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Properties of matter under HED (High Energy Density)

conditions are important to many geophysical problems

■ Planetary science — Jupiter, Saturn, Uranus, Neptune, and

exo planets [e.g. hot Neptunes]

■ Water -2005-2012 (Presented here at Carnegie in May 2010 by

Thomas Mattsson): 2 Phys Rev Lett and 2 Phys Rev B

■ Metallization of hydrogen/deuterium: SCIENCE 2015

Sandia
National
Laboratories

We turn planetary science
■ Planetary science — earths and super-earths quantitative by high fidelity

■ Silicates, Mg0, and iron/iron alloys modeling and high-precision

■ Determining the vaporization threshold for iron — and experiments

implications for planetary formation, Nature Geoscience 2015

■ Materials for Stockpile Stewardship, HED and inertial

confinement fusion (ICF)

■ Investigating the periodic table from Aluminum to Zirconium: a

broad range of materials are of interest - a talk in itself

■ The programmatic work drives precision — we rely on the data!
ICF concepts: laser driven
hohlraum and MagLIF

There are many opportunities for and interest in collaboration!



Sandia's Z Machine is a unique platform for multi-mission

research on high energy density (HED) environments
fr

Pulsed Power Technology

t Magnetically Driven Implosions

t Inertial Confinement Fusion

Dynamic Materials

Sandia
National
Laboratories

111 of State

- 26 MA, T -100-1000 ns

X-ray power > 250 TW

X-ray energy > 2 MJ



Dynamic compression experiments on Z can probe large
regions of a material's equation-of-state surface

Sandia
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Laboratories



lsentropic compression and shock wave experiments
map different regions of phase space
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Understanding the properties of hydrogen is

crucial for understanding giant planets

JUPITER

MI Molecular hydrogen

Metallic hydrogen

SATURN

e4 EARTH

URANUS NEPTUNE

El Hydrogen, helium, methane gas

Mantle (water. ammonia, methane Ices)

Core (rock, Ice)

Sandia
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• Present structure

• Layers of different
composition while fulfilling

observational constraints

• Evolution

• Discrepancies in modeling

the evolution of Jupiter and

Saturn — the "Saturn age

problem"

• Magnetic fields

• Origin of multi-polar fields in

Neptune and Uranus

6



H-He de-mixing appears to be precipitated
at low T and P by metallization in hydrogen

8000

6000

2
=
El
0 40000_
E
0
H

2000

1
6-0 present work

- - - -0 Morales 2009

-saturT\

H melting line

i 1 _I 

1 2 3

Pressure [Mbar]

will.....
....0.0 _

4 5

Sandia
National
Laboratories

7

W. Lorenzen, B. Holst, and R. Redmer, Phys. Rev. B 84, 235109 (2011)



Hydrogen has an intriguing phase-diagram at high
pressure with several unknown boundaries
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R.J. Hemley, High Press Res. 30, 581 (2010)
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Predictions of the liquid-liquid insulator to metal transitio

(L
2
L-IMT) in hydrogen vary considerably
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A shock — ramp experiment on Z traverses the proposed
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Two-step pulse shape enabled by dual Marx triggers provides
the shock-ramp loading of the target
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initial shocked state
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The experimental design allows for multiple diagnostics —
tracking the shock-ramp compression of deuterium

Fiber probes

Sapphireil
window

c)o

LiF
window

Reflective
coating

Sandia

la National
Laboratories

Cathode

Anode
drive plate

Few
hundred

micron gap

Aluminum
front plate

Deuterium
sample



The experimental PT Paths span the important region of the
phay diagram
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The reflectivity is a sensitive diagnostics for metallization
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We have located the LL-IMT in deuterium to be at 300 GPa

2

0.8 IMelt Line
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M.D. Knudson, M.P. Desjarlais, A. Becker, R.W.
Lemke, K.R. Cochrane, M.E. Savage, D.E. Bliss,
T.R. Mattsson, and R. Redmer,
SCIENCE 348 1455, 26 June 2015.
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• Insensitivity to T suggests this

is a p-driven transition

• p at the transition is inferred

to be —2-2.1 g/cc in deuterium

• Qualitatively different

transition than in shock

experiments (T driven)

• Broad team with expertise in

diagnostics, pulse-shaping,

experimental design, and first-

principles simulations

• A project within the Z

Fundamental Science Program

• Professor Ronald Redmer's group
at University of Rostock

15



We expect the H-He demixing region to be shifted to higher pressure — NatiSandia
onal

possibly explaining the Jupiter/Saturn age discrepancy in evolution models Laboratories
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Two recent dynamic experiments
offer new data

Steady shock from flyer plates Laser driven decaying shock

• Root et al. v
Al 6061
Flyer Plate

Mg0
Samples

Opaque
samples

• Measure us, reflectivity and up via

impedance matching

• Longer transit times (-25 ns)

• Large number of shots to different

final pressures (>30)

Sandia
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• McWilliams et al. Science 338, 1330

(2012) A

laser ablator
coating

Interferometer
(532 ran)

Pyrometer
(hroadband)

anti-reflection
coatlng

• Measure us, reflectivity and T as a

function of time

• Potentially map entire Hugoniot in a

single shot

• Must infer up from knowledge of

Hugoniot

• Short time scales (transit through

Mg0 lasts —10 ns)

17



Planets form by a series of impacts — raising challenging

questions on how material responds to strong shocks
Sandia
National
Laboratories



Although impacts come in all speeds and sizes —
we have focused on giant impacts

Dust particles impacting at
fractions of miles per hour

Boulders colliding at a few
miles per hour

City sized planetesimal
collisions

Moon sized giant impacts

Sandia
National
Laboratories



How well do the cores of impactors mix with the
rocky part of the growing Earth?

Sandia
National
Laboratories

■ Geophysicists have shown fluid instabilities CAN NOT sufficiently mix
the incoming iron cores

■ This points to an older core (100 Myr after the solar system formed)



What happens to planetesimal cores during impacts?
Planetary dynamics studies suggest speeds are very high!
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Only the NIF and Sandia Z Facility can reliably study the entire
range of states

• Sandia Z facility can launch flyer plates at 100,000 mph

• We can directly simulate all impact conditions

Sandia Z Facility

Santla
!Mond
laboratories
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Impact Experiments at the Sandia Z Facility

c;\13 NIARc6\e rap ap
,,<\ 'z \\O\

\NN' -1,
toC\_ lexcP ezi,,c\-\. Ni,,- 0.\N

VISAR
Impact Velocity and

Quartz Shock Velocity

4

6
<-.->
3 mm

<-

50 m

Sandia
National
Laboratories



Measuring density on the liquid-vapor dome

i=

Density Lagrangian Position

Sandia
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Using Z to launch an Fe liquid flyer plate
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Using Z to launch an Fe liquid flyer plate
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Reverse Impact Experiment
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Reverse Impact Experiment

Density at 4 60e-08 seconds
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Iron Post-Shock Density Data Constrains Entropy on the

Hugoniot
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• Release Densities(at state B)
Boiling Point Density

2 
200 400 600 800

Peak Shock Pressure [GPa]
(Pressure at state A)

Post-shock densities tie the boiling point to the shock state
Entropy=2240(60) J/kg/K



One of the first determinations of the thermal state of
an opaque material on the Hugoniot
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• Vaporization is significantly

easier than ANEOS suggests-

the most broadly used model

N A project within the Z

Fundamental Science Program
• Stein Jacobsen, Harvard

• Sarah Stewart at UC Davis

• Rick Kraus, LLNL

Impact vaporization of planetesimal cores in the late stages of planet formation, R.G.
Kraus, S. Root, R.W. Lemke, S.T. Stewart, S.B. Jacobsen, and T.R. Mattsson, Nature
Geoscience 2015 DOI: 10.1038/NGE02369



Iron Shock and Release Data
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Iron Shock and Release Data
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Iron Shock and Release Data

• Shock State
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Planetesimals Will Vaporize

at the End Stages of Accretion!
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5 10 15 20 25 30 35 40
impact Velocity [km/s]

>7 km/s ----> Silica vaporize (Kraus et al. 2012)

>13 km/s ----> Iron cores vaporize

N-body simulations from Raymond et al. 2009



New Physical Picture: Bulk Shock Vaporization

Iron Diapirs

Planet surface
Impacting metal core

rt = 0.05

Initial

Jet-like

Transition zone

cx = 0.10
Plurne-like

vs. Shock Vaporization

15 km/s, 45°

0 seconds 100 seconds

What happens to the vapor?
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The Timing of Core Formation on Earth

15 km/s, 45°

0 seconds

(01`) 6,0 (§)
(1,
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N

100 seconds 200 seconds

Planetesimals: Post-Impact

• Physical size: Think iron spherules

• Distribution: Global (e.g. spherule layers on Earth)

• Chemical Equilibration: Significant and Rapid!

Earth's Core Forms Early!
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An invitation: What could you do with a few dynamic material
experiments with us?

■ Z experiments reach very high pressures

■ There is flexibility to reach regions of phase space

of interest

■ Collaborations with academic groups have resulted

in exciting discoveries

■ There are opportunities for collaborations to

generate data to address geophysical questions

■ The Z Fundamental Science Program provides

access to Z and Sandia experimentalists

■ THOR will soon be a an option with lower pressures

but higher availability

■ We are interested in hosting students and in post-

docs

Sandia
National
Laboratories

We turn planetary science
quantitative by high fidelity
modeling and high-precision
experiments



A high throughput megabar-class accelerator is under
construction

• Improved repetition rate allows
systematic study of rate dependent
phenomena

• Phase transitions

• Kinetics of melt and re-freeze under
ramp compression

• Strength, including phase transitions

• We have developed experimental

designs for phase-transition and
strength experiments

• Systematic studies of materials, grain
size and texture for phase-kinetics

and strength

• Targeting late 2017 completion

• Interesting possibility for DCS
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The Z Fundamental Science Program has created
strategic partnerships with leading institutions
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• Resources/shots on Z since 2010

• 50+ dedicated ZFS + 50 ride-
along

• Science with significant impact

• Bailey et al, Nature (2015)

• Kraus et al, Nature Geoscience
(2015)

• Knudson et al, SCIENCE (2015)

• 1 PRL, 3 PoP, 1 PRA, 1 PRB, and
8 other peer-reviewed publications

• Students and postdocs

• 4 M.Sc., 2 Ph.D.

• 5 postdocs

• Workshops most years since 2009

• Call for proposals for CY16 and 17

• Yingwei Fei, Chris Seagle

• Opportunities for collaboration and
access to Z!

• Opportunities for ride-along
experiments also exist



Backups
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National
Laboratories
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Z Fundamental Science Program

Call for proposals in June 2015

Workshop July 19-22, 2015 in
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Pulse Shaping
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We have determined the location of the density-driven
LL-IMT phase transition in hydrogen

• Shock-ramp technique enables experimental
access to the liquid-liquid, insulator-metal
transition (LL-IMT) for hydrogen
• The temperature is set by the initial shock

• Experiments above —250 GPa show clear
evidence of metallization of deuterium

• Very abrupt increase in reflectivity to —40-50%

• Pressure is well above numerous first principles
predictions

• Implications for understanding Jupiter, Saturn,
and thousands of exoplanets

• Insensitivity to T suggests this is a p-driven
transition

• p at the transition is inferred to be —2-2.1 g/cc in
deuterium

• Qualitatively different transition than in shock
experiments (T driven)
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Directly calculate Solid-Melt Boundaries

• For melting boundary use two phase •
coexistence simulations

• Place solid and liquid in contact with •
each other

Sandia
National
Laboratories

Run at different temperatures and
watch phase boundary

Relative heat capacities and enthalpy
of melting determine range of
coexistence
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State of experiments prior to 2012 E

• Diamond anvil cell
measurements of melt

• Diamond anvil cell XRD,
Brillouin spectroscopy etc.

• Gas gun driven Hugoniot
measurements of us(up) and
temperature

• Possibility of shock melting
was unclear
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State of theory prior to 2012

• DFT and QMC predicted
solid-solid phase transition
at r- 570-600 GPa

• Melt curve as a function of
pressure from DFT-MD

• Wide range phase diagram
utilizing ab initio

calculations
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Directly calculate Solid-Melt Boundaries

• For melting boundary use two
phase coexistence simulations

• Place solid and liquid in
contact with each other

• Run at different temperatures
and watch phase boundary

• Relative heat capacities and
enthalpy of melting determine

range of phase coexistence

• Follow work of Belonoshko,
but include quantum

calculations of B2 phase
melting
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Calculation of solid-solid phase boundary

• At low temperatures, harmonic

phonon approximation provides free

energies

• Entropy can be calculated directly

using analogy to finite temperature

quantum harmonic oscillator

• Approximation breaks down for

moderate temperatures

• Effect is strongest in B1 phase

• Switch to thermodynamic integration

using multiple DFT-MD calculations

along each isochore

• Resulting phase boundary finds triple

point between B1, B2 and liquid
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• Excellent agreement at higher
pressures in liquid phase

• Slight discrepancy with
temperature at high pressure
explained by calibration

• Disagreement occurring at
B2 — Melt boundary

• Decreased luminance due to
scattering in two phase
region?

• Extrapolation of us(t) for
nonreflective shocks?

• Metastable liquid observed in
decaying shock front?
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Reflectivity change provides additional
evidence of melt boundary
• McWilliams and Root both measure reflectivity at 532nm as a

consequence of their use of VISAR interferometry

• In each case, the reflectivity disappears for shock speeds less
than -18 km/s

• Explanation due to metal to insulator transition going from
liquid to 62 phase
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Confirm melting hypothesis by calculating
reflectivity using QMD Optical conductivity of solid

• Use Kubo-Greenwood

formulation on snapshots from

the B2 solid and liquid near the

melt boundary

• Kramers-Kronig relation allows

calculation of complex dielectric

function
2 -1(v)co  d v2a (0=  P
71" (1/2 - CO 2 )

• Use of HSE functional provides a

better description of the gap

and the reflectivities agree with

experiment
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New experimental techniques combined with theoretical
tools allow quantitative exploration of an unprecedented
region of phase space for geomaterials

• Accurately measured the Mg0

Hugoniot from 330 GPa to 1160 GPa

• Data starts at pressures and
temperatures that had never been
probed prior to 2012

• Mg0 has a large coexistence region

along the Hugoniot between 62 and

liquid

• Significant to planetary and moon formation

• Shock pressures of —7 Mbar or greater needed

to completely melt cold Mg0

• Vastly expanding the domain of

quantitative understanding for

geomaterials
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Use QMD to assign temperatures to the Sandia
experiment

• No pyrometry is available for the
Root et al data set

• Close agreement with QMD
allows for possibility of using
theoretical temperatures

• Construct T(us) along the
Hugoniot from QMD
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Reverse Impact Experiment to Measure Flyer Density

Liquid Quartz
Flyer Window

VISAR
Quartz Shock Velocity

Sandia
National
Laboratories

Experiment
Simulation
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Impedance Matching to Obtain Density


