This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Profiling and Debugging for the
Kokkos Programming Model

| S ™

i) 0
o 7

e

- v‘ “‘iz - " ’__-,’.ﬂ’, - " »h“lAl. .-
58 TW oy €, & o _,%,
\\/ e =" < s .,

Si Hammond (sdhammo@sandia.gov)

Collaborators: Christian Trott, Dan Ibanez, Dan Sunderland, Nathan Ellingwood and
Carter Edwards

jm—— ——— |

SAND2018- 7004C

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Images courtesy of Sandia National Laboratories and Oak Ridge National Laboratory

2

Introduction

Want to talk about how we are trying to bring uniform tools APls and user
experiences across our diverse platforms

> Quick overview of the Kokkos C++ Programming Model

o Qur vision for a future “parallel” C++ standard

> What are the problems with this approach in the tools environment?
> How can we solve that and make this easier/more uniform

> How can you use these interfaces today to help make better parallel programs?

4+ | Overview of Kokkos

LAMMPS Trilinos

- - Kokkos

N (3

{ﬁjx 7 Q J

Multi-Core Many-Core APU CPU + GPU

/

5 | Kokkos Programming Model http://github.com/kokkos/kokkos

Separating of Concerns for Future Systems...

Data Structures Parallel Execution

Memory Spaces (“Where”) Execution Spaces (“Where”)

Multiple-Levels - N-Level
Logical Space (think UVM vs explicit) - Support Heterogeneous Execution

Memory Layouts (“How”) Execution Patterns (“How”)

' - paraltel_ror/reauce/scan, tas
spawn

Enable nesting

Architecture dependent index-maps
Also needed for subviews

Memory Traits Execution Policies
Access Intent: Stream, Random, ... - Range, Team, Task-Dag
Access Behavior: Atomic - Dynamic / Static Scheduling

Enables special load paths: i.e. texture - Support non-persistent scratch-pads

6

Discussion

Kokkos is our vision for what future language based standards might want to
expose

> Longer term plan is for Kokkos features to be in C++ standard

> Essentially pieces of Kokkos go away over time as the standard assumes more of a role
in delivering these to programs

We want to give users the same experience across platforms/hardware
> A unified programming model
> Similar compilation and software build environments
> Spend a lot of time thinking about how to make this easier, correct flags etc

Now we also want to have a unified tools and support environment

Experiences Profiling and
Debugging when using C++
Parallelism Abstractions

s | Motivations — Why Profiling C++ Abstractions is Painful

Kokkos makes heavy use of C++ templates/meta-templates to deliver its
abstractions

> Permits extremely complex optimization paths within the implementation
> Allows us to remove significant amount of code during compilation

> Speeds up the final executable
> Reduces code size (which is significant for large binaries developed at Sandia)

But templating causes some real headaches...
> Complex compilation paths, lots of header/function expansions

> (Extremely) long function names, these have been recorded at >8kB for a single
function name

> Breaks expectations of debugging and profiling tools that routinely get used in our
HPC ecosystem

> Longer compile times / larger binaries

9

Example...

See templates appearing in naming for Kokkos functions
> In some cases this is just use of the final backends (e.g. OpenMP, CUDA etc)

o Other cases, includes use of constants, types etc which are used to decide how to
compile the programming model for different devices

> Confusing for programmer, unable to relate properly to code, loops etc

- S| %] Q] [

D LAMMPS NS::NeighborKokkosE xec ute<Kokkos: -OpenMP>
P Kokkos: : impl — — . - —— \
ELRAMMPS NS PairComputeFunctor< LAMMPS NS.::PairlJCutKokkos<Kokkos: :OpenMP>, (int)1, (bool) 0.79

D LAMMPS NS FixNVEKokkos< KORRDS OpEnmIPS » ——e —
D LAMMPS NS::AtomNeighbors 0.431s|
D Kokkos: : Impl: -OpenMPexec leamMember 0.344s|

P Kokkos: :Impl: -OpenMPexec 0.235s|

0 I Gets Worse with Some Tools...

Significant amount of time is attributed to be in unknown object classes, or in
some cases all within a single OpenMP region

> Some tools struggle to handle the C++ lambda conventions used in C++ abstraction
layers for loop bodies

> OpenMP expects pragmas to be directly above loop bodies — not above loop bodies
which call lambdas

> Results in misattributed performance results

Grouping: ‘ Class / Function [/ Call Stack

Class / Function / Call Stack

whlS - NeighborKokkosExecute<Kokkos: :OpenMP=> 25.571s
DKokkos::lmpl pe—— 5

P LAMMPS _NS::PairComputeFunctor<LAMMPS_NS::Pairl|CutKokkos<Kokkos::OpenMP=, (int)1, (bool) 0.794s |

P LAMMPS_NS::FixNVEKokkos<Kokkos::OpenMP= 0.634s]|
DLAMMPS_NS::AtomNeighbors 0.431s|
[>Kokkos::lmpl::OpenMPexec'kamMember 0.344s|
P Kokkos::Impl::OpenMPexec 0.235s]|

I B 30

11 1 OpenMP in Particular...

User Defined Kernels (in
Application)

printf(“Hello from iteration i\n”, i);

3);

Kokkos:parallel_for(16, KOKKOS_LAMBDA(const int i) {

printf(“Hello Again from iteration i\n”, i);

3);

Kokkos:parallel_for(32, KOKKOS_LAMBDA(const int i) {

OpenMP profilers think all the time is in the
same region

#pragma omp pa allel for

for(int kokkosl = 0; kokkosl < N; ++i) {
// call my lambda (kokkosl);

}

Kokkos Runtime/Implementation

N e 482)

Adding Profiling and Debugging
Interfaces to Kokkos

[| = B

3 | Kokkos Code Generation

User Application:

vold mykernel () {

) v

Kokkos: :parallel for (N, KOKKOS LAMBDA (const int i) {
printf ("Hello from i = %i\n",

1)

Goes On Here

Kokkos Runtime:

Backend Code Generation
(i.e. OpenMP, CUDA etc is

really done here) \

In the usual cause of events, these
hooks default to NULL and are not
executed

Kokkos: :parallel for (..) {

CALL PROFILE HOOK START
PARALLEL BODY

CALL PROFILE HOOK END

C++ Compiler Magic

14

Kokkos Profiling Hooks

In the default configurations, profiling hooks are always compiled into
applications

> Means no need to recompile applications to get additional profiling information

> This is a big deal for our applications, usually when we recompile we lose some of the
artifacts we wanted to examine

> Can work without debug information because Kokkos supplies kernel naming

Dynamically load tools into the application at runtime
> Very flexible load mechanism

> Stack tools together — can choose how multiple tools running together interact

Extremely easy to decide what events you want to subscribe to as a tool writer

15

Kokkos Profiling Interface at Runtime

User Application:

vold mykernel () {

C++ Compiler Magic
Goes On Here

Kokkos: :parallel for (N, KOKKOS LAMBDA (const int i) {
printf ("Hello from i = %i\n", 1i);

) v

Kokkos Runtime:

Kokkos: :parallel for (.\l {
CALL PROFILE HOOK START

START KERNEL PROFILER
(e.g. START TIMER)

PARALLEL BODY

END_ KERNEL PROFILER

(e.g. END_TIMER)

CALL PROFILE HOOK END

Dynamically loaded/linked at runtime

16 | Kokkos Profiling Interface for Vendor Tools

User Application:

void mykernel () {

Kokkos: :parallel for (N, KOKKOS LAMBDA (const int i) {
printf ("Hello from i = %i\n", 1i);

) v

}

e.g. VTune, NSight Kokkos Runtime:

C++ Compiler Magic
Goes On Here

Kokkos: :parallel for (.?ﬂ {
Vendor Hook Start START KERNEL PROFILER —
(e.g. START TIMER)

CALL PROFILE HOOK START
END_ KERNEL PROFILER .
(e.g. END_TIMER) § 7 |

PARALLEL BODY

Vendor Hook End

CALL PROFILE HOOK END

Dynamically loaded/linked at runtime

N e 482)

17

Example using Kokkos Connectors

Using the KokkosP-VTune Connector we can annotate parallel execution regions,
code segments (“regions”), tasks etc

> Enhance output with kernel pattern types (e.g. parallel-for, reduce, scan etc)
> Provide user-defined kernel naming

> Enhance timeline output (specific kernel naming in timeline)

o Significantly improved user experience and much faster for analysis

Grouping: ‘ Frame Domain / Frame / Function / Call Stack

CPU Timew

Frame Domain / Frame /
Function / Call St

...

0.798s 0s 0.000s
0.010s 0.001s -0.00...

P [No frame domain - Outsidez 0.204s| v FISUTUUTIS O 005s 0.022s 0s 0s 0s |2
[>ParalIelFor.N6Kokkos4ImpI20 0.636s]| 0.271s Os 0.000s 0.027s Os Os Os
DParalIelFor.NGKokkos4ImpI20 0.016s| 0.260s Os Os 0.602s Os Os Os

P ParallelFor.NVE::final 0.509s] 0.107s Os Os 0.002s Os Os Os

s I More Than Parallel Kernels

In more recent versions of Kokkos we have added extra support (no longer just
parallel kernel dispatch):

> User Defined Regions (stack-like behavior, push/pop), mainly for entry/exit into/out of
libraries

> User Defined Sections (arbitrary start/stop calls, gives unstructured tracking of code
bodies)

> Tracking of Kokkos allocated data structures (Kokkos malloc, Views, Containers)

Ability to track data structures has been particularly useful for tracking memory
consumption prior/after kernel execution

> Useful for memory leaks in parallel programs

> Tracking data copying into/out of accelerators

> Understanding behavior of hardware assistance, e.g. NVLINK data movements
> Opens up additional tool connectivity (e.g. Intel Inspector, custom Valgrind..)

19 Kokkos Tools Suite http://github.com/kokkos/kokkos-tools
i

Kokkos also has its own suite of
lightweight tools which work across
our supported platforms
> Not every platform we target Kokkos to :
has great performance tools P —

> Still want to provide a capability that has B nes
the same feel across environments

Important to demonstrate some of our
concepts to third parties and provide
basic guarantees to programmers
across machines

20 | Examples In Action ... Data Structure Tracking

Data Structure Tracking

> Get allocation addresses

> Allocation sizes (bytes)

> Where data gets allocated
° Host?
> Device? Which Device?

> User supplies name for
allocation/View

Allows us to develop data
structure life time views

> Compare across MPI ranks

Time

0.002958
0.004280
0.005055
2.008489
.009254
.017489
.638244
.832563
.832609
.833970
.154044
.154236
.154358
.155568
.178790
.178849
.179045
.217818
.218140
.218422
.220563
.223459
.223489

2
2
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5

Ptr
Ox7f5c9dd030a0
0x7f5c9d46d0a0d
Ox7f5c9cbd70a0
0x2c60470
Ox7f5c40b0f0a0d
Ox715¢327c50a0
Ox7f5c7f76a0a0
0x373b0do
Ox7f5c7c72e0a0d
Ox7f5c6a422000
0x3al2edd
0x3b25970
0x3c38410
0x44cd4b0
Ox4fa7bf0O
0x4fbad10
0x5166bb0
0x4646140
0x4669520
0x468bb00d
0x479e5a0
0x4903620
0x490690

Size
8998912
8998912
8998912
4499464

119164000
238328000
8998912
562440

14609056

29218112
1124864
1124864
8998912
1124864

70312
1755904
3511808

140608
140608
1124864
140608
8792
202616

MemSpace

User Supplied
Allocation Names

Op

Allocate
Allocate
Allocate
Allocate
Allocate
Allocate
Allocate
Allocate
Allocate
Allocate
Allocate
Allocate
Allocate
Allocate
Allocate
Allocate
Allocate
Allocate
Allocate
Allocate
Allocate
Allocate
Allocate

Name

Vector

Vector

Vector
MatrixRowOffsets
MatrixLocalIndicies
MatrixValues
no-label
MatrixRowOffsets
MatrixLocalIndicies
MatrixValues

Vector

Vector

Vector

no-label
MatrixRowOffsets
MatrixLocalIndicies
MatrixValues

Vector

Vector

Vector

no-label
MatrixRowOffsets
MatrixLocalIndicies

21 I Examples In Action ... Kernel Breakdown

Track timing and call counts for each kernel
> Reporting using user-supplied kernel names

> Analyze how much time is spent inside/outside of Kokkos

> Regions, Sections, Kernels

Reference: ComputeSPMV (Region)

Main: Validation Testing Phase (Region)
Main: Reference SpMV+MG (Region)
Optimized: ComputeDotProduct (Region)
Optimized: ComputeWAXPBY (Region)
Reference: ComputeDotProduct (Region)
Main: Reference CG::OptimizeProblem (Region)
Reference: ComputeWAXPBY (Region)

Main: Clean up (Region)

Main: Report Results (Region)

Main: TestNorms (Region)

N11KokkosGraph19GraphColoringHandleIKiS1_S1_N6Kokkos60penMPENS2_9HostSpaceES4_E16ReduceMaxFunctorE (ParRed)
KokkosKernels: :Impl: :StridedCopy (ParFor)

Total Execution Time (incl. Kokkos + Non-Kokkos: 34.66302 seconds

Total Time in Kokkos kernels: 11.62839 seconds
-> Time outside Kokkos kernels: 23.03464 seconds
-> Percentage in Kokkos kernels: 33.55 %

Total Calls to Kokkos Kernels: 31732

0.83942
0.73603
0.31914
0.09877
0.08671
0.04568
0.03189
0.03050
0.01020
0.00265
0.00000

0.00409
0.73603
0.31914
0.00021
0.00019
0.00030
0.03189
0.00020
0.01020
0.00265
0.00000

[SECSIS RIS I N B e I N

r
s 4 ’
. 3
o4 3 ‘.v
3 ——
- v & N
o — L
. I s s — o 29 .
nt i o
p Lk » 1 1 x
.
. : i

<L Croenetal)

Conclusions and Discussion

i

3 | Conclusions

Kokkos is our vision for a future parallel-enabled C++

> We recognize this is part of the future of HPC, needs to integrate into the broader
community and work with other ideas (RAJA, Thrust, Agency, C++-AMP, etc)

Use of heavily templated C++ and some targets make this particularly difficult to
profile and debug

> Templating interferes with traditional tool expectations
> Reduces insight for application developers at a time when they need more information

Bringing a unified collection of tool APIs and interfaces to our programming
model and runtime

> Provide the same user experience across platforms

24 | Where We Want to Use This Every Day...

pe—

User Test/Benchmark:
void mykernel () {
C++ Compiler Magic
-8 Goes On Here
- Kokkos: :parallel for (N, KOKKOS LAMBDA (const int i) ({ o
= printf ("Hello from i = %i\n", 1i);
T }) i
L,
}
— Kokkos Runtime: :
START KERNEL PROFILER Kokkos: :parallel for (.\l {
SLi PARALLEL BODY

END_ KERNEL PROFILER
(e.g. END_TIMER) ,

Dynamically loaded/linked at runtime

CALL PROFILE HOOK END
Site-Wide Database

25

(&)

Sandia
National
Laboratories

