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Power System Resilience

• Reliability — Low consequence high probability
• Squirrels, birds, etc.
• Traffic accidents
• Trees/wind
• Lightning

• Resilience - High consequence low probability events
• Severe winter storms
• Hurricanes
• Tornados
• Earthquakes
• EMPs and GMDs
• Fires
• Physical attack
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Utilities are incentivized to be
reliable not resilient

• Utilities are often incentivized to
be more reliable (improve their
SAIDI and SAIFI metrics)

• Some utilities have performance
based regulation (PBR)

• Large scale events (severe winter
storms, hurricanes, etc.) are
removed from the SAIDI and SAIF
metrics
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Improve Power System Resilience
• The goals are to push the mean consequence and the tail of the
consequence to the left.

• Reducing the tail,
reduces the
consequence from
the large worst-case
scenarios

• Resilience metrics
used in this project
are Loss of Load and
Duration.
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Project goals

• Determine optimal investment locations to improve
power system resilience.

• Determine worst case buses, lines, generators
which if taken out, would cause the greatest
damage.

• Determine if a large impact can be achieved by
hardening only a few particular components
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Scenario development

• Create scenarios based on real threats which disable
Buses, Generators, Lines (transformers represented as
lines also), and Loads

• Informative scenarios are critical yet difficult to
generate

• Need high quality data
• Synthetic scenarios are difficult to produce due to

limited number of actual scenarios
• Data needed to create scenarios for each type of threat
can vary

• Create scenarios based on probability density functions
of failure rates from historical data
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Optimization Model
Objective function to minimize weighted load shed:

Minimize (without duration):

Ab Pwg
bEB vvEf2

Minimize (with duration):

It Ab Pw13Li,t
tET bEB WEÍ2
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Sets, parameters, and variables
Sets

L
G
B

f21

Parameters

Transmission lines
Generators
Buses
Weather scenarios
Set of scenarios under which transmission line I

Qb
Gb
Lbfrom
Lbto

I

Set of scenarios under which generator g goes
offline
Set of scearios under which bus b goes offline
Set of generators connected to bus b
Set of transmission lines leaving bus b
Set of tranmssion lines entering bus b
Set of investments for buses, generators, and
transmission lines

Variables
./31froin Bus from which transmission line 1 leaves
BP Bus transmission line 1 enters pi° Power flow through tansmission line I in first stage
Sl Susceptance of tranmission line 1 p1W Power flow through transmission line I in scenario

Pi Thermal limit of transmission line 1 w

Bg
RUg

Bus containing generator g
Ramp-up limit of generator g dispatch level

pg0 Generator dispatch level for generator g in first
stage

RDg Ramp-down limit of generator g dispatch level
pg̀ v Generator dispatch level for generator g in scenario

w
SUg Start-up limit of generator g distpatch level

pb° Load shed at bus b in first stage
p g Upper limit of generator g dispatch level pb`v Load shed at bus b in scenario w

_g Lower limit of generator g dispatch level 0130 Phase angle for bus b in first stage

Db Demand at bus b Oblv Phase angle for bus b in scenation w

Irj°
Yg°

On/off staus of line 1 during first stage
On/off staus of generator g during first stage

Ylw
ygNV

On/off status of line l during scenario w
On/off status of generator g during scenario w

Yb°
C1

On/off staus of bus b during first stage
Cost of hardening transmission line 1

ii
On/off status of bus b during scenario w
Binary indicating whether or not transmission line
l is hardened

Cg Cost of hardening generator g
ig Binary indicating whether or not generator g is

Cb Cost of hardening bus b hardened
Pw Probability of scenario w occuring lb Binary indicating whether or not bus b is hardened
T Budget
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Constraints

• Budget constraint

• Power flow constraints

• Generator limit constraints

• Line limit constraints (thermal and pseudo stability
constraints)

• Ramp rate and start-up constraints

• Constraints to account for an investment in a line,
but the line remains out due to outage of a bus.
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Test system

• IEEE RTS 96 test system

• Winter storm scenarios developed based on
historical data

• 50 scenarios utilized in example

• Cost to protect a: line=10, generator=50, bus=100
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Results
• No investment vs. 1000 unit investment

• Impact to all 50 scenarios.

• Notice 22 scenarios have no outage occur during the storm

• Notice the tail of the curve has the greatest improvement, i.e.
the worst sc
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Results

• The optimal buses, lines, transformers, and
generators are determined to reduce the objective
function

• Increasing the budget as expect gives better results.
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Conclusions

• Presented a optimization model to determine the
optimal investments to improve power system
resilience

• Accurate scenario generation is a key to valuable
results

• The optimal investments can be determined
through this formulation

• The worst case buses, lines, and generators can be
determined through this formulation
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Future work

• Include duration in this model (but requires
accurate scenario generation), duration*MW lost is
the objective function

• Instead of a scenario where a group of components
fail at t=0, they now fail at a specific time and
recover and another specific time

• Develop a co-optimization approach to determine
the optimal investments to improve power system
reliability and resiliency.

• Determine the trade-offs between reliability
investments and resiliency investments
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Thank you!

Questions?

bjpierr@sandia.gov 
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