iterations with
weak Galerkin finite element k = 3, the refinements as presented in Figure 5.12-5.13
focus on these two singularities as desired.
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Fig. 5.12. Example 4: Refined mesh by refinement-1 (left) and refinement -2 (right).
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Fig. 5.13. Example 4: Zoom in view for Fig.5.12 on [0, 0.1] × [0.9, 1]: refinment-1 (Left);
refinment-2 (right).
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Fig. 5.14. Example 4: Refined mesh by refinement-1 (left) and refinement-2 (right).
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Fig. 5.15. Example 4: Zoom in view for Fig.5.14 on [0, 0.1] × [0.9, 1]: refinment-1 (Left);
refinment-2 (right).

Then we start with 20 × 20 uniform CVT mesh. After 20 iterations with weak
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Galerkin finite element k = 3, the refinements are shown in Figure 5.14-5.15. Similar
conclusions can be made for this test.

5.5. Example 5. Although our analysis is focused on the 2-dimensional Stokes
equations, in this subsection, we shall perform our numerical scheme and compute
the error estimators for the 3-dimensional (3D) Stokes problems. In this test, we shall
take the domain as Ω = [0, 1]3 and the analytical solution for testing is chosen as
follows:

u =

sin z + cos y
sinx+ cos z
sin y + cosx

 , p = x.

The weak Galerkin scheme with k = 1 (u0 ∈ [P1(T )]3, ub ∈ [P1(e)]3 and ph ∈
P0(T )) has been used to solve the 3D Stokes equations. We expect optimal rate in
the convergence test in the global uniform refinement strategies.

The structured and unstructured tetrahedral meshes will be employed in this
numerical experiment. The structured and unstructured initial meshes are shown in
Figure 5.17-5.18. Then the global uniform refinement approach will be performed: one
tetrahedron will be divided into eight smaller tetrahedrons (shown in Figure 5.16).
The examples of first refinement (Level 2) can be found in Figure 5.17-5.18.

Fig. 5.16. Example 5: one tetrahedron (left) and refinement (right).

Fig. 5.17. Example 5: Structured tetrahedral mesh: initial Mesh (left) and refinement (right).
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Fig. 5.18. Example 5: Unstructured tetrahedral mesh: initial Mesh (left) and refinement (right).

The error profiles and convergence results are presented in Table 5.2. It can be
obtained from this table that the errors measured by |||uh −Qhu||| and ‖(u− uh; p−
ph)‖h and error estimate η converge at the optimal rate of O(h), which agree with
our expectations. Moreover, the effectivity index presented by Eff-1 and Eff-2 is close
to a constant for both structured and unstructured meshes. Hence, all of the above
tests validate our conclusions.

Table 5.2
Example 5. Error profiles and convergence results.

Lev η order |||uh −Qhu||| order Eff-1 ‖(u− uh; p− ph)‖h order Eff-2
Structured Mesh

1 4.3751E-1 3.9591E-1 0.90 2.4187E-1 0.55
2 2.1856E-1 1.00 1.9970E-1 0.99 0.91 1.1213E-1 1.11 0.51
3 1.0923E-1 1.00 1.0025E-1 0.99 0.92 5.6148E-2 1.00 0.51
4 5.4611E-2 1.00 5.0337E-2 0.99 0.92 2.8144E-2 1.00 0.52
5 2.7314E-2 1.00 2.6179E-2 0.94 0.96 1.4114E-2 1.00 0.52

Unstructured Mesh
1 6.3593E-1 6.0010E-1 0.94 4.1294E-1 0.65
2 3.1860E-1 1.00 3.0363E-1 0.98 0.95 2.0265E-1 1.03 0.64
3 1.5937E-1 1.00 1.5254E-1 0.99 0.96 1.0179E-1 0.99 0.64
4 7.9685E-2 1.00 7.6270E-2 1.00 0.96 5.0897E-2 1.00 0.64
5 3.9843E-2 1.00 3.8135E-2 1.00 0.96 2.5449E-2 1.00 0.64

6. Conclusions and Future Work. In this paper, the simple a posteriori error
estimate has been analyzed and applied to solve the Stokes equations. Theoretically,
we proved the equivalence of the error estimator η and actual error measured in ‖ ·‖h-
norm. Numerically, several numerical experiments have been conducted to validate
our theoretical conclusions. It shows that η is an efficient and reliable indicator to
locate the singularity and thus guiding the local refinement for achieving optimal rate
in convergence. Because our algorithm works on polygonal meshes, the refinement
guided by indicator ηT will not propagate to the neighbor elements which do not need
refinement.

In the future, our work will be extended to Stokes interface problems. The robust
numerical schemes for high order approximation can be achieved by possibly com-
bining our adaptive weak Galerkin algorithm with non-body fitted mesh. Because of
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the fully computable property and the usage of polygonal meshes, our algorithm may
motivate the designing of hp adaptive schemes. In the future, we shall investigate the
numerical analysis and study the numerical performance for hp adaptive numerical
schemes for solving elliptic equations. In addition, by preserving the local structure in
the meshing, the savings in the adaptive approach for 3-dimensional problems would
be more significant. However, the algorithm of efficient polyhedron type of refine-
ment is still an open problem because of the geometry complexities. We will leave the
investigation of the efficient and effective 3D polyhedron adaptive methods for the
future research.
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