
Profiling and Debugging for the
Kokkos Programming Model

.7%

lir• ' ,..44, : •

PRESENTED BY

Si Hammond (sdhammo@sandia.gov)

.

Collaborators: Christian Trott, Dan Ibanez, Dan Sunderland, Nathan Ellingwood and
Carter Edwards

NeSdll

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology a Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell

International Inc., for the U.S. Department of
Energy's National Nuclear Security

Administration under contract DE-NA0003525.

Ima•es courtes of Sandia ational Laboratories and Oak Ridge National Laboratory

SAND2018-7004C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

2 Introduction

Want to talk about how we are trying to bring uniform tools APIs and user
experiences across our diverse platforms

Quick overview of the Kokkos C++ Programming Model

Our vision for a future "parallel" C++ standard

What are the problems with this approach in the tools environment?

How can we solve that and make this easier/more uniform

How can you use these interfaces today to help make better parallel programs?

4 Overview of Kokkos

Trilinos Sierra

-a

0 0

Er&

1111111
11111 11111

DDR

Multi-Core Many-Core APU CPU + GPU

9 r

5 Kokkos Programming Model http://github.com/kokkos/kokkos

Separating of Concerns for Future Systems...

OM Data Structures

1 Meforiativardiredilill

- Multiple-Levels
- Logical Space (think UVM vs explicit)

- Architecture dependent index-maps
- Also needed for subviews

- Access Intent: Stream, Random, ...
- Access Behavior: Atomic
- Enables special load paths: i.e. texture

1
Parallel Execution

i Execution Spaces ("Where") di

- N-Level
- Support Heterogeneous Execution

...
xecution Patterns "How'

- parallel_for/reduce/scan, task
spawn

- Enable nesting

Execution Policie

- Range, Team, Task-Dag
- Dynamic / Static Scheduling
- Support non-persistent scratch-pads

6 Discussion

Kokkos is our vision for what future language based standards might want to
expose

Longer term plan is for Kokkos features to be in C++ standard

Essentially pieces of Kokkos go away over time as the standard assumes more of a role I
in delivering these to programs

We want to give users the same experience across platforms/hardware
A unified programming model

Similar compilation and software build environments

Spend a lot of time thinking about how to make this easier, correct flags etc

Now we also want to have a unified tools and support environment

1

Experiences Profiling and
Debugging when using C++
Parallelism Abstractions

8 Motivations — Why Profiling C++ Abstractions is Painful

Kokkos makes heavy use of C++ templates/meta-templates to deliver its
abstractions

Permits extremely complex optimization paths within the implementation
Allows us to remove significant amount of code during compilation
Speeds up the final executable
Reduces code size (which is significant for large binaries developed at Sandia)

But templating causes some real headaches...
Complex compilation paths, lots of header/function expansions
(Extremely) long function names, these have been recorded at >8kB for a single
function name
Breaks expectations of debugging and profiling tools that routinely get used in our
H PC ecosystem
Longer compile times / larger binaries

9 I Example...

See templates appearing in naming for Kokkos functions
In some cases this is just use of the final backends (e.g. OpenMP, CUDA etc)

Other cases, includes use of constants, types etc which are used to decide how to
compile the programming model for different devices

Confusing for programmer, unable to relate properly to code, loops etc

)s Us
LAMMPS_NS..NeighborKokkosE xec ute<Kokkos, OpenMP>

Kokkos :Imp)

25 571s

PairComputeFunctor<LAMMPS NS PmrtKutKokkos<Kokkos :OpenMP>. (mtg. (bool) 0 7

t>LAMMPS NS..RxN os<

1> LAM MPS _N S. AtomNeig hbors

1>Kokkosz:Imp1::OpenMPe_xecieamMembef

kokkos • Impl: OpenMPexec

0.431s

0 34451

0 235s I

Time by Utilization

111 Ideal Over In I

1 0 Gets Worse with Some Tools...

Significant amount of time is attributed to be in unknown object classes, or in
some cases all within a single OpenMP region
Some tools struggle to handle the C++ lambda conventions used in C++ abstraction
layers for loop bodies

OpenMP expects pragmas to be directly above loop bodies — not above loop bodies
which call lambdas

Results in misattributed performance results

Grouping: Class/ Function / Call Stack WA' j

► Not part of a
, •

Class / Function / Call Stack

S• • Nei hborKokkosExecute<Kokkos::OpenMP>

Kokkos::Impl

LAMMPS_NS::PairComputeFunctor<LAMMPS_NS: : PaiNCutKokkos<Kokkos::OpenMP>, (int)1, (boon

LAMMPS_NS::FixNVEKokkos<Kokkos::OpenMP>

I> LAMMPS_NS::AtomNeighbors

Kokkos::Impl::OpenMPexecTeamMember

Kokkos::Impl::OpenMPexec

 -11111111111111111111111111

I .4m

Effective Time by Utilization

g ime • 11:11:71-WCFR-WT 10161 Iril

F .
25.571s

o'l17S197111111111111
0.794s1

0.634s1

0.431s1

0.344s1

0.235s1

11 OpenMP in Particular... User Defined Kernels (in
Application)

Kokkos:parallel_for(16, KOKKOS_LAMBDA(const int i) {
printf("Hello from iteration i\n", i);

});

•••

Kokkos:parallel_for(32, KOKKOS_LAMBDA(const int i) [
printf("Hello Again from iteration i\n", i); <

});

/OpenMP profilers think all the time is in the
same region

#pragma omp parallel fori
for(int kokkosl = 0; kokkosl < N; ++i) {

// call my lambda (kokkos1),
}

Kokkos Runtime/Implementation

Adding Profiling and Debugging
Interfaces to Kokkos

13 Kokkos Code Generation

User Application:

void mykernel() {

Kokkos::parallel_for (N, KOKKOS LAMBDA (const int i) {

printf ("Hello from i = %i\n", i);

});

}

Backend Code Generation
(i.e. OpenMP, CUDA etc is
really done here)

In the usual cause of events, these
hooks default to NULL and are not
executed

Kokkos Runtime:

[

Kokkos::parallel_for (..) {

CALL_PROFILE_HOOK_START

PARALLEL BODY

CALL_PROFILE_HOOK_END

}

C++ Compiler Magic
Goes On Here

1
1

I
1

14 Kokkos Profiling Hooks

In the default configurations, profiling hooks are always compiled into
applications

Means no need to recompile applications to get additional profiling information

This is a big deal for our applications, usually when we recompile we lose some of the
artifacts we wanted to examine

Can work without debug information because Kokkos supplies kernel naming

Dynamically load tools into the application at runtime
Very flexible load mechanism

Stack tools together — can choose how multiple tools running together interact

Extremely easy to decide what events you want to subscribe to as a tool writer

START KERNEL PROFILER
(e.g. START 'TIMER)

15 Kokkos Profiling Interface at Runtime

User Application:

void mykernel() {

Kokkos::parallel_for (N, KOKKOS LAMBDA (const int i)

printf ("Hello from i = %i\n", i);

1);

}

{ [
C++ Compiler Magic
Goes On Here

II CALL_PROFILE_HOOK_START

Kokkos::parallel_for (. {
 :///

Kokkos Runtime:

END KERNEL PROFILER
(e.g. END TIMER)

PARALLEL BODY

CALL_PROFILE_HOOK_ND

}

Dynamically loaded/linked at runtime

16 Kokkos Profiling Interface for Vendor Tools

User Application:

void mykernel() {

Kokkos::parallel_for (N, KOKKOS LAMBDA (const int i)

printf ("Hello from i = %i\n", i);

1);

}

{ [

e.g. VTune, NSight

Vendor Hook Start

Vendor Hook End

START KERNEL PROFILER

(e.g. START TIMER)

C++ Compiler Magic
Goes On Here

Kokkos Runtime:

Kokkos : :parallel_for (.
:///

CALL_PROFILE_HOOK_START

END KERNEL PROFILER

(e.g. END TIMER)

PARALLEL BODY

CALL_PROFILE_HOOK_END

}

Dynamically loaded/linked at runtime

1 7 Example using Kokkos Connectors

Using the KokkosP-VTune Connector we can annotate parallel execution regions,
code segments ("regions"), tasks etc

Enhance output with kernel pattern types (e.g. parallel-for, reduce, scan etc)

Provide user-defined kernel naming

Enhance timeline output (specific kernel naming in timeline)

Significantly improved user experience and much faster for analysis

Grouping: Frame Domain / Frame / Function / Call Stack

Frame Domain / Frarne /
Function / Call S

ParallelReduce.PairForce

arallelForNEigh::Build

I> Paralle

r> [No frame domain - Outside

1>ParallelFor.N6Kokkos4lmpl20

I> ParallelFor.N6Kokkos4lmpl20

ParallelFor.NVE::final

ii*ectifetrirrirwia.".~

Imbalanc...

CPU

Lock

0.001s

I I

Tine..

Overhead Time

...

Os

Os

Os

Os

Os

Other

Os

0.000s

-0.00 ...

I I s

0.000s

Os

Os

Idle II PC,124 0 L:k • Ideal 0 Cver Creation (OpenMP)

s

Os

Os

Os

Os

Os

Os

Os

Os

Os

 .142.9

0.798s

O.OlOs

I

0.271s

0.260s

0.107s

0.011s

35.089s 1 0.004s

22.546s116, 1 0.000'

0.022s0.204s

0.636s l 0.027s

0.01651 0.602s

0.50951 0.002s

Os

Os

Os

Os

Os

18 More Than Parallel Kernels

In more recent versions of Kokkos we have added extra support (no longer just
parallel kernel dispatch):

User Defined Regions (stack-like behavior, push/pop), mainly for entry/exit into/out of
libraries
User Defined Sections (arbitrary start/stop calls, gives unstructured tracking of code
bodies)
Tracking of Kokkos allocated data structures (Kokkos malloc, Views, Containers)

Ability to track data structures has been particularly useful for tracking memory
consumption prior/after kernel execution

Useful for memory leaks in parallel programs
Tracking data copying into/out of accelerators
Understanding behavior of hardware assistance, e.g. NVLINK data movements
Opens up additional tool connectivity (e.g. Intel Inspector, custom Valgrind..)

19 Kokkos Tools Suite

Kokkos also has its own suite of
lightweight tools which work across
our supported platforms

Not every platform we target Kokkos to
has great performance tools

Still want to provide a capability that has
the same feel across environments

Important to demonstrate some of our
concepts to third parties and provide
basic guarantees to programmers
across machines

http://github.com/kokkos/kokkos-tools

N. A

kokkos 1 kokkos-tools

Code icsileC Pun requests 1 1'1 Proyects 0 Wok' trisights

hymen miaow - kokkos-tools src / Wigs /

111 Ilbseed Alwrore version check

kernel-titte(

III kernel-logger

memOry -events

• memory • herrn

memory - hwm

In memory-usage

rvvprof -connector

08 mortal- foc used -connector

1118 simple kernel timer-juin

• simple kernel timer

'p.ce time stack

vtune-connector

Use G• • as default compiler in Make-des, remove binary

Cra

Update to print out regon enter/exit

MemoryiventS update tool

remove unused vatebia

WWI bnport into the Kokkos tools ritpository. This is a public re

MemoryUsage: add tool for just memory usage

NVProf connector update to use Cuda 8 interface for narned

NVPROF- add focused connector

India JS0114 Outrotitting kernel timer ready for dairy benchmark r

Addsng tyPe inforinstion to simple kernel timer

liernowi version check

Use G•• as default compiler in Makefdes, remove binary

20 Examples In Action ... Data Structure Tracking

Data Structure Tracking
Get allocation addresses

Allocation sizes (bytes)

Where data gets allocated

0 Host?

0 Device? Which Device?

User supplies name for
allocation/View

Allows us to develop data
structure life time views
Compare across MPI ranks

User Supplied
Allocation Names

\
Time Ptr Size MemSpace Op Name

0.002958 0x7f5c9dd03000 8998912 Host Allocate Vector
0.004280 0x7f5c9d46d0a0 8998912 Host Allocate Vector

0.005055 Ox7f5c9cbd70a0 8998912 Host Allocate Vector

2.008489 0x2c60470 4499464 Host Allocate MatrixRowOffsets

2.009254 Ox7f5c40b0f0a0 119164000 Host Allocate MatrixLocallndicies
2.017489 0x7f5c327c5000 238328000 Host Allocate MatrixValues
4.638244 0x7f5c7f7600a0 8998912 Host Allocate no-label

4.832563 0x373b0d0 562440 Host Allocate MatrixRowOffsets

4.832609 0x7f5c7c72e0a0 14609056 Host Allocate MatrixLocallndicies

4.833970 0x7f5c6a422000 29218112 Host Allocate MatrixValues
5.154044 Ox3012ed0 1124864 Host Allocate Vector

5.154236 0x3b25970 1124864 Host Allocate Vector

5.154358 0x3c38410 8998912 Host Allocate Vector

5.155568 Ox44cd4b0 1124864 Host Allocate no-label

5.178790 Ox4fa7bf0 70312 Host Allocate MatrixRowOffsets

5.178849 Ox4fba010 1755904 Host Allocate MatrixLocallndicies

5.179045 0x5166bb0 3511808 Host Allocate MatrixValues
5.217818 0x4646f40 140608 Host Allocate Vector
5.218140 0x4669520 140608 Host Allocate Vector
5.218422 0x468bb00 1124864 Host Allocate Vector

5.220563 0x479e5a0 140608 Host Allocate no-label

5.223459 0x4903620 8792 Host Allocate MatrixRowOffsets

5.223489 Ox49069f0 202616 Host Allocate MatrixLocallndicies

21 Examples In Action ... Kernel Breakdown

Track timing and call counts for each kernel
Reporting using user-supplied kernel names

Analyze how much time is spent inside/outside of Kokkos

Regions, Sections, Kernels

Reference: ComputeSPMV (Region) 0.83942 205 0.00409 7.219 2.422
Main: Validation Testing Phase (Region) 0.73603 1 0.73603 6.330 2.123

Main: Reference SpMV+MG (Region) 0.31914 1 0.31914 2.744 0.921

Optimized: ComputeDotProduct (Region) 0.09877 474 0.00021 0.849 0.285
Optimized: ComputeWAXPBY (Region) 0.08671 468 0.00019 0.746 0.250

Reference: ComputeDotProduct (Region) 0.04568 151 0.00030 0.393 0.132

Main: Reference CG::OptimizeProblem (Region) 0.03189 1 0.03189 0.274 0.092

Reference: ComputeWAXPBY (Region) 0.03050 150 0.00020 0.262 0.088

Main: Clean up (Region) 0.01020 1 0.01020 0.088 0.029

Main: Report Results (Region) 0.00265 1 0.00265 0.023 0.008
Main: TestNorms (Region) 0.00000 1 0.00000 0.000 0.000

N11KokkosGraphl9GraphColoringHandleIKiS1_51_N6Kokkos6OpenMPENS2_9HostSpaceES4_El6ReduceMaxFunctorE (ParRed) 0.00013 4 0.00003 0.001 0.000

KokkosKernels::Impl::StridedCopy (ParFor) 0.00002 4 0.00000 0.000 0.000

Summary:

Total Execution Time (incl. Kokkos + Non-Kokkos: 34.66302 seconds

Total Time in Kokkos kernels: 11.62839 seconds
-> Time outside Kokkos kernels: 23.03464 seconds

-> Percentage in Kokkos kernels: 33.55 %

Total Calls to Kokkos Kernels: 31732

23 Conclusions

Kokkos is our vision for a future parallel-enabled C++
We recognize this is part of the future of HPC, needs to integrate into the broader
community and work with other ideas (RAJA, Thrust, Agency, C++-AMP, etc)

Use of heavily templated C++ and some targets make this particularly difficult to
profile and debug
Templating interferes with traditional tool expectations

Reduces insight for application developers at a time when they need more information

Bringing a unified collection of tool APIs and interfaces to our programming
model and runtime

Provide the same user experience across platforms

24 Where We Want to Use This Every Day...
Je

nk
in

s
Jo
b

User Test/Benchmark:

void mykernel() {

}

Kokkos::parallel for (N, KOKKOS LAMBDA (const int i) {
[

i);printf ("Hello from i = %i\n",

}) ;

LDMS

Site-Wide Database

Kokkos Runtime:

START KERNEL PROFILER

(e.g. START TIMER)

END KERNEL PROFILER

(e.g. END TIMER)

C++ Compiler Magic
Goes On Here

</\:/ r /i
Kokkos::parallel_for (. ,

I] CALL_PROFILEHOOKSTART

PARALLEL BODY

iip CALLPROFILE_HOOK_ND

}

1

Dynamically loaded/linked at runtime

