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Turbulence

A. F. Maqui and D. A. Donzis (2011)

• DNS: resolve all scales both in time and
space
• Large scale (L)

• Kolmogorov small scale (77)

• Using classical scaling (Kolmogorov
1941)

L_ nD312
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where RA, = uAlv is the Reynolds
number

• Typically very high in applications

• Computational effort (C)
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C — RI,
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Turbulence simulations
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Parallel programming

Tasks Time

t
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!deal scaling:

Number of processing elements (P)

Computational effort C-1/P

• Communication affects scalability

1S. Jagannathan and D. A. Donzis (XSEDE 2012)
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Exasca le

Issues

• Large number of communications
• increase communication time

• likely to be a bottleneck

• Performance variations in processing elements
• potential issues: noise, inadequate cooling

• Synchronizations enforced at multiple levels (communication,
mathematics, etc.)

• system faults
• failure of a PE, Node, etc.

J. Dongarra et al. (IJHPCA 2011)
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Literature

• Extensive work on iterative algorithms for algebraic systems (D. P.
Bertsekas and J. N. Tsitsiklis 1997, A. Frommer and D. B. Szyld 2000)
• can be used in implicit solvers for Blr'l = lin solution at every time step

• still need data synchronization at the end of time step

• Finite difference algorithms restricted to parabolic PDEs (D. Amitai et
al. 1993, 1998)
• use corrections based on Greens function at PE boundaries

• restricted to lower order

• not suitable for fundamental studies
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• restricted to lower order
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Finite difference method

Consider the simple 1D heat equation

du 02u

dt
= a 

dx2

FD equation - forward in time and central in space

un+l 
— 

n
• • 

= 
— +1+1 1-1 + eY(At,Ax2)  a

At Ax2

PE 0
0 • • • • • • • 0

Communication t PE 1
Synchronization @ • • • • • • • O

i-1 i i+1
n

• Interior point

O Physical boundary point

• PE boundary point

e Buffer point
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Asynchronous computing

PE 0

0 • • • • • • • 0
Communication I, t PE 1

No synchronization O • • • • • • • 0
1-1 i i+1

• un. 1 is the available data at (i— 1)th grid point/- 
• h could be n, (n-1), (n— 2), etc. time levels

u12±1 — 111.1 u':' — 2 111:1 + un ,

At
1 1+1= a  I 

Ax2 
' + 0 (At? , AA

• Interior points used in computations are at nth level

• Buffer points are at n— k th level

• What are the properties of such a scheme?



Para meters
Numerical properties depend on

• Grid resolution (N)

• Stencil size (S)

• Number of PE (P)

• Number of delay levels (L)

• Probability of level k (pk)
• Communication performance: Network latency, bandwidth; message

characteristics; MPI implementation; ETC.

n—k is a random variable at PE boundaries

Example: L= 2, k= {OM
If Po = 0.6, then

P1=1 — Po = 0.4
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Resu lts

• Linear advection-diffusion equation

• Time evolution of solution and error
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Results

• Linear advection-diffusion equation

• Time evolution of solution and error
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Accuracy

101 102
Grid resolution N

1o3

1 K. Aditya and D. A. Donzis (SC 2012), 2D. A. Donzis and K. Aditya (JCP 2014)
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Accu racy
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• Solution is stable
• Accuracy drops to first order with asynchrony

1K. Aditya and D. A. Donzis (SC 2012), 2D. A. Donzis and K. Aditya (JCP 2014)
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Accuracy
• Using Taylor series

= n
Et a u"" 2 4En = — t + 

12 
6..r-Fe(6.F,Ax ).

13/27



Accuracy
• Using Taylor series

= n

= n - 1

Et a u"" .2 4Ei = — A t + 
12 

Ax-+O(AF,Ax ).

a tem Ax2 ait At +ait,At air At
Enli = --

2
At+ 

12 Ax2 Ax 2

+C(Ax3,At2,AxPAtq)

13 / 27



Accuracy
• Using Taylor series
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Delay k appears as prefactor, does not affect order with asynchrony
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Accu racy
• Overall error in the domain

1
(E) = -

N i=1,N

1

(E) =

- 
IL E7 +

Interior points (Nr) PE boundary points (NB)

• When error due to asynchrony dominates, it scales as:

E)— ic—P( 
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Accuracy
• Overall error in the domain

1
(E) = —

N i=1,N

1
(E) 

— 
= IL E7 + LEH

LEIj iEIB

Interior points (NI) PE boundary points (NB)

• When error due to asynchrony dominates, it scales as:

(E) kP,Ax

• Strong scaling: (E) (Ax)

• Weak scaling (E) —0(1)

• Independent of accuracy of original scheme: drastic effect of asynchrony

• Validation of this theoretical framework: Donzis and Aditya (JCP 2014)
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Accu racy
• Results from fourth order accurate simulations
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Asynchrony-tolerant schemes
Stencil structure:

Synchronous

PE 0
n

PE 1

•
i-2 i-I i i+1

• n
i+2

Asynchronous 41-411-9  0 0 n-k Poor accuracy

AT: space 41-10---410--.- 0   0 0 n_k- Larger message
size

AT: time 0-0-41•  : 0 0 4 Increase memory

:  0 0 n-k-I requirement
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Asynchrony-tolerant schemes
Time: Runge-Kutta second order, space: fourth order AT scheme
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Reacting flows

• Simulation of 1D premixed auto-ignition

• Fourth order central difference and asynchrony-tolerant schemes
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Asynchronous algorithm
Consider for example:

a2 u
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What is it required to implement such a scheme efficiently?

• Communication: non-blocking, synchronization only when k> L

• Store data from multiple time levels

• Knowledge of time level (k) of each message

• Atomicity while accessing values

One-sided remote memory access (RMA) communications
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Asynchronous communications

u array

Task 0 Task 1

B B

Expose Brecv
as a window (MPI Win)

B B

Brecv

• Atomicity of data is critical

K. Aditya, D. A. Donzis and T. Hoefler (SC 2013)

B B S S

B B
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Brecv

• Atomicity of data is critical

K. Aditya, D. A. Donzis and T. Hoefler (SC 2013)

1:10111EIMEN
1:11:1

in MPI Accumulate
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Asynchronous algorithm

1. lnitialize

2. Synchronous time loop to populate R—recv

a. Compute Uri = f(1.179,ic I

b. Communication updated values
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Asynchronous algorithm

1. Initialize

2. Synchronous time loop to populate R-recv

a. Compute Url = f(111,ic

b. Communication updated values

3. Index values in Brec, and create Bichg

4. Asynchronous time loop

a. Compute Uri = f(111,ic

b. Check communication status

c. Synchronize if delays k > L
+1 = f (Er un-ic un-ic-i), E _TBd. Compute U7

e. Initiate communication of updated values
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k distribution: Hopper-IVPI
1 1 1

k=0 : synchronous value
k>0 : delayed
k<0 : value from future

k
• N = 128, P = 8, L = 20
• Averaged over 10 runs
• Mean: 9.6
• Standard deviation: 5.4
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k distribution: Hopper-foMPI
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• MPI implementation affects performance

20

foMPl implementation: R. Gerstenberg et al. (SC 2013) 23 /27



Strong scaling
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• Burgers' equations, N=32K, L= 20
• Nearly ideal scaling with asynchronous computing

K. Aditya, D. A. Donzis and T. Hoefler (SC 2013) 24 / 27



Strong scaling
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• Traditional synchronous (TS)
• Pyramid synchronous (PS) - over decompose domain
• Weakly synchronous (WS) - asynchronous method

K. Aditya et al. (manuscript under preparation)
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Conclusions

• Asynchronous computing: viable approach to solve PDEs accurately at
extreme scales

_-_-
• Developed theoretical framework: CE)- —P A Xa E3-m=1 ymkrnN

• Combine numerical as well as machine-specific architectural aspects
• Understand effects of asynchrony
• Devise new schemes which are tolerant to asynchrony

• Developed algorithm that has the potential to eliminate virtually all
communication overheads at Exascale by eliminating forced
synchronizations and overlapping communication and computation

Future work:

• Perform 3D reacting flow direct numerical simulations

• Couple the method with asynchronous runtime models
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