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Turbulence

e DNS: resolve all scales both in time and
space
o Large scale (L)

¢ Kolmogorov small scale (1)

o Using classical scaling (Kolmogorov

1041)
L s
n
where Ry = uld/v is the Reynolds
number

A. F. Maqui and D. A. Donzis (2011)
e Typically very high in applications

o Computational effort (C)

c~F,
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DNS: resolve all scales both in time and
space
o Large scale (L)

¢ Kolmogorov small scale (1)

o Using classical scaling (Kolmogorov
1041)

L /2
n

where Ry = uld/v is the Reynolds
number

Typically very high in applications
Computational effort (C)
c~ R

Parallel computing
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Turbulence

simulations
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Parallel programming

Strong scaling!

T T T T I T

Tasks Time - “x .
L \‘1‘0243 on Kraken (NICS) .
| . 7 | ]
| | ] | 2+ ;; Ideal\“ *
B0 e |
L I I I T td+e 57¢ r
o [ ]
E [ ]
Ideal scaling: N j

Number of processing elements (P) : bt '
Computational effort C~1/P Niamberof FEs

o Communication affects scalability

1S. Jagannathan and D. A. Donzis (XSEDE 2012)
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Exascale

Issues

e Large number of communications
e increase communication time

e likely to be a bottleneck

e Performance variations in processing elements
e potential issues: noise, inadequate cooling

e Synchronizations enforced at multiple levels (communication,
mathematics, etc.)

e system faults
e failure of a PE, Node, etc.

J. Dongarra et al. (IJHPCA 2011)
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Issues

e Large number of communications
e increase communication time

e likely to be a bottleneck

e Performance variations in processing elements
e potential issues: noise, inadequate cooling

e Synchronizations enforced at multiple levels (communic

mathematics, etc.)

e system faults
e failure of a PE, Node, etc.

J. Dongarra et al. (IJHPCA 2011)

will affect
scalability
further

ation,
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|iterature

e Extensive work on iterative algorithms for algebraic systems (D. P.
Bertsekas and J. N. Tsitsiklis 1997, A. Frommer and D. B. Szyld 2000)

e can be used in implicit solvers for BV**! = V" solution at every time step

o still need data synchronization at the end of time step

e Finite difference algorithms restricted to parabolic PDEs (D. Amitai et
al. 1993, 1998)

e use corrections based on Greens function at PE boundaries
e restricted to lower order

e not suitable for fundamental studies
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|iterature

e Extensive work on iterative algorithms for algebraic systems (D. P.
Bertsekas and J. N. Tsitsiklis 1997, A. Frommer and D. B. Szyld 2000)

e can be used in implicit solvers for BV**! = V" solution at every time step

e still need data synchronization at the end of time step

e Finite difference algorithms restricted to parabolic PDEs (D. Amitai et
al. 1993, 1998)

e use corrections based on Greens function at PE boundaries
e restricted to lower order

e not suitable for fundamental studies

Need a new method!
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Finite difference method

Consider the simple 1D heat equation

ou_
or  0x2

FD equation - forward in time and central in space

n+1 n n n n
™ —ul u' . —=2u,+u,
, gL — L Fliganadd)
At Ax
i-1 i i+l @ Interior point

O Physical boundary point

PEO @ PE boundary point
O—0—0 00 0 0 0 C
Communication Vot PE 1 © Buffer point
Synchronization —0—0—0—0—0—0——O

i-1 i i+l
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Asynchronous computing

PEO
O—0—0 o 0 0 06 0 ©

Communication | ? PE1
No synchronization 5—@—@—0—0—0—0—0—O

i-1 i i+l
n

u!! | is the available data at (i—1)th grid point

i1 could be n, (n—1), (n—2), etc. time levels

n+1 n n n 17!
uttt —ul u; . —2u;+u; : :
i i —a i+1 i i 1_*_(”,\!-,“\\,.1

At Ax?

Interior points used in computations are at nth level

Buffer points are at 7= n—k th level

What are the properties of such a scheme?
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Parameters

Numerical properties depend on
e Grid resolution (N)

Stencil size (S)

Number of PE (P)

Number of delay levels (L)

Probability of level k (px)
e Communication performance: Network latency, bandwidth; message
characteristics; MPI implementation; ETC.

7i=n—k is a random variable at PE boundaries

Example: L=2, k=101
If po=0.6, then
p1=1-po=0.4
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Results

e Linear advection-diffusion equation

e Time evolution of solution and error

3
x 10
L 8 T
/ /\
B -\
10 ’\‘\\\
3 Tt o L -
time /W 4
1 bl
1 L
4 ‘\‘
”,’ L S
’,I ‘\\ —| 3
ll, ‘\‘ |
1 \
$ynchrono‘u\s‘\ S
" b '
! it 1]
VI 1 ALY -4 -
LIy T v
Y \‘\\;J
\‘/
| ) 8 | | |
4 6 0 2 4 6
X X
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Results

e Linear advection-diffusion equation

e Time evolution of solution and error

Parameters: P=4, L=2, p;=1{0.0,1.0}
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Accuracy

T L T T T

T
L

Ll

Error
=

URERLIL B R RLL B R

IR MR

po=1.0 ~

—_
(=]
T

Ll

L | | L TR

10° 10°

Grid resolution N

_
O—

1K. Aditya and D. A. Donzis (SC 2012), 2D. A. Donzis and K. Aditya (JCP 2014)
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Accuracy

107

3

Error

107

107"

107

UNLLLLLLL B AL I B AL

T T T

il

\l \IIHIH‘ 1L Ll

/

10

e Solution is stable
e Accuracy drops to first order with asynchrony

Grid resolution N

1K. Aditya and D. A. Donzis (SC 2012), 2D. A. Donzis and K. Aditya (JCP 2014)
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Accuracy

e Using Taylor series

n=n
i

B =—Zart AR +B(AR, AxY).

! 2 12
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Accuracy

e Using Taylor series

n=n
u aul//l
El'=-—At+ AP +O(AL%, AxY.
2 12
n=n-1
iy it au At At wi’
EMy = —-—-Ar+ AP —ai— + ail At
2 12 Ax? Ax 2

+O (A3, A, AxXP AT
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Accuracy

e Using Taylor series

n=n u uI/II
El.":—gAt+ 5 AP +O (AP, AxY).
n=n-1
iy it au At At wi’
EMy = —-—-Ar+ AP —ai— + ail At
2 12 Ax2 Ax 2
+O (A3, AP, AXPALT)
i=n-k
~ i Z At akil
EMy = --At+ sz—aku > +akil — - At
2 2 Ax 2

+O (A3, A, AXPALY),

Delay k appears as prefactor, does not affect order with asynchrony
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Accuracy

e Overall error in the domain

__i ==
<BWWZ%.

=1,N

Y B+ Y Bl

iel; ielp

B =~
"N

Interior points (N;) PE boundary points (Ng)

e When error due to asynchrony dominates, it scales as:

= = I
~ k— ~ kPA
(E) CN 24
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Accuracy

e Overall error in the domain

__i ==
<E>—Ni2 E.

=1,N

B Y F

iEI] iE[B

B =~
"N

Interior points (N;) PE boundary points (Ng)

When error due to asynchrony dominates, it scales as:

= ==l =
~ k— ~ kPA
(E) CN 24

Strong scaling: (E) ~ G (Ax)

Weak scaling (E) ~0(1)

Independent of accuracy of original scheme: drastic effect of asynchrony
Validation of this theoretical framework: Donzis and Aditya (JCP 2014)
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Accuracy

e Results from fourth order accurate simulations

10° T — T3
N ———
~ 0 ;
g OF po=0.0
= 4L =0.3 -
107 E po E
§ ]0_5; po=0.6 ;
5 po=1.0
10°F -4 Tz
107k X E
]0-8_||||I ! L L

—_

T
—
(=)

Grid resolution N

s =P =
(E) ~ k— ~ kPAx
N
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Asynchrony-tolerant schemes

Stencil structure:

PE 0 PE 1
n |
Synchronous © o o —© ®
i-2 i-1 i it it+2
I
Asynchronous *—o 0 O n-k Poor accuracy
I
1
I
AT: space o—© Y TR WO o, T n-k Larger message
: size
1
AT: time .—’—'} @I n-k Increase memory

requirement
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Asynchrony-tolerant schemes

Time: Runge-Kutta second order, space: fourth order AT scheme

u

1
= = 3 [(k+1)(k+2)(—uf‘ + 167k - 300 + 160t | —ull )
~ktke+ 2-ul T 16 - s0ul w160l | —ulh )
n— k 2 n— k 2
+k(k+1)(— u;~ +16u ,30,4 +16u1+1*u1+2)
10—
107 4
. b -4 1 K. Aditya and D. A. Donzis
ﬁ:% 10°F 5 =00 4 (JCP 2017)
i po=0.3 ]
107k po=0.6 .
g po = 1.0 ]
_87 | )
10 e e O
10' 10° 10°
N

N =
(By ~ PAX™ Y ki

m=1
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Reacting flows

e Simulation of 1D premixed auto-ignition
e Fourth order central difference and asynchrony-tolerant schemes

Accuracy of velocity Energy spectrum

10°

101

10° i Synchronous
10605 " Asynchronous
10 10 10°
10° 10’ 10° 10°
K
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Asynchronous algorithm

Consider for example:

u .
Fr v
(1) (w5 - 20+ )

nkl nkl n—k-1
—k( —2u, S, tu, )]

2u 2+ul+1

What is it required to implement such a scheme efficiently?

e Communication: non-blocking, synchronization only when k> L
e Store data from multiple time levels
¢ Knowledge of time level (k) of each message

o Atomicity while accessing values

One-sided remote memory access (RMA) communications
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Asynchronous communications

Task 0 Task 1
wary | [ [ [ [ [B[® slels[s| [ ||
Expose Brecy
as a window (MPIl_Win)
Brecu

o Atomicity of data is critical
K. Aditya, D. A. Donzis and T. Hoefler (SC 2013)
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Asynchronous communications

Task 0 Task 1
v (TTI 1 Tee] [ele[sls[ TT]
B /,’/,’,
/)
Expose Brecy =

as a window (MPI_Win) ~" MPI_Accumulate

=

Brecu

o Atomicity of data is critical
K. Aditya, D. A. Donzis and T. Hoefler (SC 2013)
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Asynchronous algorithm

1. Initialize
2. Synchronous time loop to populate Byecy
a. Compute U?“ =f(U"),iel

b. Communication updated values
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Asynchronous algorithm

1. Initialize
2. Synchronous time loop to populate Byecy
a. Compute U?“ =f(U"),iel
b. Communication updated values
3. Index values in Brecy and create Bicpg
4. Asynchronous time loop
a. Compute U =f(U"),iel;
b. Check communication status
c. Synchronize if delays k> L
d. Compute UP* = f(U", U™k, unF1) e Iy

e. Initiate communication of updated values
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k distribution: Hopper-MP|

0.25 \ T T
k=0 : synchronous value
k>0 : delayed
0.21- k<0 : value from future B
0.151-
=
w 0.1F
0.05-
0 N/bawﬁ%\

N=128, P=8, L=20
Averaged over 10 runs
Mean: 9.6

Standard deviation: 5.4
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k distribution: Hopper-foMP]

0.7

0.5

0.4
— 03

0.2~

e Mean: 0.9
e Standard deviation: 1.9

e MPI implementation affects performance

foMPI implementation: R. Gerstenberg et al. (SC 2013)

I

k=0 : synchronous value
0.6~ k>0: delayed
k<0 : value from future

20
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Strong scaling

ideal scaling
~ 10k 2 Synchronous 4
E C Asynchronous ]
o i T ]
2 ~_ i
(2] \\
(] Ve -
= >
— Y
10°F a8 o
L . L] ]
10' 10°

Number of PEs
e Burgers' equations, N=32K, L=20
e Nearly ideal scaling with asynchronous computing
K. Aditya, D. A. Donzis and T. Hoefler (SC 2013) 2427



Strong scaling

- TS — PS -+ WS

)
E
© 10°4
£
=
S
5
3
x
()
264ms G
1021 163ms
27 216 512 1000

number of processes

e Traditional synchronous (TS)
e Pyramid synchronous (PS) - over decompose domain
e Weakly synchronous (WS) - asynchronous method

K. Aditya et al. (manuscript under preparation)
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Conclusions

o Asynchronous computing: viable approach to solve PDEs accurately at
extreme scales

e Developed theoretical framework: (E) ~ ﬁAx“Zf/;:”/mI}’"
e Combine numerical as well as machine-specific architectural aspects
o Understand effects of asynchrony
e Devise new schemes which are tolerant to asynchrony

e Developed algorithm that has the potential to eliminate virtually all
communication overheads at Exascale by eliminating forced
synchronizations and overlapping communication and computation

Future work:
e Perform 3D reacting flow direct numerical simulations

e Couple the method with asynchronous runtime models
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