

Investment Optimization to Improve Power System Resilience

Brian J. Pierre
Sandia National Laboratories

PMAPS June 22-24, 2018
Boise, ID, USA

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Project team

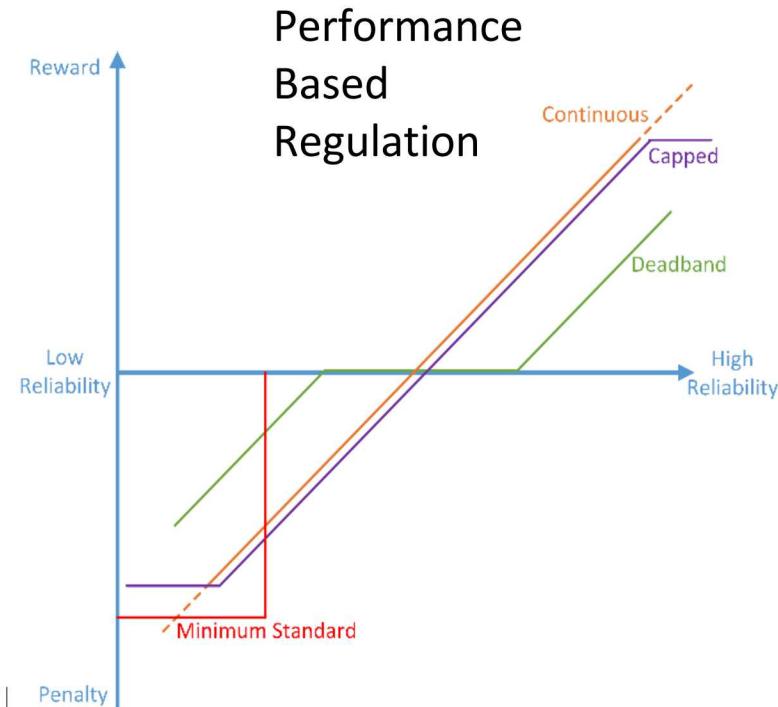
- Sandia National Laboratories
 - Brian Pierre (PI)
 - Bryan Arguello
 - Andrea Staid
 - Advisors
 - JP Watson
 - Ross Guttromson
- Georgia Tech
 - Emma Johnson
 - Shabbir Ahmed

Power System Resilience

- Reliability – Low consequence high probability
 - Squirrels, birds, etc.
 - Traffic accidents
 - Trees/wind
 - Lightning
- Resilience - High consequence low probability events
 - Severe winter storms
 - Hurricanes
 - Tornados
 - Earthquakes
 - EMPs and GMDs
 - Fires
 - Physical attack

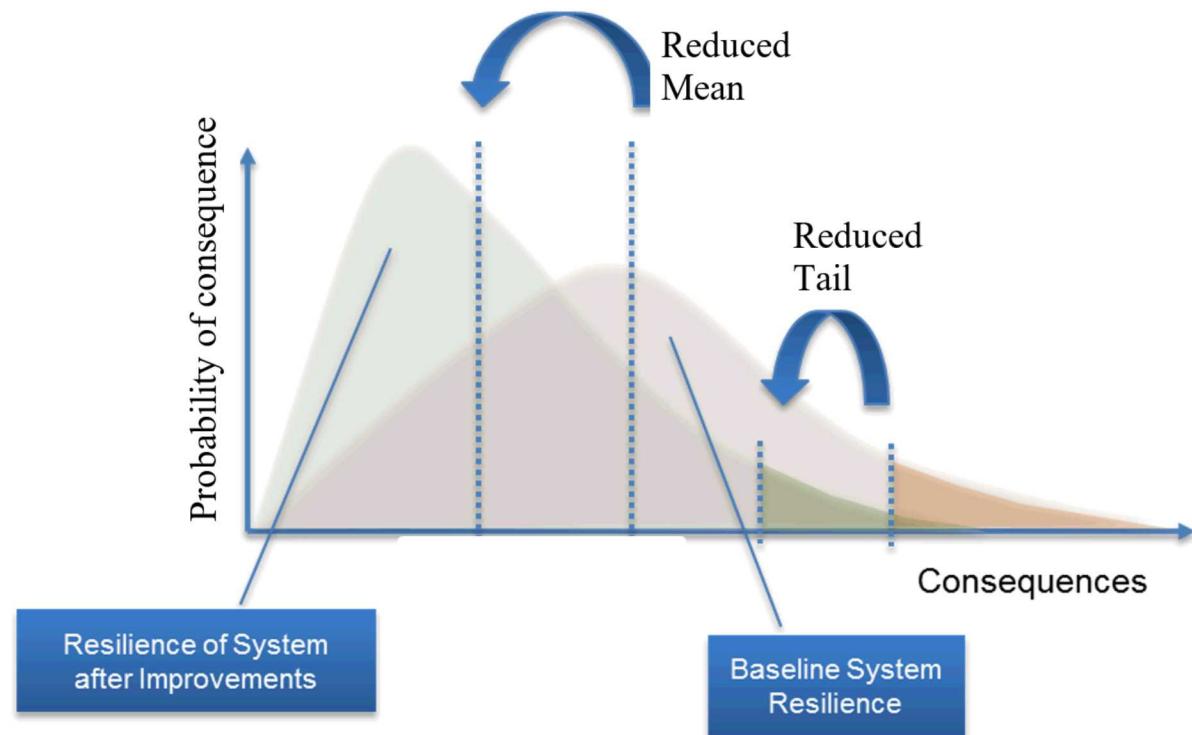
Utilities are incentivized to be reliable not resilient

- Utilities are often incentivized to be more reliable (improve their SAIDI and SAIFI metrics)
- Some utilities have performance based regulation (PBR)
- Large scale events (severe winter storms, hurricanes, etc.) are removed from the SAIDI and SAIFI metrics
- Less incentive to invest in resiliency



Improve Power System Resilience

- The goals are to push the mean consequence and the tail of the consequence to the left.
- Reducing the tail, reduces the consequence from the large worst-case scenarios
- Resilience metrics used in this project are Loss of Load and Duration.



Project goals

- Determine optimal investment locations to improve power system resilience.
- Determine worst case buses, lines, generators which if taken out, would cause the greatest damage.
- Determine if a large impact can be achieved by hardening only a few particular components

Scenario development

- Create scenarios based on real threats which disable Buses, Generators, Lines (transformers represented as lines also), and Loads
- Informative scenarios are critical yet difficult to generate
- Need high quality data
- Synthetic scenarios are difficult to produce due to limited number of actual scenarios
- Data needed to create scenarios for each type of threat can vary
- Create scenarios based on probability density functions of failure rates from historical data

Optimization Model

Objective function to minimize weighted load shed:

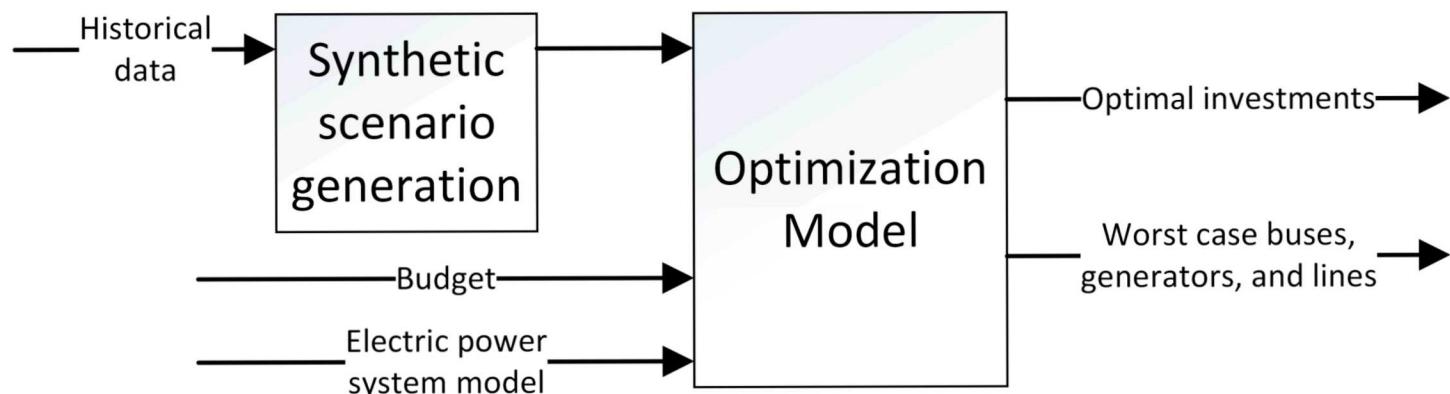
Minimize (without duration):

$$\sum_{b \in B} A_b \sum_{w \in \Omega} P_w p_b^w$$

*Duration is included in newest model

Minimize (with duration):

$$\sum_{t \in T} t \sum_{b \in B} A_b \sum_{w \in \Omega} P_w p_{b,t}^w$$



Sets, parameters, and variables

Sets

L	Transmission lines
G	Generators
B	Buses
Ω	Weather scenarios
Ω_l	Set of scenarios under which transmission line l

Parameters

B_l^{from}	Bus from which transmission line l leaves
B_l^{to}	Bus transmission line l enters
S_l	Susceptance of transmission line l
\bar{P}_l	Thermal limit of transmission line l
B_g	Bus containing generator g
RU_g	Ramp-up limit of generator g dispatch level
RD_g	Ramp-down limit of generator g dispatch level
SU_g	Start-up limit of generator g dispatch level
\bar{P}_g	Upper limit of generator g dispatch level
\underline{P}_g	Lower limit of generator g dispatch level
D_b	Demand at bus b
Y_l^0	On/off status of line l during first stage
Y_g^0	On/off status of generator g during first stage
Y_b^0	On/off status of bus b during first stage
C_l	Cost of hardening transmission line l
C_g	Cost of hardening generator g
C_b	Cost of hardening bus b
P_w	Probability of scenario w occurring
T	Budget

Ω_g	Set of scenarios under which generator g goes offline
Ω_b	Set of scenarios under which bus b goes offline
G_b	Set of generators connected to bus b
L_b^{from}	Set of transmission lines leaving bus b
L_b^{to}	Set of transmission lines entering bus b
I	Set of investments for buses, generators, and transmission lines

Variables

p_l^0	Power flow through transmission line l in first stage
p_l^w	Power flow through transmission line l in scenario w
p_g^0	Generator dispatch level for generator g in first stage
p_g^w	Generator dispatch level for generator g in scenario w
p_b^0	Load shed at bus b in first stage
p_b^w	Load shed at bus b in scenario w
θ_b^0	Phase angle for bus b in first stage
θ_b^w	Phase angle for bus b in scenario w
y_l^w	On/off status of line l during scenario w
y_g^w	On/off status of generator g during scenario w
y_b^w	On/off status of bus b during scenario w
i_l	Binary indicating whether or not transmission line l is hardened
i_g	Binary indicating whether or not generator g is hardened
i_b	Binary indicating whether or not bus b is hardened

Sandia
National
Laboratories

Constraints

- Budget constraint
- Power flow constraints
- Generator limit constraints
- Line limit constraints (thermal and pseudo stability constraints)
- Ramp rate and start-up constraints
- Constraints to account for an investment in a line, but the line remains out due to outage of a bus.

Constraints

$$\sum_{b \in B} c_b i_b + \sum_{l \in L} c_l i_l + \sum_{g \in G} c_g i_g \leq T \quad (2)$$

$$\sum_{g \in G_b} p_g^0 + \sum_{l \in L_b^{to}} p_l^0 - \sum_{l \in L_b^{from}} p_l^0 = D_b - p_b^0 \quad \forall b \in B \quad (3)$$

$$\sum_{g \in G_b} p_g^w + \sum_{l \in L_b^{to}} p_l^w - \sum_{l \in L_b^{from}} p_l^w = D_b - p_b^w \quad (4)$$

$\forall b \in B, \forall w \in \Omega$

$$p_l^0 = Y_l^0 S_l \left(\theta_{B_l^{to}}^0 - \theta_{B_l^{from}}^0 \right) \quad \forall l \in L \quad (5)$$

$$p_l^w = y_l^w S_l \left(\theta_{B_l^{to}}^w - \theta_{B_l^{from}}^w \right) \quad \forall l \in L, \forall w \in \Omega \quad (6)$$

$$p_l^w \leq p_g^0 + R U_g Y_g^0 + S U_g (y_g^w - Y_g^0) + \bar{P}_g (1 - y_g^w) \quad (7)$$

$\forall g \in G, \forall w \in \Omega$

$$p_g^0 \leq \bar{P}_g y_g^w \quad \forall g \in G, \forall w \in \Omega \quad (8)$$

$$p_g^0 - p_g^w \leq R D_g y_g^w + \bar{P}_g (1 - Y_g^0) \quad \forall g \in G, \forall w \in \Omega \quad (9)$$

$$-\frac{\pi}{3} \leq \theta_{B_l^{to}}^0 - \theta_{B_l^{from}}^0 \leq \frac{\pi}{3} \quad \forall l \in L \quad (10)$$

$$-\frac{\pi}{3} \leq \theta_{B_l^{to}}^w - \theta_{B_l^{from}}^w \leq \frac{\pi}{3} \quad \forall l \in L, \forall w \in \Omega \quad (11)$$

$$-\bar{P}_l Y_l^0 \leq p_l^0 \leq \bar{P}_l Y_l^0 \quad \forall l \in L \quad (12)$$

$$-\bar{P}_l y_l^w \leq p_l^w \leq \bar{P}_l y_l^w \quad \forall l \in L, \forall w \in \Omega \quad (13)$$

$$\bar{P}_g Y_g^0 \leq p_g^0 \leq \bar{P}_g Y_g^0 \quad \forall g \in G \quad (14)$$

$$\bar{P}_g y_g^w \leq p_g^w \leq \bar{P}_g y_g^w \quad \forall g \in G, \forall w \in \Omega \quad (15)$$

$$0 \leq p_b^0 \leq D_b \quad \forall b \in B \quad (16)$$

$$0 \leq p_b^w \leq D_b \quad \forall b \in B, \forall w \in \Omega \quad (17)$$

$$y_l^w \leq i_l \quad \forall l \in L, \forall w \in \Omega_l \quad (18)$$

$$y_l^w \leq i_{B_l^{from}} \quad \forall l \in L, \forall w \in \Omega_l \quad (19)$$

$$y_l^w \leq i_{B_l^{to}} \quad \forall l \in L, \forall w \in \Omega_l \quad (20)$$

$$y_g^w \leq i_g \quad \forall g \in G, \forall w \in \Omega_g \quad (21)$$

$$y_g^w \leq i_{B_g} \quad \forall g \in G, \forall w \in \Omega_g \quad (22)$$

$$y_b^w \leq i_b \quad \forall b \in B, \forall w \in \Omega_b \quad (23)$$

$$y_l^w \leq y_{B_l^{from}}^w \quad \forall l \in L, \forall w \in \Omega_l \quad (24)$$

$$y_l^w \leq y_{B_l^{to}}^w \quad \forall l \in L, \forall w \in \Omega_l \quad (25)$$

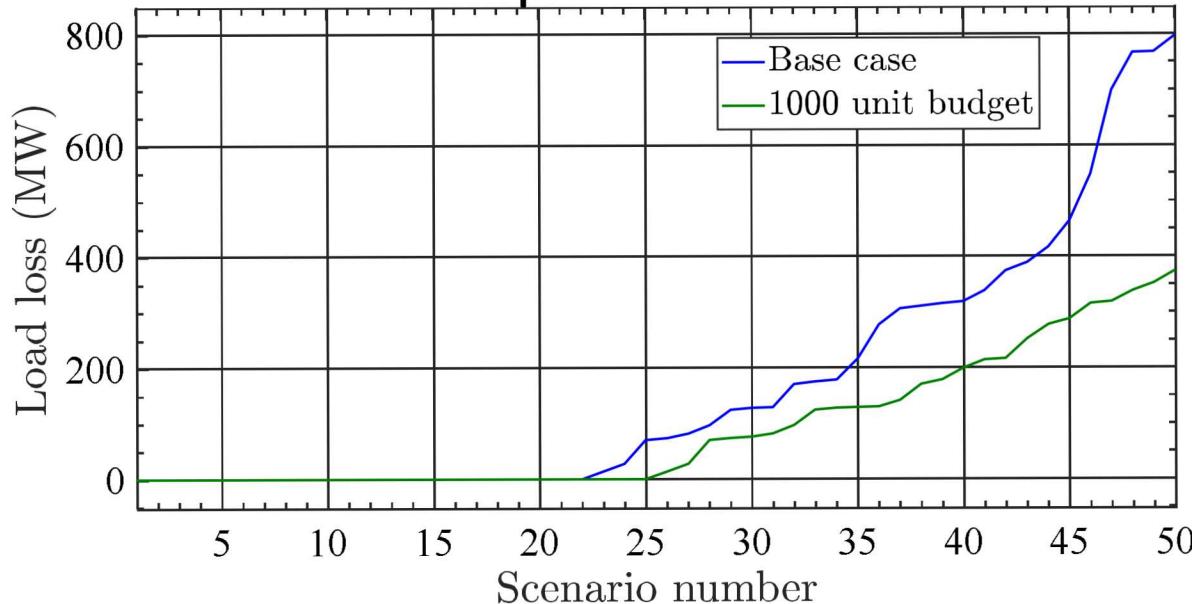
$$y_l^w \leq y_{B_g}^w \quad \forall g \in G, \forall w \in \Omega_g \quad (26)$$

Test system

- IEEE RTS 96 test system
- Winter storm scenarios developed based on historical data
- 50 scenarios utilized in example
- Cost to protect a: line=10, generator=50, bus=100

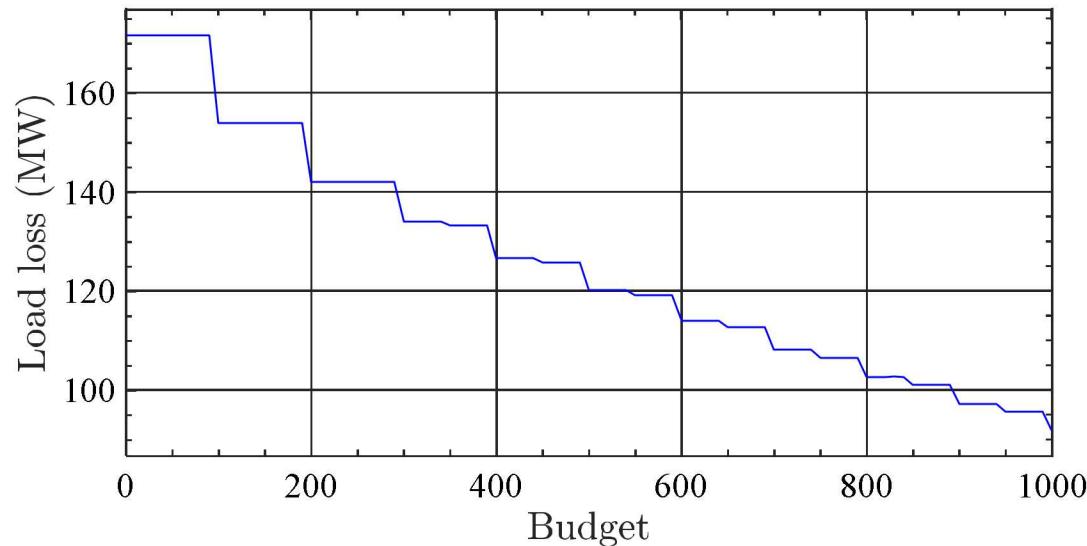
Results

- No investment vs. 1000 unit investment
- Impact to all 50 scenarios.
- Notice 22 scenarios have no outage occur during the storm
- Notice the tail of the curve has the greatest improvement, i.e. the worst scenarios are improved the most.



Results

- The optimal buses, lines, transformers, and generators are determined to reduce the objective function
- Increasing the budget as expect gives better results.



Conclusions

- Presented a optimization model to determine the optimal investments to improve power system resilience
- Accurate scenario generation is a key to valuable results
- The optimal investments can be determined through this formulation
- The worst case buses, lines, and generators can be determined through this formulation

Future work

- Include duration in this model (but requires accurate scenario generation), duration*MW lost is the objective function
- Instead of a scenario where a group of components fail at $t=0$, they now fail at a specific time and recover and another specific time
- Develop a co-optimization approach to determine the optimal investments to improve power system reliability and resiliency.
- Determine the trade-offs between reliability investments and resiliency investments

Thank you!

Questions?

bjpierr@sandia.gov