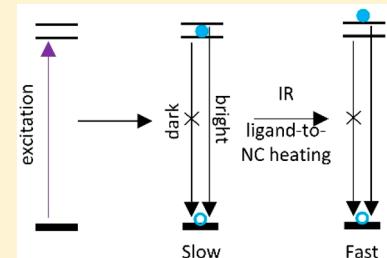


1 Thermal Excitation Control over Photon Emission Rate of CdSe

2 Nanocrystals

3 Benjamin T. Diroll^{†,‡} and Richard D. Schaller^{*,†,‡}

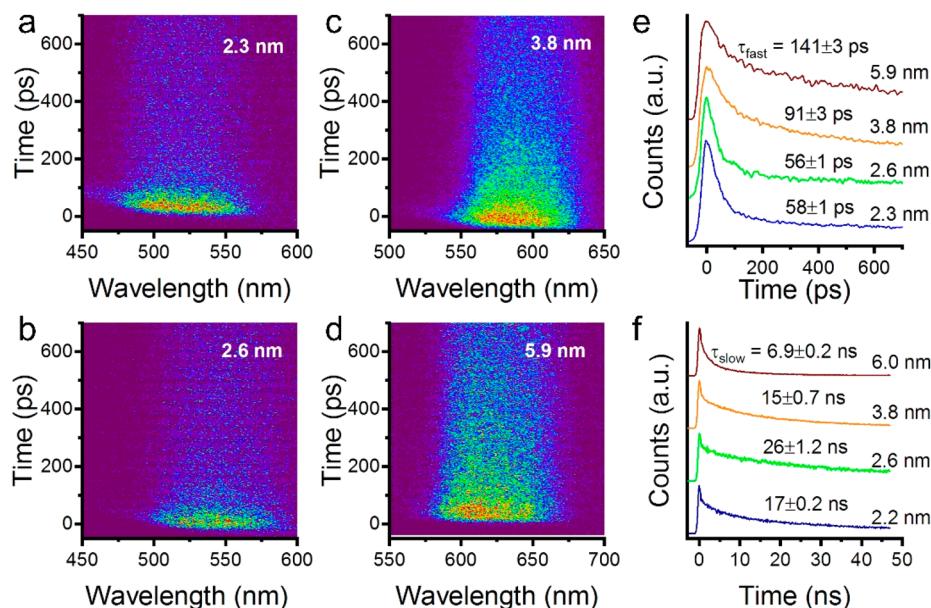

4 [†]Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States

5 [‡]Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States

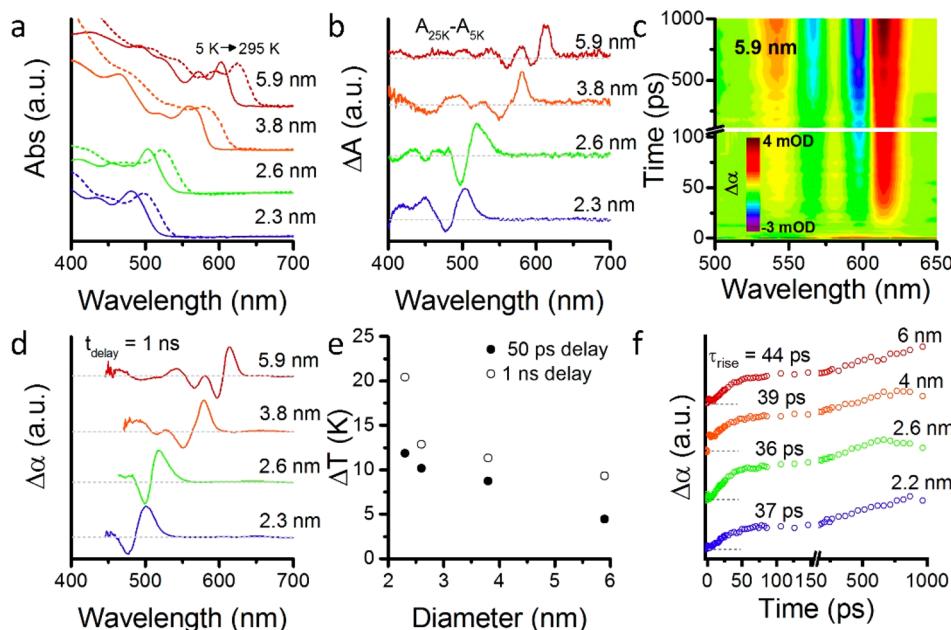
6 Supporting Information

7 **ABSTRACT:** Temperature-dependent photoluminescence lifetimes of electron–hole
 8 pairs (excitons) in CdSe nanocrystals are governed by the energetic ordering and spacing
 9 of slowly emitting, spin-forbidden “dark” exciton states and rapidly emitting “bright”
 10 states. Here, infrared pulses that are resonant with hydrocarbon surface ligand vibrational
 11 transitions are shown to offer a route to manipulate the instantaneous emission rate of
 12 CdSe nanocrystals at cryogenic temperature. Transient heating of the inorganic
 13 nanocrystal core is achieved via resonant excitation of ligand vibrations, followed by heat
 14 flow to the nanocrystal lattice. Heating of the nanocrystal core is demonstrated using
 15 transient absorption spectroscopy, which shows a time-dependent red-shift of the
 16 quantum dot electronic absorption resonances, consistent with heating. Transient
 17 heating of the nanocrystal above the bath temperature increases the instantaneous radiative rate of the nanocrystals via a
 18 combination of thermal occupation of bright states as well as phonon-assisted emission. The lifetime of this infrared-pumped,
 19 fast-emitting sample condition is dictated by particle thermalization, which is multiple orders of magnitude shorter lived than
 20 the dark exciton state. This work demonstrates the feasibility of using heat control pulses to manipulate electronic
 21 recombination rates of excitons.

22 **KEYWORDS:** Nanocrystal, photoluminescence, heat transfer, infrared, exciton


23 **L**ow-temperature photoluminescence (PL) of CdSe nano-
 24 crystals (NCs) has been studied extensively both
 25 theoretically and experimentally, because it offers direct insight
 26 into the electronic structure and properties of these
 27 materials.^{1–9} The exciton fine structure of NCs can differ
 28 substantially from that of bulk semiconductors, resulting in
 29 size-, shape-, and crystal-polypeptide-dependent control over
 30 radiative lifetime and emission polarization.^{4,10–15} In partic-
 31 ular, the manifold of discretized excitonic “edge” states, which
 32 are spaced in energy by a single meV to tens of meV
 33 (depending on particle size, crystal structure, and shape),
 34 yields temperature-dependent radiative rates owing to
 35 thermally accessed occupation of states, which for sufficiently
 36 low temperatures becomes dominated by the lowest-lying
 37 exciton state. For quasi-spherical, wurtzite CdSe NCs—and,
 38 indeed, most semiconductor NCs—the lowest state is a spin-
 39 forbidden transition to the ground state and therefore termed a
 40 “dark” exciton.^{1,8,13,16,17} Whereas at room temperature, the
 41 average radiative lifetime is ~20 ns as bright excitons populate
 42 and radiate, this lifetime can dramatically increase to 1 μ s at
 43 temperatures of a few Kelvin.⁸ Dynamic modulation of the
 44 occupation, energy, or radiative rate of excitonic states for a
 45 given NC has thus far been achieved with strong magnetic
 46 fields and by controlling the sample temperature.^{1,8,9,18,19} The
 47 method described here permits control of the instantaneous
 48 radiative rate with a separate control pulse. In this work, by
 49 probing zinc blende CdSe NCs, temporally controlled heat
 50 excitations are shown to manipulate the radiative rate of CdSe

51 NCs at 5 K via transient heating of the NC lattice on an 52
 ultrafast time scale.


53 In CdSe NCs, the exciton fine structure, which dictates low-
 54 temperature PL, depends on the size, crystal structure, and 55 shape of NCs.^{1,4,10,12,20} CdSe has eight excitonic states— 0^L , 56
 0^U , $\pm 1^L$, $\pm 1^U$, and ± 2 , in which the number refers to the 57 angular momentum of the transition to the ground state and 58 superscripts L and U refer to lower and upper, respectively.^{12,13} 59 In spherical and slightly prolate wurtzite systems, the lowest 59 excitonic states are the ± 2 , which convey a so-called “dark” 60 exciton because of the spin-forbidden transition to the ground 61 state. These ± 2 states are separated by 2–20 meV (depending 62 on size) from the lowest-energy bright states, $\pm 1^L$. Therefore, 63 at sufficiently low temperatures, excitons thermalize to the dark 64 state, and the PL lifetime increases substantially from ~20 ns at 65 room temperature to approximately 1 μ s.^{1,8} Such measure- 66 ments display a fast component of emission at early time, 67 which has been argued occurs as the phonon bath generated 68 from intraband cooling (electron–phonon coupling) keeps the 69 instantaneous rate of emission high until phonons are 70 dissipated across the ligand–NC interface.^{1,3,8,18,21,22} The 71 precise reason for the higher emission rates may relate either to 72 a greater occupation of the bright excitonic manifold or owing 73 to changes in the radiate rate of excitonic transitions (i.e., dark 74

Received: December 4, 2018

Revised: March 15, 2019

Figure 1. Time- and spectrally resolved PL of (a) 2.2, (b) 2.6, (c) 3.8, and (d) 6.0 nm zinc blende CdSe NCs collected at 5 K. (e) Time-resolved PL at early times for the series. Lifetimes are estimated from a single exponential fit to the data. (f) Time-resolved PL at longer times for the series relating exciton lifetimes. Lifetimes are estimated from a single exponential fit to the data 5 ns after the initial pulse. All data acquired with 400 nm pump.

Figure 2. (a) Static absorption spectrum of zinc blende CdSe NCs taken at 5 and 295 K. (b) Differential absorption spectrum comparing the absorption of the given samples at 25 K with their absorption at 5 K. (c) Two-dimensional map of infrared pump, electronic probe (IPEP) data for 6.0 nm CdSe NCs pumped with 3460 nm light. (d) IPEP spectra for CdSe NCs at 1 ns delay time. (e) Estimated temperature rises in the NC samples at 50 ps delay from the IR pump and 1 ns delay from the IR pump. (f) IPEP kinetics for CdSe NCs at the first excitonic-feature IR-pump-induced absorption (offset for different indicated particle sizes). The fast-rise feature was fitted from the first 150 ps of data. Gray dashed lines indicate $\Delta \alpha = 0$ for each of the scans.

75 excitons), upon vibrational assistance of electronic recombination 76 in the presence of phonons.

77 For zinc blende CdSe NCs used in this work (see X-ray 78 diffraction in Figure S1), theoretical and experimental work is 79 less explored but suggests that excitonic states are more closely 80 spaced than in hexagonal systems.¹² Specifically for zinc blende 81 CdTe, prolate NCs are expected to have ~ 3 meV dark/bright 82 splitting in 6 nm diameter particles and larger and ~ 5 meV

83 splitting in 3 nm particles.¹² The closely spaced excitonic states 84 of zinc blende, which permit facile occupation of high-energy 85 states, offer an advantage compared to wurtzite systems, 86 because they are more responsive to the thermal control pulses 87 employed as described below (vide infra). Figures 1a-d shows 87 f1 a sub-nanosecond decay feature for each of the zinc blende 88 samples used in this work consistent with initial occupation of 89 higher excitonic states of greater oscillator strength followed by 90

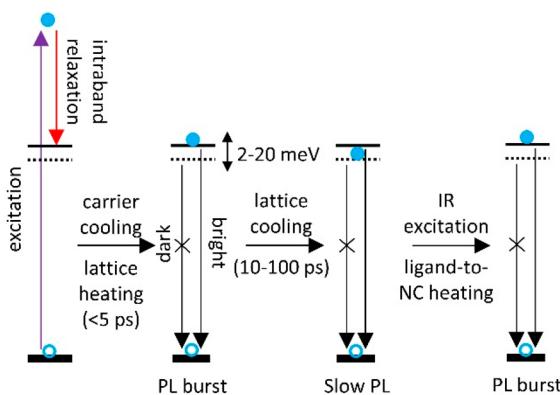
91 a substantial slowing of photoemission (Figure 1e). These
92 rapid decay features are followed by a much slower decay
93 ranging from 7 to 25 ns in these samples, as shown in Figure
94 1f.

95 As noted above, the rapid decay feature observed in time-
96 resolved PL of CdSe NCs at low temperatures reflects the
97 thermalization of excitons within the manifold of excited states
98 and thermal dissipation of phonon energy derived from
99 intraband relaxation.²¹ Following an excitation above the
100 band gap, carrier cooling results from electron–phonon
101 scattering, heating the NC lattice above the environmental
102 temperature.²¹ In addition to permitting some small change in
103 the occupation of bright excitonic states, acoustic phonons
104 generated as an eventual result of carrier cooling are
105 hypothesized to reduce symmetry of the crystal structure of
106 CdSe NCs, which transiently relaxes the spin-forbidden
107 transition of the lowest excitonic state.^{23,24} That is, both
108 equilibrium and nonequilibrium thermal contributions may
109 transiently increase the oscillator strength of CdSe NCs. The
110 NC lattice itself cools via phonon–phonon coupling to the
111 surrounding environment (i.e., coupling to organic ligand
112 matrix and solvent, if applicable).^{25–27} For wurtzite CdSe NCs,
113 phonon–phonon coupling to the environment occurs on a
114 tens to hundred picosecond time scale and depends chiefly on
115 particle size, although crystal faceting and ligand coverage can
116 change this time scale substantially in simulations.^{21,22,28} Here,
117 the fast PL decay at early time (labeled τ_{fast}) also increases
118 somewhat for the larger NCs in this study, although the
119 differences between the samples are much smaller than in
120 wurtzite crystals, possibly because of the energetically smaller
121 excitonic manifold¹² or differential coupling to the environ-
122 ment.²⁸ The slow PL decays (labeled τ_{slow}) fitted in Figure 1f,
123 although much faster than 1 μs decays of wurtzite CdSe NCs
124 at 5 K, are still approximately 2 orders of magnitude longer
125 than the fast-decay feature in all samples.

126 The process of phonon–phonon heat outflow is reversible.
127 Excitation of the hydrocarbon ligand C–H stretches at 3400–
128 3600 nm (Figure S3) offer a means to generate a thermal
129 gradient for heat flow *into* the NC.²⁹ Figure 2 demonstrates
130 this phenomenon for the samples used in this work. The
131 steady-state absorption at 5 and 295 K of the samples formed
132 and deposited as thin films on sapphire is shown in Figure 2a.
133 Increasing temperature of the samples results in red-shifts of
134 the semiconductor band gap and broadening of the absorption
135 resonances. (Photoluminescence energy as a function of
136 temperature is recorded in Figure S4.) Figure 2b shows the
137 difference spectrum of the static absorption (ΔA is used for
138 static measurements; $\Delta\alpha$ is used for transient absorption data)
139 for the four samples comparing the absorption at 25 K with the
140 absorption at 5 K. Each of these shows an increased absorption
141 to the red because of a heat-induced bathochromic shift of NC
142 absorption owing to lattice expansion.

143 Infrared pump, electronic probe (IPEP) spectroscopy
144 measurements of these samples employs a femtosecond
145 pump beam here (and except where noted) centered at 3460
146 nm (covering ligand absorptions) followed by a white light
147 visible probe of the semiconductor NC absorption. (See
148 Supporting Information.) As shown in Figure 2c, a Stark effect
149 at zero delay time³⁰ is followed by a rise in the $\Delta\alpha$ signal,
150 which adopts a spectroscopic signature indicating a red-shift of
151 the NC absorption. The IPEP spectra of the CdSe NC samples
152 at 1 ns delay times are shown in Figure 2d, with an increase in
153 the absorption to the red consistent with the Varshni relation

154 and static measurements of temperature-dependent absorption
155 of the same samples (Figure S4).³¹ The similarity of the IPEP
156 $\Delta\alpha$ spectra and the static ΔA spectra confirms that the IR
157 excitation induces NC heating.


158 The temperature rise induced by the IR pump, which varied
159 in absorbed fluence from 64 $\mu\text{J}/\text{cm}^2$ for the 5.9 nm sample to
160 288 $\mu\text{J}/\text{cm}^2$ for the 2.3 nm sample, is estimated in Figure 2e at
161 delay times of 50 ps and 1 ns. This estimate, which ranges from
162 10 to 20 K at 1 ns delay time is obtained by collecting
163 temperature-dependent measurements of the static absorption
164 to provide a temperature calibration for the changes observed
165 transiently. Integrations of static ΔA spectra at known
166 temperature values are used to calibrate $\Delta\alpha$ spectra obtained
167 from IPEP experiments. (See Figure S5 and discussion). The
168 increasing ΔT for smaller NCs chiefly reflects a greater
169 extinction of ligands relative to the inorganic core, because of
170 larger surface-to-volume ratios, but may also capture effects of
171 size-dependent heat capacity. At 5 K, such thermal excitations
172 raise the thermal energy (kT) of the NCs by a factor of 2–5
173 and therefore can enable a substantial population of the
174 excitonic states separated by <10 meV from the ground state,
175 as is predicted for the bright states of zinc blende CdSe NCs.¹²

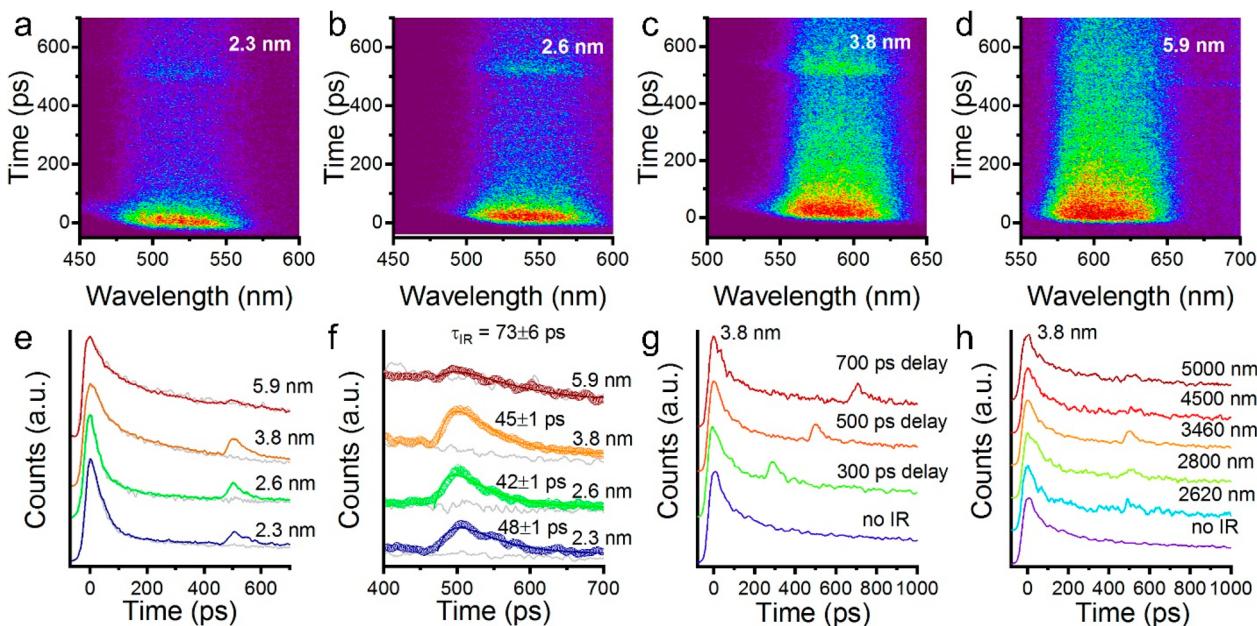
176 The dynamics of the IPEP spectra in Figure 2f display
177 biexponential rise dynamics, with 60–70% of the signal change
178 occurring within 150 ps. This fast component of the NC
179 heating was fitted with a function of the form $A(1 - e^{-t/\tau_{\text{rise}}})$
180 to obtain characteristic heating times for the samples reported
181 in Figure 1e. These times (τ_{rise}) vary over a small range from
182 36 to 44 ps, increasing slightly with the size of the NCs,
183 qualitatively consistent with the fast-decay feature observed in
184 the time-resolved PL data in Figure 1 and earlier work on
185 interfacial heat flow.^{21,22,29} The differences in the τ_{rise} time
186 from IPEP measurements and τ_{fast} time from time-resolved PL
187 measurements most likely arise from the fact that the processes
188 are not identical reversals and possibly occur due to differences
189 of the temperature gradient of the blue excitation versus IR
190 excitation. Particularly noteworthy differences with IPEP
191 measurements include the fact that heat inflow occurs *after*
192 thermalization of high-energy vibrations into the manifold of
193 ligand vibrational states (intramolecular vibrational relaxation
194 or IVR),³² and there are no contributions from carriers (or
195 excitons), because the semiconductor NCs have not been
196 excited.

197 Organic ligands serve effectively as antennae to capture
198 thermal excitations, which are transferred to the NC core in
199 the experimental design presented in Scheme 1. First, a blue
200 pump excitation (400 nm) is used to generate excitons in the
201 NC ensemble. Initially, the pump energy in excess of the band
202 gap heats the NC through electron–phonon coupling resulting
203 in the above-described burst of PL, followed, after subsequent
204 lattice cooling, by slow PL decays. After a variable delay, the
205 sample is excited with an IR pump resonant with the ligand
206 vibrations, which heats the inorganic NC core. Thus, heated,
207 the NCs emit a second burst of PL as the radiative rate
208 increases for a fraction of the NC population. The design of
209 the blue pump followed by an IR pump is in some ways
210 analogous to earlier transient absorption measurements from
211 Klimov et al. and Sionnest et al., although in those works, the
212 IR source was tuned to be resonant with intraband transitions
213 of CdSe NCs, rather than ligand vibration energies.^{33,34}

214 Examples of this experiment for the same series of NCs in
215 Figure 1a–d are shown in Figure 3a–d. Here, the sample

Scheme 1. Simplified Schematic of Heat-Controlled Emission for NCs with Small Bright/Dark Splitting at Low Temperature^a

^aTextual labeling reflects the expected behavior of an ensemble; graphics do not represent true Fermi–Dirac distributions of excitons. An alternative model suggests that phonon-assisted and -unassisted radiative rates diverge substantially. In both explanations, transient temperature elevation effects change the radiative rate.


decay induced by 400 nm pump excitation is punctuated after 500 ps by a second burst in PL as described in **Scheme 1**, arising because of an IR-pump beam. A comparison of the integrated dynamics with and without secondary IR pumping shown in **Figure 3e**, with a zoom-in in **Figure 3f**, shows that the secondary PL burst is particularly prominent in the smaller NC samples where the temperature rise is largest. The proportionality of the response observed in both IPEP measurements and in the IR-induced PL feature argues in favor of a common origin. Measurements with IR pumping alone confirm that multiphoton absorption does not contribute to the changes in

PL with the IR pump for these samples, which have visible band gaps (**Figure S6**). The time-domain response of the IR-pump-induced emission is more complicated than that of interband pumping alone. The asymmetrical nature of the IR-induced features confirms that these changes are not simply due to a Stark effect.³⁵ The rise of the secondary PL burst occurs on a time scale consistent with that of IPEP measurements and is convolved with depletion of excitons that occupy the bright excitonic transition on a similar time scale. Except in the case of the 5.9 nm sample, the PL data without IR excitation are nearly flat, with the decay dominated by the long dark-state lifetime. Therefore, by using IPEP measurements to fix the rise time of IR-induced PL, time-resolved data with IR excitation shown with open circles in **Figure 3f** are fit with solid colored lines to the following convolved function

$$I(t) = A(1 - e^{-t/\tau_{\text{rise}}})(e^{-t/\tau_{\text{IR}}} + B)$$

in which the input for τ_{rise} is fixed from fitting IPEP data in **Figure 2**, and A and B are scalars. τ_{IR} represents the instantaneous rate of photon emission from the sample after IR excitation. Pointedly, the τ_{IR} times are consistently shorter than the τ_{fast} dynamics fit for blue pumping alone. Because both features are dictated by thermalization of carriers, this suggests that the temperature rise induced by the IR beam is somewhat smaller than the rise induced by the blue pump. The initially generated phonon population of the blue pump must first evolve to that of the smaller population of the IR pump, after which they may be expected to evolve in the same manner, leading to an elongated thermalization of the blue pump with respect to the IR pump.

Although the burst in the PL signal should in principle be seen in steady-state PL measurements with and without IR

Figure 3. Time- and spectrally resolved PL of (a) 2.2, (b) 2.6, (c) 3.8, and (d) 6.0 nm zinc blende CdSe NCs collected at 5 K with initial 400 nm pump followed by 3460 nm pump for 500 ps. (e) PL dynamics of CdSe NC samples with 400 nm pump followed by 3460 nm pump in colors and gray lines representing data without IR pump. (f) PL dynamics with IR pump are shown in open circles, and data without IR pump is shown with a gray line. Solid colored lines represent a convolved fit of an exponential rise (fixed by IPEP measurements in **Figure 2**) and an exponential decay with time constant τ_{IR} , which are reported on the plot. (g) PL dynamics of 3.8 nm CdSe NCs excited at 400 nm followed by 3460 nm pump at different delay times. (h) PL dynamics of 3.8 nm CdSe NCs excited at 400 nm followed by 500 ps of IR pumps of different wavelengths.

258 pumping through a change in the PL spectrum, in practice, this
 259 was not observed, because the total signal intensity arising
 260 from the PL burst is a very small fraction of the total PL under
 261 these conditions, and any effect in the time-integrated signal is
 262 masked by variations in the pump laser intensity (Figure S6).
 263 Changes in the absolute intensity of time-integrated PL are not
 264 anticipated, as there is no reason to believe that the IR pump
 265 substantially changes the quantum yield of recombination
 266 pathways. However, changes in the absolute intensity within
 267 the ~700 ps windows in Figure 3 do occur: for the 2.3, 2.6, and
 268 3.8 nm samples, approximately 8–10% more photons are
 269 emitted in the given time window compared to the case with
 270 only interband excitation. It is important to note also that the
 271 relative strength of PL from the 400 nm excitation compared
 272 to that induced with an IR pulse is experimentally constrained
 273 by the overlap of the small IR beam with the larger blue pump
 274 beam, which limits the apparent modulation, as only a fraction
 275 of the photoexcited sample is subsequently pumped with the
 276 IR beam. (See Supporting Information for details.) This is also
 277 the reason that despite reaching higher effective temperatures
 278 with thermal excitation (at least in the smaller NCs) than with
 279 single-photon absorption and carrier thermalization, that the
 280 magnitude of PL modulation from the IR pump is smaller than
 281 that of fast component of the PL induced by the blue pump.
 282 Additional two-pump experiments in Figure 3g show that
 283 the delay of the IR pump can be controlled precisely, here
 284 tuning from 300 ps delay with respect to the 400 nm pump
 285 pulse to 700 ps delay. Under all delay conditions, the
 286 modulation of the response in the 3.8 nm CdSe NCs is
 287 approximately the same, indicative of a similar effective NC
 288 temperature. For ensembles, this implies that complex thermal
 289 excitations can, in principle, be used to encode the time scale at
 290 which photons are emitted; for single-photon emission
 291 sources, it may considerably reduce the time between photon
 292 emission events, speeding up the duty cycle without Auger
 293 recombination (which occurs using multiple electronic pump
 294 pulses) and with temporal control of approximately tens of
 295 picoseconds, depending upon the excitonic manifold of the
 296 sample.

297 Last, data in Figure 3h shows that the effect of thermal
 298 excitation when the IR beam is tuned to different wavelengths
 299 in the IR. Although the bandwidth of the femtosecond IR
 300 pump is quite broad (>1 μm at 3460 nm, see Figure S8), the
 301 absorbed power of the heat-induced secondary pulse is
 302 maximized when the center wavelength of the pump is tuned
 303 on resonance with the ligand C–H stretching vibrations.
 304 Moving to shorter or longer wavelength diminishes the
 305 intensity of the IR-induced changes. Further control experi-
 306 ments employed a cuvette of diluted hexanes in carbon
 307 tetrachloride as an infrared notch filter to selectively block the
 308 fraction of the pump beam resonant with the oleic acid C–H
 309 vibrations. When a hexanes filter is used, both IPEP and IR-
 310 induced PL signals are reduced substantially, despite a
 311 substantial fraction of (nonresonant) IR light still irradiating
 312 the sample. (See Figure S8.) The resonant character of this
 313 thermal excitation confirms that ligand vibrations act as
 314 antennae that facilitate NC core heating. These experiments
 315 also suggest that competing possibilities for the secondary
 316 burst of PL, in which the IR pulse resonantly excites the
 317 exciton from the dark (or other trapped) state, are unlikely, as
 318 trap distributions are typically continuous.^{36,37} Additionally,
 319 several works claim that fast carrier cooling of quantum dots,
 320 which should in principle be quite slow,^{38–40} is attributable to

321 electronic interactions with ligand vibrations.^{34,41–43} We note
 322 that in these experiments, there is no evidence of *p*-state
 323 emission in these NC systems at higher energies. This is true
 324 both for the initial electronic excitation and the subsequent
 325 thermal excitation. This suggests that IR excitation neither
 326 resonantly excites carriers within the electronic manifold^{34,44}
 327 nor do ligand vibrations appear to couple to electronic states in
 328 such a manner to increase occupations of, for example, *p*-states,
 329 at least in the presented experiments. The observed changes
 330 are most consistent with a strictly thermal origin and the effect
 331 of temperature on the occupation of the exciton fine structure
 332 manifold of states.
 332

In conclusion, this work demonstrates that thermal
 333 excitation of CdSe NCs, exploiting ligands as antennae, can
 334 facilitate manipulation of the instantaneous radiative rate of an
 335 ensemble. By introducing an IR excitation resonant with
 336 organic ligand vibrational energies, NCs are heated transiently
 337 above the bath temperature with a concomitant increase in the
 338 radiative rate. The burst of PL following transient heating
 339 exhibits a lifetime limited by NC thermalization (cooling) that
 340 here is roughly 2 orders of magnitude faster than the emission
 341 rate of the lowest energy excitonic state in these zinc blende
 342 CdSe NCs. Furthermore, the modulation of PL can be tuned
 343 arbitrarily in time with tens of picosecond resolution.
 344 Exploiting this effect in other systems with larger dark/bright
 345 splitting may provide opportunities to increase this difference
 346 further or, in the case of systems with bright exciton ground
 347 states,^{13,16} slow radiative rates. Although presented here for
 348 ensembles, this phenomenon may prove particularly advanta-
 349 geous where single-photon emission is desired in a low-
 350 temperature emitter, which otherwise presents a low duty cycle
 351 and poor temporal control over photon emission.
 352

■ ASSOCIATED CONTENT

● Supporting Information

The Supporting Information is available free of charge on the
 355 ACS Publications website at DOI: [10.1021/acs.nano-
 356 lett.8b04847](https://doi.org/10.1021/acs.nanolett.8b04847).
 357

Synthetic information and additional spectroscopic
 358 experiments (PDF)
 359

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: schaller@anl.gov; schaller@northwestern.edu.

ORCID

Benjamin T. Diroll: [0000-0003-3488-0213](https://orcid.org/0000-0003-3488-0213)

Richard D. Schaller: [0000-0001-9696-8830](https://orcid.org/0000-0001-9696-8830)

Author Contributions

The manuscript was written through contributions of both
 367 authors.
 368

Notes

The authors declare no competing financial interest.
 370

■ ACKNOWLEDGMENTS

This work was performed at the Center for Nanoscale
 372 Materials, a U.S. Department of Energy Office of Science
 373 User Facility, and supported by the U.S. Department of
 374 Energy, Office of Science, under Contract No. DE-AC02-
 375 06CH11357.
 376

377 ■ REFERENCES

378 (1) Nirmal, M.; Norris, D. J.; Kuno, M.; Bawendi, M. G.; Efros, A. 446 L.; Rosen, M. Observation of the “Dark Exciton” in CdSe Quantum 447 Dots. *Phys. Rev. Lett.* **1995**, *75*, 3728–3731.

381 (2) Norris, D. J.; Bawendi, M. G. Structure in the Lowest Absorption 448 Feature of CdSe Quantum Dots. *J. Chem. Phys.* **1995**, *103*, 5260– 449 5268.

384 (3) Moreels, I.; Rainò, G.; Gomes, R.; Hens, Z.; Stöferle, T.; Mahrt, 450 R. F. Band-Edge Exciton Fine Structure of Small, Nearly Spherical 451 Colloidal CdSe/ZnS Quantum Dots. *ACS Nano* **2011**, *5*, 8033–8039.

387 (4) Norris, D. J.; Efros, A.; Rosen, M.; Bawendi, M. Size 452 Dependence of Exciton Fine Structure in CdSe Quantum Dots. 453 *Phys. Rev. B: Condens. Matter Mater. Phys.* **1996**, *53*, 16347–16354.

390 (5) Nann, T.; Riegler, J. Monodisperse CdSe Nanorods at Low 454 Temperatures. *Chem. - Eur. J.* **2002**, *8*, 4791–4795.

392 (6) Naeem, A.; Masia, F.; Christodoulou, S.; Moreels, I.; Borri, P.; 455 Langbein, W. Giant Exciton Oscillator Strength and Radiatively 456 Limited Dephasing in Two-Dimensional Platelets. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2015**, *91*, 121302.

396 (7) Tessier, M. D.; Biadala, L.; Bouet, C.; Ithurria, S.; Abecassis, B.; 457 Dubertret, B. Phonon Line Emission Revealed by Self-Assembly of 458 Colloidal Nanoplatelets. *ACS Nano* **2013**, *7*, 3332–3340.

399 (8) Crooker, S. A.; Barrick, T.; Hollingsworth, J. A.; Klimov, V. I. 459 Multiple Temperature Regimes of Radiative Decay in CdSe 460 Nanocrystal Quantum Dots: Intrinsic Limits to the Dark-Exciton 461 Lifetime. *Appl. Phys. Lett.* **2003**, *82*, 2793–2795.

403 (9) Johnston-Halperin, E.; Awschalom, D. D.; Crooker, S. A.; Efros, 462 A. L.; Rosen, M.; Peng, X.; Alivisatos, A. P. Spin Spectroscopy of Dark 463 Excitons in CdSe Quantum Dots to 60 T. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2001**, *63*, 205309.

407 (10) Shabaev, A.; Efros, A. L. 1D Exciton Spectroscopy of 464 Semiconductor Nanorods. *Nano Lett.* **2004**, *4*, 1821–1825.

409 (11) Shabaev, A.; Rodina, A. V.; Efros, A. L. Fine Structure of the 465 Band-Edge Excitons and Trions in CdSe/CdS Core/Shell Nanocrystals. 466 *Phys. Rev. B: Condens. Matter Mater. Phys.* **2012**, *86*, 205311.

412 (12) Efros, A. L.; Rosen, M.; Kuno, M.; Nirmal, M.; Norris, D. J.; 467 Bawendi, M. Band-Edge Exciton in Quantum Dots of Semiconductors 468 with a Degenerate Valence Band: Dark and Bright Exciton States. 469 *Phys. Rev. B: Condens. Matter Mater. Phys.* **1996**, *54*, 4843–4856.

416 (13) Sercel, P. C.; Efros, A. L. Band-Edge Exciton in CdSe and 470 Other II–VI and III–V Compound Semiconductor Nanocrystals – 471 Revisited. *Nano Lett.* **2018**, *18*, 4061–4068.

419 (14) Scholes, G. D.; Kim, J.; Wong, C. Y.; Huxter, V. M.; Nair, P. S.; 472 Fritz, K. P.; Kumar, S. Nanocrystal Shape and the Mechanism of 473 Exciton Spin Relaxation. *Nano Lett.* **2006**, *6*, 1765–1771.

422 (15) Peng, X.; Manna, L.; Yang, W.; Wickham, J.; Scher, E.; 474 Kadavanich, A.; Alivisatos, A. Shape Control of CdSe Nanocrystals. 475 *Nature* **2000**, *404*, 59–61.

425 (16) Becker, M. A.; Vaxenburg, R.; Nedelcu, G.; Sercel, P. C.; 476 Shabaev, A.; Mehl, M. J.; Michopoulos, J. G.; Lambrakos, S. G.; 477 Bernstein, N.; Lyons, J. L.; et al. Bright Triplet Excitons in Caesium 478 Lead Halide Perovskites. *Nature* **2018**, *553*, 189–193.

429 (17) Kelestemur, Y.; Guzelturk, B.; Erdem, O.; Olutas, M.; Erdem, 479 T.; Usamaz, C. F.; Gungor, K.; Demir, H. V. CdSe/CdSe1– 480 XTExCore/Crown Heteronanoplatelets: Tuning the Excitonic Properties 481 without Changing the Thickness. *J. Phys. Chem. C* **2017**, *121*, 482 4650–4658.

434 (18) Furis, M.; Hollingsworth, J. a.; Klimov, V. I.; Crooker, S. A. 483 Time- And Polarization-Resolved Optical Spectroscopy of Colloidal 484 CdSe Nanocrystal Quantum Dots in High Magnetic Fields. *J. Phys. 485 Chem. B* **2005**, *109*, 15332–15338.

438 (19) Bawendi, M. G.; Carroll, P. J.; Wilson, W. L.; Brus, L. E. 486 Luminescence Properties of CdSe Quantum Crystallites: Resonance 487 between Interior and Surface Localized States. *J. Chem. Phys.* **1992**, 488 *96*, 946–954.

442 (20) Biadala, L.; Liu, F.; Tessier, M. D.; Yakovlev, D. R.; Dubertret, 489 B.; Bayer, M. Recombination Dynamics of Band Edge Excitons in 490 Quasi-Two-Dimensional CdSe Nanoplatelets. *Nano Lett.* **2014**, *14*, 491 1134–1139.

494 (21) Hannah, D. C.; Dunn, N. J.; Ithurria, S.; Talapin, D. V.; Chen, 495 L. X.; Pelton, M.; Schatz, G. C.; Schaller, R. D. Observation of Size- 496 Dependent Thermalization in CdSe Nanocrystals Using Time- 497 Resolved Photoluminescence Spectroscopy. *Phys. Rev. Lett.* **2011**, *107*, 498 177403.

499 (22) Hannah, D. C.; Ithurria, S.; Krylova, G.; Talapin, D. V.; Schatz, 500 G. C.; Schaller, R. D. Particle-Level Engineering of Thermal 501 Conductivity in Matrix-Embedded Semiconductor Nanocrystals. *Nano Lett.* **2012**, *12*, 5797–5801.

502 (23) Huxter, V. M.; Lee, A.; Lo, S. S.; Scholes, G. D. CdSe 503 Nanoparticle Elasticity and Surface Energy. *Nano Lett.* **2009**, *9*, 405– 504 409.

505 (24) Huxter, V. M.; Scholes, G. D. Acoustic Phonon Strain Induced 506 Mixing of the Fine Structure Levels in Colloidal CdSe Quantum Dots 507 Observed by a Polarization Grating Technique. *J. Chem. Phys.* **2010**, *132*, 508 104506.

509 (25) Hartland, G. V. Optical Studies of Dynamics in Noble Metal 510 Nanostructures. *Chem. Rev.* **2011**, *111*, 3858–3887.

511 (26) Link, S.; El-Sayed, M. A. Optical Properties and Ultrafast 512 Dynamics of Metallic Nanocrystals. *Annu. Rev. Phys. Chem.* **2003**, *54*, 513 331–366.

514 (27) Wilson, O. M.; Hu, X.; Cahill, D. G.; Braun, P. V. Colloidal 515 Metal Particles as Probes of Nanoscale Thermal Transport in Fluids. 516 *Phys. Rev. B: Condens. Matter Mater. Phys.* **2002**, *66*, 224301.

517 (28) Hannah, D. C.; Gezelter, J. D.; Schaller, R. D.; Schatz, G. C. 518 Reverse Non-Equilibrium Molecular Dynamics Demonstrate That 519 Surface Passivation Controls Thermal Transport at Semiconductor 520 Solvent Interfaces. *ACS Nano* **2015**, *9*, 6278–6287.

521 (29) Diroll, B. T.; Guo, P.; Schaller, R. D. Heat Transfer at Hybrid 522 Interfaces: Interfacial Ligand-to-Nanocrystal Heating Monitored with 523 Infrared Pump, Electronic Probe Spectroscopy. *Nano Lett.* **2018**, *18*, 524 7863–7869.

525 (30) Sie, E. J.; McIver, J. W.; Lee, Y. H.; Fu, L.; Kong, J.; Gedik, N. 526 Valley-Selective Optical Stark Effect in Monolayer WS2. *Nat. Mater.* 527 **2015**, *14*, 290–294.

528 (31) Varshni, Y. P. Temperature Dependence of the Energy Gap in 529 Semiconductors. *Physica* **1967**, *34*, 149–154.

530 (32) Kukura, P.; McCamant, D. W.; Mathies, R. A. Femtosecond 531 Stimulated Raman Spectroscopy. *Annu. Rev. Phys. Chem.* **2007**, *58*, 532 461–488.

533 (33) Klimov, V.; Mikhailovsky, A.; McBranch, D.; Leatherdale, C.; 534 Bawendi, M. Mechanisms for Intraband Energy Relaxation in 535 Semiconductor Quantum Dots: The Role of Electron-Hole 536 Interactions. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2000**, *61*, 537 R13349–R13352.

538 (34) Guyot-Sionnest, P.; Wehrenberg, B.; Yu, D. Intraband 539 Relaxation in CdSe Nanocrystals and the Strong Influence of the 540 Surface Ligands. *J. Chem. Phys.* **2005**, *123*, 074709.

541 (35) Wen, G. W.; Lin, J. Y.; Jiang, H. X.; Chen, Z. Quantum- 542 Confined Stark Effects in Semiconductor Quantum Dots. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1995**, *52*, 5913–5922.

543 (36) Anderson, P. W. Model for the Electronic Structure of 544 Amorphous Semiconductors. *Phys. Rev. Lett.* **1975**, *34*, 953–955.

544 (37) Street, R. A.; Mott, N. F. States in the Gap in Glassy 545 Semiconductors. *Phys. Rev. Lett.* **1975**, *35*, 1293–1296.

546 (38) Benisty, H.; Sotomayor-Torres, C. M.; Weisbuch, C. Intrinsic 547 Mechanism for the Poor Luminescence Properties of Quantum-Box 548 Systems. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1991**, *44*, 10945– 549 10948.

550 (39) Benisty, H. Reduced Electron-Phonon Relaxation Rates in 551 Quantum-Box Systems: Theoretical Analysis. *Phys. Rev. B: Condens. 552 Matter Mater. Phys.* **1995**, *51*, 13281–13293.

553 (40) Bockelmann, U.; Bastard, G. Phonon Scattering and Energy 554 Relaxation in Two-, One-, and Zero-Dimensional Electron Gases. 555 *Phys. Rev. B: Condens. Matter Mater. Phys.* **1990**, *42*, 8947–8951.

556 (41) Peterson, M. D.; Cass, L. C.; Harris, R. D.; Edme, K.; Sung, K.; 557 Weiss, E. a. The Role of Ligands in Determining the Exciton 558 Relaxation Dynamics in Semiconductor Quantum Dots. *Annu. Rev. 559 Phys. Chem.* **2014**, *65*, 317–339.

s15 (42) Bozyigit, D.; Yazdani, N.; Yarema, M.; Yarema, O.; Lin, W. M.
s16 M.; Volk, S.; Vuttivorakulchai, K.; Luisier, M.; Juranyi, F.; Wood, V.
s17 Soft Surfaces of Nanomaterials Enable Strong Phonon Interactions.
s18 *Nature* **2016**, *531*, 618–622.

s19 (43) Aharoni, A.; Oron, D.; Banin, U.; Rabani, E.; Jortner, J. Long-
s20 Range Electronic-to-Vibrational Energy Transfer from Nanocrystals to
s21 Their Surrounding Matrix Environment. *Phys. Rev. Lett.* **2008**, *100*,
s22 057404.

s23 (44) Wehrenberg, B. L.; Wang, C.; Guyot-Sionnest, P. Interband
s24 and Intraband Optical Studies of PbSe Colloidal Quantum Dots. *J.*
s25 *Phys. Chem. B* **2002**, *106*, 10634–10640.